Bit holder with enlarged tire portion and narrowed bit holder block

Information

  • Patent Grant
  • 10954785
  • Patent Number
    10,954,785
  • Date Filed
    Friday, September 13, 2019
    5 years ago
  • Date Issued
    Tuesday, March 23, 2021
    3 years ago
Abstract
A bit assembly includes a base block and a bit holder having a forward body portion and a shank. The forward body portion includes an enlarged tire portion to deflect material and particles removed from the terra firma and protect the base block from damage. The base block includes a base and a shortened front end. The enlarged tire portion has dimensions that cover at least all of the shortened from end. The dimensions of the tire portion can also extend beyond the dimensions of the shortened front end.
Description
TECHNICAL FIELD

This disclosure relates to bit assemblies for road milling, mining, and trenching equipment, and more particularly, to a bit holder having an enlarged tire portion.


BACKGROUND

Road milling, mining, and trenching equipment utilizes bits traditionally set in a bit assembly having a bit holder and a bit holder block. The bit is retained by the bit holder and the bit holder is retained in the bit holder block. A plurality of the bit assemblies are mounted on the outside of a rotatable drum in staggered positions, typically in a V-shaped or spiral configuration, in an effort to create the smoothest road milling. The combinations of bit assemblies have been utilized to remove material from the terra firma, such as degrading the surface of the earth, minerals, cement, concrete, macadam or asphalt pavement. Individual bits, bit holders, and bit holder blocks may wear down or break over time due to the harsh road degrading environment. Tungsten carbide and diamond or polycrystalline diamond coatings, which are much harder than steel, have been used to prolong the useful life of bits and bit holders. However, bit holder blocks are generally made of steel. As a result, particles removed from the terra firma may damage the bit holder block and require replacement long before the standard minimum lifetime required by the industry.


SUMMARY

This disclosure relates generally to bit assemblies for road milling, mining, and trenching equipment. One implementation of the teachings herein is a bit holder for mounting in a bore of a bit holder block that includes a forward body portion having a tire portion radially extending from an axis of the bit holder, a generally cylindrical hollow shank depending axially from the tire portion, the shank having a slot axially extending from a distal end of the shank toward the forward body portion, and the tire portion having an axial distance at least as great as an outer perimeter of the bore of the bit holder block.


These and other aspects of the present disclosure are disclosed in the following detailed description of the embodiments, the appended claims and the accompanying figures.





BRIEF DESCRIPTION OF THE DRAWINGS

The various features, advantages, and other uses of the apparatus will become more apparent by referring to the following detailed description and drawings, wherein like reference numerals refer to like parts throughout the several views. It is emphasized that, according to common practice, the various features of the drawings are not to-scale. On the contrary, the dimensions of the various features are arbitrarily expanded or reduced for clarity.



FIG. 1 is a detail side elevation view of a first embodiment of a bit assembly, without a bit, showing a bit holder and bit holder block;



FIG. 2 is a detail front elevation view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 3 is a top elevation view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 4 is a rear elevation view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 5 is a side elevation view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 6 is an exploded top elevation view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 7 is an exploded side elevation view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 8 is a ¾ front exploded perspective view of the first embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 9 is a detail side elevation view of a second embodiment of a bit assembly, without a bit, showing a bit holder and bit holder block;



FIG. 10 is a detail front elevation view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 11 is a top elevation view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 12 is a rear elevation view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 13 is a side elevation view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 14 is an exploded top elevation view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 15 is an exploded side elevation view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 16 is a ¾ front exploded perspective view of the second embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 17 is a detail side elevation view of a third embodiment of a bit assembly, without a bit, showing a bit holder and bit holder block;



FIG. 18 is a detail front elevation view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 19 is a front elevation view of the bit holder of the third embodiment of the bit assembly;



FIG. 20 is a side elevation view of the bit holder of the third embodiment of the bit assembly;



FIG. 21 is a top elevation view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 22 is a rear elevation view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 23 is a side elevation view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 24 is an exploded top elevation view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block;



FIG. 25 is an exploded side elevation view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block; and



FIG. 26 is a ¾ front exploded perspective view of the third embodiment of the bit assembly, without a bit, showing the bit holder and bit holder block.





DETAILED DESCRIPTION

Road milling, mining, and trenching equipment utilizes bits traditionally set in a bit assembly having a bit holder and a bit holder block. The bit is retained by the bit holder and the bit holder is retained in the bit holder block. A plurality of the bit assemblies are mounted on the outside of a rotatable drum in staggered positions, typically in a V-shaped or spiral configuration, in an effort to create the smoothest road milling. To provide a smoother surface, the size of the bit holder block can be reduced, such as by reducing the axial dimensions of the bit holder block, to allow the bit assemblies to be placed closer together. Such narrowed bit holder blocks allow closer center-to-center axial bit tip orientation with the V-shaped or spiral configurations, thereby resulting in a smoother road surface. One important aspect of the present disclosure is providing a bit holder block with narrowed dimensions to reduce the distance axial bit tip orientation.


Individual bits, bit holders, and bit holder blocks may wear down or break over time due to the harsh road degrading environment. Tungsten carbide and diamond or polycrystalline diamond coatings, which are much harder than steel, have been used to prolong the useful life of bits and bit holders. Bit holder blocks, herein after referred to as base blocks, are generally made of steel. Particles removed from the terra firma may damage the base block and require replacement long before the standard minimum lifetime required by the industry. Another important aspect of the present disclosure is providing a bit assembly that comprises a bit holder having dimensions at least that of the dimensions of the bit holder block to protect the base block and deflect particles removed from the terra firma away from the base block, thereby preventing premature damage to the base block.


Referring to FIGS. 1-8, a first embodiment of a bit assembly 10, without a bit, comprises a bit holder 12 and a base block 14. The bit holder 12 includes a bit holder body 16 and a shank 18 axially depending from the bottom of the bit holder body 16. The bit holder body 16 is generally annular in shape and comprises a generally cylindrical upper body portion 20 axially extending from a flat annular top surface 22. Subjacent the upper body portion 20 is a middle portion 23 that extends axially and radially outwardly to a radially extending generally cylindrical tire portion 24. The middle portion 23, shown in detail in FIG. 1, has an arcuate shape. In other embodiments, the middle portion 23 can have a frustoconical shape, a convex shape, or a concave shape.


Adjacent the tire portion 24 is a tapered portion 25, shown in FIG. 1, that ends in a flange 26, such as a flat annular flange, shown in FIGS. 6 and 7, of the bit holder body 16. The tire portion 24 includes a pair of tapered cutouts 28, 30, or wedge-shaped undercuts, shown in FIGS. 1, 3, and 5-7, to provide access and leverage for a tool to extract the bit holder 12 from the base block 14. The tapered cutouts 28, 30 are formed into the tire portion 24 and extend from the flange 26 subjacent to the tire portion 24. The tapered cutouts 28, 30 include a pair of parallel flat vertical inner surfaces 32, 34, respectively, as shown in FIGS. 1, 3, and 5-7, and a pair of flat tapered top surfaces 36, 38, respectively, as shown in FIGS. 1, and 5-7. The outer edge of the flat tapered top surfaces 36, 38 is each arcuate in shape to follow the periphery of the tire portion 24. A pair of notches 40, 42, shown in FIGS. 2, 3, and 5-8, are formed into the bit holder body 16 and extend from the flat annular top surface 22 through the upper body portion 20 and the middle portion 23, terminating at a point within the middle portion 23. The notches 40, 42 provide access and leverage for a tool to extract, or knock out, a bit from the bit holder body 16.


The shank 18, shown in FIGS. 6-8, axially depends from the flange 26 of the bit holder body 16. The bit holder body 16 and the shank 18 are axially aligned about a bit holder bore 44, shown in FIGS. 2 and 8, that extends from the flat annular top surface 22 of the bit holder body 16 to a distal end 46 of the shank 18. The shank 18 comprises an increased diameter top segment 48 that axially extends from the flange 26. A decreased diameter mediate segment 50 is subjacent to the increased diameter top segment 48. The decreased diameter mediate segment 50 can have a generally cylindrical shape, an arcuate shape, or can be tapered towards the increased diameter top segment 48 or towards the distal end 46 of the shank 18. A slot 52, shown in FIGS. 6 and 8, extends from an upper termination 54 in the decreased diameter mediate segment 50 to the distal end 46 of the shank 18. Subjacent the decreased diameter mediate segment 50 is a lower segment 56 that axially extends to a decreased diameter distal segment 58. The decreased diameter distal segment 58 axially extends from the lower segment 56 to the distal end 46 of the shank 18 and is generally C-shaped when viewed from the distal end 46.


The base block 14 comprises a base 60 and a shortened front end 62. The base 60 can be flat or slightly concave to fit a drum or additional mounting plates on which a plurality of base blocks can be mounted. The shortened front end 62 includes a base block bore 72, shown in FIGS. 4 and 8, that is symmetrical with the shank 18 along a centerline. The shortened front end 62 and the base block bore 72, in this embodiment, are shortened to approximately 1.5 inches in length by removing material from the rear face 75 (FIGS. 3, 4, and 6) of the shortened front end 62. The base block 14 includes a semi-circular slot 79 (FIG. 4) that extends inwardly from the rear face 75 of the shortened front end 62. The slot 79 is enclosed within the wall of the shortened front end 62. As shown in FIGS. 3 and 6, a portion 78 of the base block 14 includes an arcuate segment 73 that axially extends from the rear face 75 of the shortened front end 62 to a location adjacent a rear 77 of the base block 14. The arcuate segment 73, in this exemplary implementation, has a reduced radius from the radius of the bore 72, as shown in FIGS. 3 and 6, and extends to a location short of a bottom of the rear 77 of the base 60. The shortened front end 62 also includes a pair of flat vertical sides 64, 66, shown in FIGS. 4, 5, 6 and 8, that extend to the base 60. The flat vertical sides 64, 66 reduce the dimensions of the base block 14 and allow bit assemblies to be positioned in closer center-to-center axial bit tip orientation in order to degrade the road to a smoother surface. In this exemplary implementation, the width of the item, such as the width of the shortened front end 62, is the horizontal distance 70 between the flat vertical sides 64, 66 of the shortened front end 62. The vertical distance 68, shown in FIG. 7, between a top portion 74 and a bottom portion 76 of the shortened front end 62 is greater than the horizontal distance 70, shown in FIG. 4, between the flat vertical sides 64, 66 of the shortened front end 62. The diameter of the tire portion 24 of the bit holder body 16 is greater than the width of the shortened front end 62, or the horizontal distance 70, and is equal to or greater than the vertical distance 68 of the shortened front end 62 of the base block 14.


When assembled, slot 52 allows the shank 18 to radially compress when inserted into the base block bore 72 of the shortened front end 62 forming an interference fit between the shank 18 and the base block bore 72. The force between the diametrically contracted shank 18 and the base block bore 72 maintains and retains the bit holder 12 in the base block 14. The bit holder 12 and the base block 14 are assembled together to form the bit assembly 10. The bit holder 12, including the bit holder body 16, shank 18, and bit holder bore 44, and the base block 14, including the base 60, shortened front end 62, and base block bore 72, are all axially aligned when assembled together to form the bit assembly 10. The bit holder body 16 covers the entirety of the shortened front end 62, thereby deflecting material removed from the terra firma and protecting the base block 14 from damage.


Referring to FIGS. 9-16, a second embodiment of a bit assembly 80, without a bit, comprises a bit holder 82 and a base block 84. The bit holder 82 includes a bit holder body 86 and a shank 88 axially depending from the bottom of the bit holder body 86. The bit holder body 86 is generally annular in shape and comprises a generally cylindrical upper body portion 90 axially extending from a flat annular top surface 92. Subjacent the upper body portion 90 is a middle portion 93 that extends axially and radially outwardly to a radially extending generally cylindrical tire portion 94. The middle portion 93, shown in detail in FIG. 1, has an arcuate shape. In other embodiments, the middle portion 93 can have a frustoconical shape, a convex shape, or a concave shape. The middle portion 93 and tire portion 94 share a curved top surface 96 and a curved bottom surface 98, shown in FIGS. 10, 12, and 16. The middle portion 93 and tire portion 94 also share a pair of vertical sides 100, 102, shown in FIGS. 10 and 16. In this embodiment, the vertical sides 100, 102 can have concave portions 101, 103, respectively, that curve radially inwardly, as shown in FIGS. 9, 13, and 15-16. However, in other embodiments, vertical sides 100, 102 can be flat.


Adjacent the tire portion 94 is a tapered portion 95, shown in FIG. 9, that ends in a flange 104, such as a flat annular flange, shown in FIG. 15, of the bit holder body 86. The tire portion 94 includes a pair of tapered cutouts 106, 108, or wedge-shaped undercuts, shown in FIGS. 9, 11, and 13-15, to provide access and leverage for a tool to extract the bit holder 82 from the base block 84. The tapered cutouts 106, 108 are formed into the tire portion 94 and extend from a flange 104 subjacent to the tire portion 94. The tapered cutouts 106, 108 include a pair of parallel flat vertical inner surfaces 110, 112, respectively, as shown in FIGS. 9, 11, and 13-15, and a pair of flat tapered top surfaces 114, 116, respectively, as shown in FIGS. 9, and 13-15. The outer edge of the flat tapered top surfaces 114, 116 is each arcuate in shape to follow the periphery of the tire portion 94. A pair of notches 118, 120, shown in FIGS. 10, 11, and 13-16, are formed into the bit holder body 86 and extend from the flat annular top surface 92 through the upper body portion 90 and the middle portion 83, terminating at a point within the middle portion 83. The notches 118, 120 provide access and leverage for a tool to extract, or knock out, a bit from the bit holder body 86.


The shank 88, shown in FIGS. 14-16, axially depends from the flange 104 of the bit holder body 86. The bit holder body 86 and the shank 88 are axially aligned about a bit holder bore 122, shown in FIGS. 10 and 16, that extends from the flat annular top surface 92 of the bit holder body 86 to a distal end 124 of the shank 88. The shank 88 comprises an increased diameter top segment 126 that axially extends from the flange 104. A decreased diameter mediate segment 128 is subjacent to the increased diameter top segment 126. The decreased diameter mediate segment 128 can have a generally cylindrical shape, an arcuate shape, or can be tapered towards the increased diameter top segment 126 or towards the distal end 124 of the shank 88. A slot 130, shown in FIGS. 14 and 16, extends from an upper termination 132 in the decreased diameter mediate segment 128 to the distal end 124 of the shank 88. Subjacent the decreased diameter mediate segment 128 is a lower segment 134 that axially extends to a decreased diameter distal segment 136. The decreased diameter distal segment 136 axially extends from the lower segment 134 to the distal end 124 of the shank 88 and is generally C-shaped when viewed from the distal end 124.


The base block 84 comprises a base 138 and a shortened front end 140. The base 138 can be flat or slightly concave to fit a drum or additional mounting plates on which a plurality of base blocks can be mounted. The shortened front end 140 includes a base block bore 150, shown in FIGS. 12 and 16, that is symmetrical with the shank 88 along a centerline. The shortened front end 140 and the base block bore 150, in this embodiment, are shortened to approximately 1.5 inches in length by removing material from the rear face 141 (FIGS. 11, 12, and 14) of the shortened front end 140. The base block 84 includes a semi-circular slot 143 (FIG. 12) that extends inwardly from the rear face 141 of the shortened front end 140. The slot 143 is enclosed within the wall of the shortened front end 140. As shown in FIGS. 11 and 14, a portion 156 of the base block 84 includes an arcuate segment 158 that extends from the rear face 141 of the shortened front end 140 to a location adjacent a rear 139 of the base block 84. The arcuate segment 158, in this exemplary implementation, has a reduced radius from the radius of the bore 150, as shown in FIGS. 11 and 14, and extends to a location short of a bottom of the rear 139 of the base 138. The shortened front end 140 also includes a pair of flat vertical sides 142, 144, shown in FIGS. 11, 12, 14 and 16, that extend to the base 138. The flat vertical sides 142, 144 reduce the dimensions of the base block 14 and allow bit assemblies to be positioned in closer center-to-center axial bit tip orientation in order to degrade the road to a smoother surface. In this exemplary implementation, the width of the item, such as the width of the shortened front end 140, is the horizontal distance 148 between the flat vertical sides 142, 144 of the shortened front end 140. The vertical distance 146, shown in FIG. 15, between a top portion 152 and a bottom portion 154 of the shortened front end 140 is greater than the horizontal distance 148, shown in FIG. 12, between the flat vertical sides 142, 144 of the shortened front end 140. The distance between vertical side 100 and vertical side 102 of the tire portion 94 of the bit holder body 86 is at least equal to the horizontal distance 148 of the shortened front end 140 of the base block 84. The distance between the curved top surface 96 and the curved bottom surface 98 of the tire portion 94 of the bit holder body 86 is equal to or greater than the vertical distance 146 of the shortened front end 140 of the base block 84.


When assembled, slot 130 allows the shank 88 to radially compress when inserted into the base block bore 150 of the shortened front end 140 forming an interference fit between the shank 88 and the base block bore 150. The force between the diametrically contracted shank 88 and the base block bore 150 maintains and retains the bit holder 82 in the base block 84. The bit holder 82 and the base block 84 are assembled together to form the bit assembly 80. The bit holder 82, including the bit holder body 86, shank 88, and bit holder bore 122, and the base block 84, including the base 138, shortened front end 140, and base block bore 150, are all axially aligned when assembled together to form the bit assembly 80. The bit holder body 86 covers the entirety of the shortened front end 140, thereby deflecting material removed from the terra firma and protecting the base block 84 from damage.


Referring to FIGS. 17-26, a third embodiment of a bit assembly 160, without a bit, comprises a bit holder 162 and a base block 164. The bit holder 162 includes a bit holder body 166, a shank 168, and a bit holder bore 202 axially depending from the bottom of the bit holder body 166. The bit holder body 166 is generally annular in shape and comprises a generally cylindrical upper body portion 170 axially extending from a flat annular top surface 172. Subjacent the upper body portion 170 is a middle portion 173 that extends axially and radially outwardly to a radially extending generally cylindrical tire portion 174. The middle portion 173, shown in detail in FIG. 17, has an arcuate shape. In other embodiments, the middle portion 173 can have a frustoconical shape, a convex shape, or a concave shape.


The middle portion 173 and tire portion 174 share a curved top surface 176 and a curved bottom surface 178, shown in FIGS. 18 and 19. The middle portion 173 and tire portion 174 also share a pair of vertical sides 180, 182, shown in FIGS. 18 and 19. The vertical sides 180, 182 meet the curved top surface 176 at an angle, while the vertical sides 180, 182 curve into the curved bottom surface 178, providing a bit holder body 166 that is generally U-shaped when viewed from the flat annular top surface 172. The vertical sides 180, 182 can be flat or can include a reverse taper towards the curved top surface 176 of the bit holder body 166.


Referring to FIG. 19, the vertical diameter 175, between the curved top surface 176 and the curved bottom surface 178, of the tire portion 174 is greater than the horizontal diameter 177, between vertical side 180 and vertical side 182, of the tire portion 174, shown in FIG. 19. The vertical diameter 175 of the tire portion 174 comprises a top vertical radius 179 greater than a bottom vertical radius 181, measured from an axis 183 of the bit holder bore 202. The top vertical radius 179 is measured from the axis 183 to the curved top surface 176 and the bottom vertical radius 181 is measured from the axis 183 to the curved bottom surface 178.


Adjacent the tire portion 174 is a tapered portion 185, shown in FIG. 17, that ends in a flange 184, such as a flat annular flange, shown in FIGS. 24 and 25, of the bit holder body 166. The tire portion 174 includes a pair of tapered cutouts 186, 188, or wedge-shaped undercuts, shown in FIGS. 17, 20-21, and 23-26, to provide access and leverage for a tool to extract the bit holder 162 from the base block 164. The tapered cutouts 186, 188 are formed into the tire portion 174 and extend from a flange 184 subjacent to the tire portion 174. The tapered cutouts 186, 188 include a pair of parallel flat vertical inner surfaces 190, 192, respectively, as shown in FIGS. 17, 20-21, and 23-25, and a pair of flat tapered top surfaces 194, 196, respectively, as shown in FIGS. 17, 20, and 23-25. The outer edge of the flat tapered top surfaces 194, 196 is each arcuate in shape to follow the periphery of the tire portion 174. A pair of notches 198, 200, shown in FIGS. 18, 21, and 23-26, are formed into the bit holder body 166 and extend from the flat annular top surface 172 through the upper body portion 170 and the middle portion 173, terminating at a point within the middle portion 173. The notches 198, 200 provide access and leverage for a tool to extract, or knock out, a bit from the bit holder body 166.


The shank 168, shown in FIGS. 20 and 24-26, axially depends from the flange 184 of the bit holder body 166. The bit holder body 166 and the shank 168 are axially aligned about a bit holder bore 202, shown in FIGS. 1 and 26, that extends from the flat annular top surface 172 of the bit holder body 166 to a distal end 204 of the shank 168. The shank 168 comprises an increased diameter top segment 206 that axially extends from the flange 184. A decreased diameter mediate segment 208 is subjacent to the increased diameter top segment 206. The decreased diameter mediate segment 208 can have a generally cylindrical shape, an arcuate shape, or can be tapered towards the increased diameter top segment 206 or towards the distal end 204 of the shank 168. A slot 210, shown in FIGS. 24 and 26, extends from an upper termination 212 in the decreased diameter mediate segment 208 to the distal end 204 of the shank 168. Subjacent the decreased diameter mediate segment 208 is a lower segment 214 that axially extends to a decreased diameter distal segment 216. The decreased diameter distal segment 216 axially extends from the lower segment 214 to the distal end 204 of the shank 168 and is generally C-shaped when viewed from the distal end 204.


The base block 164 comprises a base 218 and a shortened front end 220. The base 218 can be flat or slightly concave to fit a drum or additional mounting plates on which a plurality of base blocks can be mounted. The shortened front end 220 includes a base block bore 230, shown in FIGS. 22 and 24, that is symmetrical with the shank 168 along a centerline. The shortened front end 220 and the base block bore 230, in this embodiment, are shortened to approximately 1.5 inches in length by removing material from the rear face 236 (FIGS. 21, 22, and 24) of the shortened front end 220. The base block 164 includes a semi-circular slot 237 (FIG. 22) that extends inwardly from the rear face 236 of the shortened front end 220. The slot 237 is enclosed within the wall of the shortened front end 220. As shown in FIGS. 21 and 24, a portion 233 of the base block 164 includes an arcuate segment 235 that extends from the rear face 236 of the shortened front end 220 to a location adjacent a rear 238 of the base block 164. The arcuate segment 235, in this exemplary implementation, has a reduced radius from the radius of the bore 230, as shown in FIGS. 21 and 24, and extends to a location short of a bottom of the rear 238 of the base 218. The shortened front end 220 also includes a pair of flat vertical sides 222, 224, shown in FIGS. 18, 21-22, 24 and 26, that extend to the base 218. The flat vertical sides 222, 224 reduce the dimensions of the base block 14 and allow bit assemblies to be positioned in closer center-to-center axial bit tip orientation in order to degrade the road to a smoother surface. In this exemplary implementation, the width of the item, such as the width of the shortened front end 220, is the horizontal distance 228 between the flat vertical sides 222, 224 of the shortened front end 220. The vertical distance 226, shown in FIG. 25, between a top portion 232 and a bottom portion 234 of the shortened front end 220 is greater than the horizontal distance 228, shown in FIG. 22, between the flat vertical sides 222, 224 of the shortened front end 220. The horizontal diameter 177 of the tire portion 174 of the bit holder body 166 is at least equal to the horizontal distance 228 of the shortened front end 220 of the base block 164. The vertical diameter 175 of the tire portion 174 is greater than the vertical distance 226 of the shortened front end 220 of the base block 164. The top vertical radius 179 of the tire portion 174 is greater than a radius of the shortened front end 220, measured from an axis 231 of the base block bore 230 to a top portion 232 of the shortened front end 220, such that the bit holder body 166 extends axially and radially past the top portion 232 of the shortened front end 220.


When assembled, slot 210 allows the shank 168 to radially compress when inserted into the base block bore 230 of the shortened front end 220 forming an interference fit between the shank 168 and the base block bore 230. The force between the diametrically contracted shank 168 and the base block bore 230 maintains and retains the bit holder 162 in the base block 164. The bit holder 162 and the base block 164 are assembled together to form the bit assembly 160. The bit holder 162, including the bit holder body 166, shank 168, and bit holder bore 202, and the base block 164, including the base 218, shortened front end 220, and base block bore 230, are all axially aligned when assembled together to form the bit assembly 160. The bit holder body 166 covers the entirety of the shortened front end 220, thereby deflecting material removed from the terra firma and protecting the base block 164 from damage.


While the present disclosure has been described in connection with certain embodiments, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.

Claims
  • 1. A base block comprising: a base;a shortened front end extending from the base, the shortened front end comprising a pair of opposing flat sides and a bore extending from a front face at a forward end of the shortened front end to a rear wall at a distal end of the shortened front end; anda portion of the base comprising an arcuate segment axially extending past the rear wall at the distal end of the shortened front end to a location short of a bottom of a rear of the base, the arcuate segment comprising a reduced radius from a radius of the bore.
  • 2. The base block of claim 1, wherein the pair of opposing flat sides each extend from adjacent a top portion of the shortened front end to the base.
  • 3. The base block of claim 1, wherein the pair of opposing flat sides define a horizontal distance through a central axis of the bore.
  • 4. The base block of claim 3, wherein the shortened front end comprises a top portion and a bottom portion that define a vertical distance, the vertical distance greater than the horizontal distance.
  • 5. The base block of claim 1, the shortened front end and the bore comprising a length of approximately 1.5 inches.
  • 6. A base block comprising: a base;a shortened front end extending from the base, the shortened front end comprising a pair of opposing flat sides and a bore extending from a front face at a forward end of the shortened front end to a rear wall at a distal end of the shortened front end;a portion of the base comprising an arcuate segment axially extending past the rear wall at the distal end of the shortened front end to a location short of a bottom of a rear of the base; anda semi-circular slot extending inwardly from the rear wall at the distal end of the shortened front end, the slot enclosed within an outer side wall of the shortened front end.
  • 7. The base block of claim 6, the shortened front end and the bore comprising a length of approximately 1.5 inches.
CROSS-REFERENCE TO RELATED APPLICATION(S)

This application claims priority to and is a continuation of U.S. Non-provisional application Ser. No. 15/062,620, filed Mar. 7, 2016, to the extent allowed by law and the contents of which are incorporated herein by reference in their entireties.

US Referenced Citations (268)
Number Name Date Kind
2382947 Brozek Jul 1944 A
2810567 Kirkham Oct 1957 A
3342531 Krekeler Sep 1967 A
3342532 Krekeler Sep 1967 A
3397012 Krekeler Aug 1968 A
3476438 Bower, Jr. Nov 1969 A
3519309 Engle Jul 1970 A
3833264 Elders Sep 1974 A
3833265 Elders Sep 1974 A
3865437 Crosby Feb 1975 A
4084856 Emmerich Apr 1978 A
4247150 Wrulich et al. Jan 1981 A
RE30807 Elders Dec 1981 E
4310939 Iijima Jan 1982 A
4453775 Clemmow Jun 1984 A
4478298 Hake Oct 1984 A
4489986 Dziak Dec 1984 A
4525178 Hall Jun 1985 A
4561698 Beebe Dec 1985 A
4570726 Hall Feb 1986 A
4604106 Hall Aug 1986 A
4632463 Sterwerf, Jr. Dec 1986 A
4694918 Hall Sep 1987 A
4702525 Sollami Oct 1987 A
4763956 Emmerich Aug 1988 A
4811801 Salesky Mar 1989 A
4818027 Simon Apr 1989 A
4821819 Whysong Apr 1989 A
4844550 Beebe Jul 1989 A
4915455 O'Niell Apr 1990 A
4944559 Sionett Jul 1990 A
5067775 D'Angelo Nov 1991 A
5088797 O'Neill Feb 1992 A
5098167 Latham Mar 1992 A
5159233 Sponseller Oct 1992 A
5161627 Burkett Nov 1992 A
5273343 Ojanen Dec 1993 A
5287937 Sollami Feb 1994 A
5302005 O'Neill Apr 1994 A
5303984 Ojanen Apr 1994 A
5352079 Croskey Oct 1994 A
5370448 Sterwerf, Jr. Dec 1994 A
5374111 Den Besten Dec 1994 A
5415462 Massa May 1995 A
5417475 Graham et al. May 1995 A
5458210 Sollami Oct 1995 A
5484191 Sollami Jan 1996 A
5492188 Smith et al. Feb 1996 A
5551760 Sollami Sep 1996 A
5607206 Siddle Mar 1997 A
5628549 Ritchey May 1997 A
5720528 Ritchey Feb 1998 A
5725283 O'Neill Mar 1998 A
5823632 Burkett Oct 1998 A
5924501 Tibbitts Jul 1999 A
5931542 Britzke Aug 1999 A
5934854 Krautkremer et al. Aug 1999 A
5992405 Sollami Nov 1999 A
D420013 Warren Feb 2000 S
6019434 Emmerich Feb 2000 A
6102486 Briese Aug 2000 A
6176552 Topka, Jr. Jan 2001 B1
6196340 Jensen et al. Mar 2001 B1
6199451 Sollami Mar 2001 B1
6250535 Sollami Jun 2001 B1
6331035 Montgomery, Jr. Dec 2001 B1
6341823 Sollami Jan 2002 B1
6357832 Sollami Mar 2002 B1
6371567 Sollami Apr 2002 B1
6382733 Parrott May 2002 B1
6428110 Ritchey et al. Aug 2002 B1
6508516 Kammerer Jan 2003 B1
D471211 Sollami Mar 2003 S
6585326 Sollami Jul 2003 B2
6685273 Sollami Feb 2004 B1
6692083 Latham Feb 2004 B2
D488170 Sollami Apr 2004 S
6733087 Hall May 2004 B2
6739327 Sollami May 2004 B2
6786557 Montgomery Sep 2004 B2
6824225 Stiffler Nov 2004 B2
6846045 Sollami Jan 2005 B2
6854810 Montgomery Feb 2005 B2
6866343 Holl et al. Mar 2005 B2
6968912 Sollami Nov 2005 B2
6994404 Sollami Feb 2006 B1
7097258 Sollami Aug 2006 B2
7118181 Frear Oct 2006 B2
7150505 Sollami Dec 2006 B2
7195321 Sollami Mar 2007 B1
7210744 Montgomery May 2007 B2
7229136 Sollami Jun 2007 B2
7234782 Stehney Jun 2007 B2
D554162 Hall Oct 2007 S
7320505 Hall Jan 2008 B1
7338135 Hall Mar 2008 B1
7347292 Hall Mar 2008 B1
D566137 Hall Apr 2008 S
7353893 Hall Apr 2008 B1
7384105 Hall Jun 2008 B2
7396086 Hall Jun 2008 B1
7401862 Holl et al. Jul 2008 B2
7401863 Hall Jul 2008 B1
7410221 Hall Aug 2008 B2
7413256 Hall Aug 2008 B2
7413258 Hall Aug 2008 B2
7419224 Hall Sep 2008 B2
7445294 Hall Nov 2008 B2
D581952 Hall Dec 2008 S
7464993 Hall Dec 2008 B2
7469756 Hall Dec 2008 B2
7469971 Hall Dec 2008 B2
7469972 Hall Dec 2008 B2
7475948 Hall Jan 2009 B2
7523794 Hall Apr 2009 B2
7537288 Chiang May 2009 B2
7568770 Hall Aug 2009 B2
7569249 Hall Aug 2009 B2
7571782 Hall Aug 2009 B2
7575425 Hall Aug 2009 B2
7588102 Hall Sep 2009 B2
7594703 Hall Sep 2009 B2
7600544 Sollami Oct 2009 B1
7600823 Hall Oct 2009 B2
7628233 Hall Dec 2009 B1
7635168 Hall Dec 2009 B2
7637574 Hall Dec 2009 B2
7648210 Hall Jan 2010 B2
7665552 Hall Feb 2010 B2
7669938 Hall Mar 2010 B2
7681338 Hall Mar 2010 B2
7712693 Hall May 2010 B2
7717365 Hall May 2010 B2
7722127 Hall May 2010 B2
7789468 Sollami Sep 2010 B2
7832808 Hall Nov 2010 B2
7883155 Sollami Feb 2011 B2
7950745 Sollami May 2011 B2
7963617 Hall Jun 2011 B2
7992944 Hall Aug 2011 B2
7992945 Hall Aug 2011 B2
7997660 Monyak et al. Aug 2011 B2
7997661 Hall Aug 2011 B2
8007049 Fader et al. Aug 2011 B2
8007051 Hall Aug 2011 B2
8029068 Hall Oct 2011 B2
8033615 Hall Oct 2011 B2
8033616 Hall Oct 2011 B2
8038223 Hall Oct 2011 B2
8061784 Hall Nov 2011 B2
8109349 Hall Feb 2012 B2
8118371 Hall Feb 2012 B2
8136887 Hall Mar 2012 B2
8201892 Hall Jun 2012 B2
8215420 Hall Jul 2012 B2
8292372 Hall Oct 2012 B2
8414085 Hall Apr 2013 B2
8449039 Hall May 2013 B2
8485609 Hall Jul 2013 B2
8500209 Hall Aug 2013 B2
8540320 Sollami Sep 2013 B2
RE44690 Sollami Jan 2014 E
8622482 Sollami Jan 2014 B2
8622483 Sollami Jan 2014 B2
8646848 Hall Feb 2014 B2
8728382 Hall May 2014 B2
8740314 O'Neill Jun 2014 B2
9004610 Erdmann et al. Apr 2015 B2
9028008 Bookhamer May 2015 B1
9039099 Sollami May 2015 B2
9316061 Hall Apr 2016 B2
9518464 Sollami Dec 2016 B2
9879531 Sollami Jan 2018 B2
9909416 Sollami Mar 2018 B1
9976418 Sollami May 2018 B2
9988903 Sollami Jun 2018 B2
10072501 Sollami Sep 2018 B2
10105870 Sollami Oct 2018 B1
10107097 Sollami Oct 2018 B1
10107098 Sollami Oct 2018 B2
10180065 Sollami Jan 2019 B1
10260342 Sollami Apr 2019 B1
10323515 Sollami Jun 2019 B1
10337324 Sollami Jul 2019 B2
10370966 Sollami Aug 2019 B1
10385689 Sollami Aug 2019 B1
10415386 Sollami Sep 2019 B1
10502056 Sollami Dec 2019 B2
20020063467 Taitt May 2002 A1
20020074850 Montgomery, Jr. Jun 2002 A1
20020074851 Montgomery, Jr. Jun 2002 A1
20020109395 Sollami Aug 2002 A1
20020167216 Sollami Nov 2002 A1
20020192025 Johnson Dec 2002 A1
20030015907 Sollami Jan 2003 A1
20030047985 Stiffler Mar 2003 A1
20030052530 Sollami Mar 2003 A1
20030122414 Sollami Jul 2003 A1
20030209366 McAlvain Nov 2003 A1
20040004389 Latham Jan 2004 A1
20040174065 Sollami Sep 2004 A1
20050212345 Sleep et al. Sep 2005 A1
20060071538 Sollami Apr 2006 A1
20060186724 Stehney Aug 2006 A1
20060261663 Sollami Nov 2006 A1
20070013224 Stehney Jan 2007 A1
20070040442 Weaver Feb 2007 A1
20070052279 Sollami Mar 2007 A1
20070080575 Sollami Apr 2007 A1
20080035386 Hall et al. Feb 2008 A1
20080036276 Hall et al. Feb 2008 A1
20080036283 Hall et al. Feb 2008 A1
20080100124 Hall et al. May 2008 A1
20080145686 Mirchandani Jun 2008 A1
20080164747 Weaver et al. Jul 2008 A1
20080284234 Hall et al. Nov 2008 A1
20090146491 Fader et al. Jun 2009 A1
20090160238 Hall et al. Jun 2009 A1
20090256413 Majagi Oct 2009 A1
20090261646 Ritchie et al. Oct 2009 A1
20100045094 Sollami Feb 2010 A1
20100244545 Hall Sep 2010 A1
20100253130 Sollami Oct 2010 A1
20100320003 Sollami Dec 2010 A1
20100320829 Sollami Dec 2010 A1
20110006588 Monyak et al. Jan 2011 A1
20110089747 Helsel Apr 2011 A1
20110175430 Heiderich et al. Jul 2011 A1
20110204703 Sollami Aug 2011 A1
20110254350 Hall Oct 2011 A1
20120001475 Dubay et al. Jan 2012 A1
20120027514 Hall Feb 2012 A1
20120056465 Gerer et al. Mar 2012 A1
20120068527 Erdmann Mar 2012 A1
20120104830 Monyak et al. May 2012 A1
20120181845 Sollami Jul 2012 A1
20120242136 Ojanen Sep 2012 A1
20120248663 Hall Oct 2012 A1
20120261977 Hall Oct 2012 A1
20120280559 Watson Nov 2012 A1
20120286559 Sollami Nov 2012 A1
20120319454 Swope Dec 2012 A1
20130169023 Monyak Jul 2013 A1
20130181501 Hall et al. Jul 2013 A1
20130199693 Tank et al. Aug 2013 A1
20130307316 Roetsch et al. Nov 2013 A1
20140035346 Fundakowski et al. Feb 2014 A1
20140110991 Sollami Apr 2014 A1
20140232172 Roth et al. Aug 2014 A1
20140262541 Parsana et al. Sep 2014 A1
20140326516 Haugvaldstad Nov 2014 A1
20150028656 Sollami Jan 2015 A1
20150035343 Ojanen Feb 2015 A1
20150137579 Lachmann et al. May 2015 A1
20150198040 Voitic et al. Jul 2015 A1
20150240634 Sollami Aug 2015 A1
20150285074 Sollami Oct 2015 A1
20150292325 Sollami Oct 2015 A1
20150300166 Ries et al. Oct 2015 A1
20150308488 Kahl Oct 2015 A1
20150315910 Sollami Nov 2015 A1
20150354285 Hall Dec 2015 A1
20160102550 Paros et al. Apr 2016 A1
20160194956 Sollami Jul 2016 A1
20160229084 Lehnert Aug 2016 A1
20160237818 Weber et al. Aug 2016 A1
20170089198 Sollami Mar 2017 A1
20170101867 Hall et al. Apr 2017 A1
Foreign Referenced Citations (13)
Number Date Country
102004049710 Apr 2006 DE
102011079115 Jan 2013 DE
202012100353 Jun 2013 DE
102015121953 Jul 2016 DE
102016118658 Mar 2017 DE
3214261 Sep 2017 EP
1114156 May 1968 GB
1218308 Jan 1971 GB
2483157 Feb 2012 GB
2534370 Jul 2016 GB
2008105915 Sep 2008 WO
2008105915 Sep 2008 WO
2009006612 Jan 2009 WO
Related Publications (1)
Number Date Country
20200003055 A1 Jan 2020 US
Continuations (1)
Number Date Country
Parent 15062620 Mar 2016 US
Child 16570441 US