1. Field of the Invention
The present invention relates in general to an improved wear bushing system, and in particular to an improved bit-run wear bushing and tool and method of operation.
2. Brief Description of Related Art
A wear bushing or seat protector is used in drilling applications to protect the inner profiles of the various components in the wellhead. In the prior art, wear bushings typically have been run or lowered down to the wellhead on a separate trip. One type of bit run wear bushing is held to a tool via shear pins. This bit run wear bushing has an internal ledge with a reduced inner diameter for retrieval. However, the bit run wear bushing is not suitable to protect all of the seats inside a wellbore. Thus an improved bit run wear bushing would be desirable.
Various embodiments of this invention provide a way to protect one or more surfaces inside a wellbore. In an exemplary embodiment, a running tool is attached to a drill string. One or more seat protectors are attached to the running tool. When the drill string is lowered into the wellbore to perform drilling operations, the seat protectors detach from the running tool as the tool passes through the surface to be protected. The seat protectors remain in place during the drilling operation, and are then retrieved when the drill string is withdrawn from the wellbore.
So that the manner in which the features, advantages and objects of the invention, as well as others which will become apparent, are attained and can be understood in more detail, more particular description of the invention briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the invention and is therefore not to be considered limiting of its scope as the invention may admit to other equally effective embodiments.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings which illustrate embodiments of the invention. This invention may, however, be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout, and the prime notation, if used, indicates similar elements in alternative embodiments.
Referring to
A section of casing 18 is suspended from the inner wellhead housing 14 of the wellhead 10. In an exemplary embodiment, the upper casing 18 is a nominal 22″ casing that may extend, for example, several thousand feet down to a first landing sub 20. Below the middle landing sub 20, a middle casing 22 extends downward to a second landing sub 24. A lower casing 26 extends downward from the second landing sub 24.
A nominal seat protector (“NSP”) is a type of wear bushing that may be inserted into a wellhead component to protect the bore of the wellhead component from damage as drill bits, drill pipe, etc., are passed back and forth though the bore of the wellhead component. In the illustrated embodiment, an NSP may be deployed within the inner wellhead housing 14 and landing subs 20, 24 to protect bore surfaces of the inner wellhead housing and/or landing subs. A first NSP 30 is illustrated with dashed lines within the inner wellhead housing 14. In addition, a second NSP 32 is provided to protect bore surfaces of the first landing sub 20. Finally, a third NSP 34 is presented in the illustrated embodiment to protect bore surfaces of the second landing sub 24.
The minimum inner diameter of the landing shoulder in wellhead housing 14 is greater than the minimum inner diameter of middle landing sub 20. In addition, the minimum inner diameter of middle landing sub 20 is greater than the minimum inner diameter of lower landing sub 24. Similarly, the outer diameter of first NSP 30 is greater than the outer diameter of second NSP 32, which is greater than the outer diameter of third NSP 34.
In the illustrated embodiment, the NSPs are bit-run NSPs that are deployed by a running tool deployed as part of a drill string having a drill bit at the bottom (not shown in
As the drill string is lowered down through the inner wellhead housing 14, the second NSP 32 and the third NSP 34 pass through the wellhead 12. However, when the first NSP 30 reaches the inner wellhead housing 14, the first NSP 30 engages the inner wellhead housing 14 and detaches from the second NSP 32 and the running tool, thereby remaining in the inner wellhead housing 14. The portions of the drill string above the inner wellhead housing 14 continue to descend through the center of the first NSP 30.
When the running tool reaches the first landing sub 20, the third NSP 34 passes through the first landing sub 20. However, the second NSP 32 engages the first landing sub 20 and detaches from the third NSP 34 and the running tool, remaining in place inside the first landing sub 20. As above, the drill string continues to descend through the second NSP 32. Finally, when the running tool reaches the second landing sub 24, the third NSP 34 engages the second landing sub 24 and detaches from the running tool, remaining in place to protect the second landing sub as the drill string continues to descend through the third NSP 34. The design and operation of the running tool and NSP bushings will be discussed in greater detail in
As noted above, in the illustrated embodiment, three NSPs are deployed. In this embodiment, the first NSP 30 is a 22″ NSP, the second NSP 32 is a 16″ NSP, and the third NSP 34 is an 18″ NSP. The dimensions 22″, 16″, and 18″ correspond to the nominal size in inches of the pipe which will eventually hang on the inner wellhead housing 14 and the landing subs, respectively. However, NSPs having other diameters may be used. Any number of NSPs may be deployed on a single trip, including, for example, two, three, four, or more. The NSPs may be sized to fit on any size seat within the wellhead and may be used with any size pipe.
Referring generally to
Referring to
Referring to
The bit run NSP running tool 52 supports the NSPs 30, 32, 34 during installation and removal. The running tool 52 has a support rib 54 that engages the bottom-most NSP 34. A shoulder 56 on the engagement rib 54 contacts a shoulder 58 on the third NSP 34. Each of the NSPs 30, 32, 34 has a shoulder to engage the engagement rib 54. Thus any of the NSPs may be placed in the bottom-most position on the running tool 52.
The running tool 52 also has a centralizer 60. The centralizer could be ribs 60, which are a set of raised surfaces around the outside of the running tool 52. The outermost portion of the centralizer rib 60 contacts the ID of the intermediate 32 and upper 30 NSP rings. The centralizer ribs 60 keep the intermediate 32 and upper 30 NSP rings centered on the running tool 52 during insertion and removal.
The ID of the first NSP 30 and second NSP 32 each has a running tool reference surface 62. This surface 62 may have the smallest diameter of any feature on the NSP 30, 32. The centralizer rib 60 contacts the reference surface 62 to align the NSPs 30, 32 on the running tool 52. In some embodiments, the NSP may have a surface with a smaller ID than the reference surface such as, for example, a spline that extends inward beyond the diameter of the reference surface.
The top and bottom of the NSP may have chamfers forming a shoulder on the ID 66, 68, the OD 70, 72, or both. The chamfers may help align the NSP into mating surfaces. The inner chamfer surface 68 at the bottom of the first NSP 30 may help align the NSP with a lower NSP 32 or with the running tool 52. Similarly, the lower support chamfer 74 on the NSP 30 may help align the running tool 52 in the first NSP 30. The support chamfer 74 could also support the first NSP 30 on a lower NSP, such as the second NSP 32 and third NSP 34.
The outer chamfer surface 72 at the bottom of the first NSP 30 may help align the first NSP 30 with the support rib 76 on the high pressure housing 14 during insertion and also facilitate smooth movement through the wellbore. The outer chamfer surface 70 of the first NSP 30 may help guide the first NSP 30 through the wellbore during removal.
The upper support chamfer 78 on the second 32 and third 34 NSPs may be used to support another NSP. The upper support chamfer 78 may contact the lower support chamfer 74 on an adjacent NSP. The upper support chamfer 78 may also guide and align the third 34 or second NSP 32 when it is not mated with an NSP above it as it moves through the wellbore.
In this view, the running tool 52 supports the third NSP 34 on the bottom of the running tool. The third NSP 34 supports the second NSP 32, which in turn supports the first NSP 30. The three NSP rings may be attached to each other and loaded onto the running tool 52 on the drilling rig platform (not shown) and then lowered together on a single trip down into the wellbore. In an alternative embodiment, each of the NSP rings 30, 32, 34 may be independently attached to the running tool rather than nesting with each other.
Referring to
The NSP has a sliding sleeve 84 that contacts a shoulder 86 on the well head housing 14 or landing sub. The sliding sleeve 84 blocks the release pins 82 from moving. Alternatively, the well head housing 14 could be a landing sub. When the sliding sleeve 84 contacts the shoulder 86, the sliding sleeve 84 is held stationary while the NSP 30 continues to move down in the wellbore. The sliding sleeve 84 has a return spring 87 that normally holds the sliding sleeve 84 in the down position. The return spring 87 is illustrated in the expanded position and sliding sleeve 84 in the down position on the second NSP 32 in
The sliding sleeve 84 has a hole or notch 88. When the notch 88 aligns with the release pin 82, the release pin goes into the notch, allowing the lock ring 80 to disengage from the groove 90 in the adjacent NSP 34. When the sliding sleeve 84 is in the down position, the notch 88 is not aligned with the release pin 82 and thus the release pin does not allow the lock ring 80 to expand to its natural state. The first 30 and second 32 NSPs have lock ring mechanisms. The second NSP 32 and third NSP 34 have grooves 90 to receive a lock ring.
The OD of the first NSP 30 is greater than the ID of the shoulder 86 on the wellhead housing support rib 76. Thus the shoulder 86 supports the NSP 30. The OD of the second and third NSPs 32, 34 is less than the ID of shoulder 86, thus the second and third NSPs 32, 34 may pass through the shoulder 86.
Referring to
Referring to
The well head housing 14 (
Referring to
The OD of the intermediate NSP 32 is greater than the ID of the support rib 102. Thus the support rib 102 engages the intermediate NSP 32 and holds it in place. The OD of the bottom NSP 34 is less than the OD of support rib 102, and thus the bottom NSP 34 passes through the landing sub 20.
Referring to
The OD of the third NSP 34 is greater than the ID of the shoulder 104, thus the shoulder 104 engages the third NSP 34 as the running tool 52 passes through the second landing sub 24.
Referring to
Referring to
The second NSP 32 has the next largest OD, and engages the next landing sub 20 in the same manner the first NSP 30 engaged the first landing shoulder 76. The second NSP 32 has a maximum OD that is larger than the maximum OD of the third NSP 34. The second NSP 32 engages the shoulder 102 on the first landing sub 14 and detaches from the third NSP 34. The running tool 52 and third NSP 34 continue to descend the wellbore.
The third NSP 34 engages the second landing sub 24. The second landing sub 24 lifts the third NSP 34 off of the running tool 52 as the running tool 52 and the drill string continue down the wellbore. The second landing sub 24 has a shoulder 104 that engages and supports the shoulder 106 of the third NSP 34.
Referring to
As the third NSP 34 lifts the second NSP ring 32 off of the first landing sub 20, the sliding sleeve 84 is lifted off of the landing sub 20. The sliding sleeve return spring 86 is now able to push the sliding sleeve 84 down. This forces the release pins 96 and the lock ring 80 on the second NSP 32 to engage the lock ring receptacle groove 90 on the third NSP 34.
When the second NSP 32 reaches the first NSP 30, the top shoulder 78 on the second NSP 32 contacts the shoulder 74 on the first NSP 30. As the second NSP 32 lifts the first NSP 30 off of shoulder 76 in well head housing 14, the sliding sleeve 84 is lifted off of the shoulder 76. The sliding sleeve return spring 86 is now able to push the sliding sleeve 84 down. This forces the release pins 96 and the lock ring 80 on the first NSP 30 to engage the lock ring receptacle 90 on the second NSP 32.
In an exemplary embodiment, each size NSP ring may nest together with any of the other size NSP rings. Referring to
In an exemplary embodiment, the weight of the NSP ring is sufficient to hold an installed NSP ring in place on the shoulder 76 of inner wellhead 14 housing and landing subs 20, 24, and thus anti-rotation devices are not necessary. In some embodiments, the bit run NSPs 30, 32, 34 are not required to rotate in place on the landing sub to lock or unlock the NSP in place. Some embodiments may employ anti-rotation devices, such as, for example, a latching mechanism that could require, for example, rotation of the running tool to unlatch the NSP.
In an exemplary embodiment, the inner diameter of one or more of the NSPs is too small for the drill bit to pass through the NSP. In this case, the NSP is retrieved when the running tool passes up through it so that the drill bit can pass through the landing sub. All of the NSPs may be inserted when the drill string goes down into the wellbore, and all of the NSPs are retrieved when the drill string is withdrawn from the wellbore. The running tool to insert and retrieve the NSP rings is part of the drill string, and thus the NSP ring insertion and removal operations are performed during the ordinary insertion and removal of the drill string and do not require additional time or additional trips down the wellbore.
While the invention has been shown or described in only some of its forms, it should be apparent to those skilled in the art that it is not so limited, but is susceptible to various changes without departing from the scope of the invention.