This disclosure relates to improved bit/bit holder combinations and, more particularly, to such a combination utilizing a diamond layered and/or coated generally conical tip insert.
As basic infrastructure created in the 20th Century ages and wears, machinery for rejuvenating or replacing that infrastructure has become more important. While mining and trenching operation machinery may be included in this technology, road milling machinery, down hole tools in the oil well industry, and other similar industries area, thus far, the most prolific use of the instant machinery.
Road milling equipment utilizes a rotating drum having a plurality of bit assemblies removably mounted on the outside of the drum in spiral or chevron orientation. A typical rotating drum has a bit tip to bit tip diameter of between 42 and 54 inches and includes a plurality of mounting blocks generally secured thereto by welding in spiral or chevron patterns. The patterns noted provide for the bit blocks to be mounted behind and slightly axially to the side of one another such that the bits or combination bit/holders mounted in each bit block may have the tips of the bits positioned in close proximate relation along the axial length of the drum. As such, adjacent bit tips may be positioned anywhere from about 0.200 inch to about ⅝ inch axially apart for either removing concrete, asphalt, or the like, when replacing one or both of the pavement and underlayment for roadways, or may be positioned axially closer together, about 0.200 inch, for micro milling the surface of pavement to remove buckles, create grooves on curved surfaces such as cloverleafs, or the like.
Improvements in the bits and bit/holders that are removably mounted on the bit blocks have increased the useful in-service life of those removable parts. While such bit and bit/holders have been made of steel and hardened materials such as tungsten carbide, the use of diamond coated tips and man-made PCD (polycrystalline diamond) tips, has been shown to increase the in-service life of those bits and bit/holders.
Another improvement in bit/holders has been the invention of quick change holders that have eliminated the necessity of securing such holders with threaded nuts or retaining clips and have utilized the compressive elastic ductility of hardened steel to provide sufficient radial force between the holders and the bit block bores to retain holders mounted in their respective bit block bores during operation. While such bit assemblies have included rotatable and removable bits mounted in bit holders which, in turn, were mounted in bit blocks as noted above, the introduction of diamond materials on bit tips has increased their in-service life 40 to 80 times and has, in some cases, allowed for the combining of bits and bit holders into a unitary construction with the tips no longer being rotatable on the holders.
A need has developed for improved structure at the front leading end or tip end of bit/holders that provide for improved wear characteristics, in-service life and finer milled road surfaces at reduced total cost.
This disclosure relates generally to bit and/or pick assemblies for road milling, mining, and trenching equipment. One implementation of the teachings herein is a bit tip insert that includes a body including a diameter of at least five-eighths inch at a widest part of the body, the body including a tip including a substrate and an overlay on an outer surface of the substrate; and a base subjacent the tip, the base including a tapered sidewall.
In another implementation of the teachings herein is a bit tip insert that includes a body including a diameter of at least five-eighths inch at a widest part of the body, the body including a tip including a substrate and an overlay on an outer surface of the substrate; and a base subjacent the tip, the base including a cylindrical sidewall.
These and other aspects of the present disclosure are disclosed in the following detailed description of the embodiments, the appended claims and the accompanying figures.
The features of the present disclosure which are believed to be novel are set forth with particularity in the appended claims. The disclosure may best be understood from the following detailed description of currently illustrated embodiments thereof taken in conjunction with the accompanying drawings wherein like numerals refer to like parts, and in which:
The diameter of the base of the PCD ballistic insert is determined by the required geometric profile of the forward end of the point attack tool. As the machine or equipment size diminishes, so does the amount of horsepower of the engine or the machine needed to operate the machine.
The ballistic or parabolic style profile of the tip of the PCD insert provides a longer conic tip than a standard straight line side profile of a frustoconical tip. The longer parabolic tip has a greater PCD coated length with more structural strength. The included angle of the tip varies axially. Sollami PCD tool is 180 degrees indexable to achieve extended life over prior art diamond coated tools, while maintaining nearly exactly the same cut surface profile.
Referring to
In the illustrated embodiment of the bit/holder 10 when used for road milling purposes, the nominal outer diameter of the shank 11 is about 1.5 inches and the nominal outer diameter of the widest portion of the body 18 of the holder is about 2⅝ inches at what is termed the “tire portion” 20 of the holder body 18. The diameter of the upper cylindrical portion 18a of the body 18 is about 1¾ inches and the axial length of the body from the rear annular flange 21 to the front of the cylindrical portion is about 3 inches. The length of the shank 11 in the embodiments shown approximates 2½ inches. As taught in my U.S. Provisional Patent Application No. 61/944,676, filed Feb. 26, 2014, now U.S. Non-provisional patent application Ser. No. 14/628,482, filed Feb. 23, 2015, and now U.S. Patent Application Publication No. 2015/0240634, published Aug. 27, 2015, the contents of which are incorporated by reference, bit holder shanks may be shorter, on the order of 1½ inches.
With the forward cylindrical end of a bit holder body 18 having a diameter of about 1¾ inches, prior art bits or pick bolsters have been designed to have a conical surface aiding in diverting pavement material away from the forward tip portion of the bit/holder or bit.
In designing these structures, tip inserts having a front conical tip of PCD or diamond layered material 13b, as shown in
The overall length of the ¾ inch diameter ballistic tip insert is about 1⅛ inches. This length when mounted in the cylindrical recess 14, having a diameter of at least 0.625 inch, at the front of the bit holder body 18 allows the ballistic tip insert 13 to extend at least ⅝ inch from the front of the annular tungsten carbide collar 16 and to extend at least ½ inch outwardly of recess 14. When coating tungsten carbide inserts with diamond, high temperature, high pressure presses are used. Making more 0.565 diameter inserts has thus far yielded slightly cheaper inserts, but applicant has found that making fewer, larger inserts per manufacturing operation at cycle yields better milling results, although each insert is made at a slightly higher cost. Referring to
Referring to
While prior art bits and bit/holders disclose an enlarged tungsten carbide conical portion just aft of the 0.565 inch base insert with PCD shaped tip, the present disclosure, having a steel annular tubular column 35 having a recess 37 (
Thus, improved bit/holders 10, 30, utilizing a ballistic shape tip of an increased diameter from 0.565 inch to 0.75 inch and larger provides a superior product than previously known in the art while still being usable with present size bit holder blocks (not shown).
Referring to
In the second embodiment of the bit/holder 30, the tip 31 shown in
The parabolic shape of the ballistic tip 31 provides more mass under the multi layered diamond coating than would a straight side conical tip. Additionally, the top of the parabolic tip 31 provides improved separation of the material removed from the base thereof and directs the material removed further away from the base of the tip.
As shown, the base 32 of the tip 31 in the second embodiment is ¾ inch in diameter and in the second embodiment includes a 2 degree per side taper toward the bottom of the insert which is about a total 1 inch to 1.5 inches in height.
As mentioned previously, it appears from the drawing shown in
The third embodiment of the diamond coated tip 40 shown in
Referring to
As previously discussed, a plurality of these bit assemblies 50-50 are mounted on cylindrical drum 51 in spiral or chevron fashion. A typical drum being about 7 feet to about 13 feet in length and typically 42 to 54 inches in diameter, may hold around 168 to 650 bit assemblies with center-to-center axial spacing of 0.625 inch between bit assemblies. This is in what is termed a “standard drum” previously used for removal of not only surface material, but also substrate material. Previously, drums used for micro milling have had center-to-center tip axial spacing of 0.20 inch between tips. As such, drums used for micro milling may have about 325 bit assemblies for same 7 feet 2 inch length drum. This is in drums term “double or triple hit drums,” double hit drums may have about 25 percent more of the bit assemblies. Full lane micro milling drums that are about 13 feet in length may have 600 to 900 bit assemblies per drum at a 0.200 inch center-to-center axial tip spacing.
Applicant has found that the use of ¾ inch nominal diameter or larger diamond coated bit tips when used at ½ to 1 inch depth of cut at approximately 92 rpm drum rotation speed and at a travelling speed of 20-40 ft/min may provide a surface approaching or equal to the flatness of a micro milled surface previously obtained with 0.565 inch diameter bit tips on drums having 0.200 inch center-to-center bit separation with same machine cutting specifications.
As noted, the resulting fineness of the surface milled using the larger diameter bit tip approaches or achieves micro milling flatness by utilizing standard center-to-center diameter drums instead of the more expensive drums presently made for micro milling operations. Additional fineness of cut can be achieved by modifying spacing to somewhat less than 0.625, but substantially greater than 0.2 inch center-to-center. Not only is the cost of the drum less, but utilizing fewer bit assemblies makes a lighter drum requiring less horsepower to operate with more fuel efficiency and less impact on the machine components.
Referring to
An overlay 76 of a polycrystalline diamond structure is placed on an outer surface or forward end 74 of the tip 62 of the finished tungsten carbide component. The overlay 76 may also be made of an industrial diamond material and may include a single coating or outer layer or multiple coating or outer layers of such industrial diamond material, natural diamond, polycrystalline diamond (PCD) material, and polycrystalline diamond composite and/or compact (PDC) material. The single or multiple coatings or layers of the overlay 76 may be formed by a high pressure, high temperature (HPHT) process. The finished tungsten carbide component, which includes the tip 62 and the base 66, and the overlay 76 on the forward end 64 of the tip 62 are centered and placed in a can or metal enclosure and a plurality of hydraulic pistons apply pressure and force on the can over time during the HPHT process, compressing and/or pressing the tip 62 and base 66 again. The HPHT process liquefies the binder material, such as cobalt in this embodiment, which migrates toward the overlay 76 and binds to the diamond and tungsten carbide producing a stronger form. The diamond to diamond bond in the overlay 76 and tip 62 is created by the catalytic attachment of the cobalt within the small cavities of diamond crystals in the overlay 76.
During the HPHT process, excess PCD material 78 forms a bulge or small flash between a distal end 80 of the tip 62 and the forward end 64 of the base 66. The excess PCD material 78 can be used as formed on tools that are used in milling, trenching, mining, and similar applications. The overlay 76 occupies a large radial and axial profile of the tip 62 which allows faster heat transfer into a region subjacent to the overlay 76 PCD layer. Excessively high heat, such as temperatures above 1300 degrees F., is the greatest cause of PCD failure due to diamond connective failure, the quick heat transfer from the tip 62 of the PCD cutting zone to the subjacent region below the PCD drastically reduces the possibility of a temperature of the tip 62 of the PCD reaching temperatures at or above 1300 degrees F. for any extended period of time thereby avoiding failure of the PCD layer. Furthermore, a tapered base sidewall, such as the tapered outer surface 68 of base 66, on a PDC insert provides a greater concentration of forces applied at the forward PCD overlay 76 and tungsten carbide interface in tip 62 than when using a cylindrical, non-tapered base sidewall and the HPHT process. All external forces 82 are applied at right angles to the tapered outer surface of the tip insert 60, which depends on the vector force directed axially towards the tip 62.
Referring to
An overlay 106 of a polycrystalline diamond structure is placed on an outer surface or forward end 104 of the tip 92 of the finished tungsten carbide component. The overlay 106 may also be made of an industrial diamond material and may include a single coating or outer layer or multiple coating or outer layers of such industrial diamond material, natural diamond, polycrystalline diamond (PCD) material, and polycrystalline diamond composite and/or compact (PDC) material. The single or multiple coatings or layers may be formed by a high pressure, high temperature (HPHT) process. The finished tungsten carbide component, which includes the tip 92 and the base 96, and the overlay 106 on the forward end 104 of the tip 92 are centered and placed in a can or metal enclosure and a plurality of hydraulic pistons apply pressure and force on the can over time during the HPHT process, compressing and/or pressing the tip 92 and base 96 again. The HPHT process liquefies the binder material, such as cobalt in this embodiment, which migrates toward the overlay 106 and binds to the diamond and tungsten carbide producing a stronger form. The diamond to diamond bond in the overlay 106 and tip 92 is created by the catalytic attachment of the cobalt within the small cavities of diamond crystals in the overlay 106.
During the HPHT process, excess PCD material 108 forms a bulge or small flash between a distal end 110 of the tip 92 and the forward end 94 of the base 96. The excess PCD material 108 can be used as formed on tools that are used in milling, trenching, mining, and similar applications. The overlay 106 occupies a large radial and axial profile of the tip 92 which allows faster heat transfer into a region subjacent to the overlay 106 PCD layer. Excessively high heat, such as temperatures above 1300 degrees F., is the greatest cause of PCD failure due to diamond connective failure, the quick heat transfer from the tip 92 of the PCD cutting zone to the subjacent region below the PCD drastically reduces the possibility of a temperature of the tip 92 of the PCD reaching temperatures at or above 1300 degrees F. for any extended period of time thereby avoiding failure of the PCD layer. Furthermore, all external forces 112 are applied at 90 degrees to the centerline on the cylindrical sidewall 98 of the base 96 and at right angles to the outer surface of the tip 92.
Referring to
An overlay 136 of a polycrystalline diamond structure is placed on an outer surface or forward end 134 of the tip 122 of the finished tungsten carbide component. The overlay 136 may also be made of an industrial diamond material and may include a single coating or outer layer or multiple coating or outer layers of such industrial diamond material, natural diamond, polycrystalline diamond (PCD) material, and polycrystalline diamond composite and/or compact (PDC) material. The single or multiple coatings or layers may be formed by a high pressure, high temperature (HPHT) process. The finished tungsten carbide component, which includes the tip 122 and the base 126, and the overlay 136 on the forward end 134 of the tip 122 are centered and placed in a can or metal enclosure and a plurality of hydraulic pistons apply pressure and force on the can over time during the HPHT process, compressing and/or pressing the tip 122 and base 126 again. The HPHT process liquefies the binder material, such as cobalt in this embodiment, which migrates toward the overlay 136 and binds to the diamond and tungsten carbide producing a stronger form. The diamond to diamond bond in the overlay 136 and tip 122 is created by the catalytic attachment of the cobalt within the small cavities of diamond crystals in the overlay 136.
During the HPHT process, excess PCD material 138 forms a bulge or small flash between a distal end 140 of the tip 122 and the forward end 124 of the base 126. The excess PCD material 138 can be used as formed on tools that are used in milling, trenching, mining, and similar applications. The overlay 136 occupies a large radial and axial profile of the tip 122 which allows faster heat transfer into a region subjacent to the overlay 136 PCD layer. Excessively high heat, such as temperatures above 1300 degrees F., is the greatest cause of PCD failure due to diamond connective failure, the quick heat transfer from the tip 122 of the PCD cutting zone to the subjacent region below the PCD drastically reduces the possibility of a temperature of the tip 122 of the PCD reaching temperatures at or above 1300 degrees F. for any extended period of time thereby avoiding failure of the PCD layer. Furthermore, a tapered base sidewall, such as the tapered outer surface 128 of base 126, on a PDC insert provides a greater concentration of forces applied at the forward PCD overlay 136 and tungsten carbide interface in tip 122 than when using a cylindrical, non-tapered base sidewall and the HPHT process. All external forces 142 are applied at right angles to the tapered outer surface of the tip insert 120, which depends on the vector force directed axially towards the tip 122.
As used in this application, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear from context, “X includes A or B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes A or B” is satisfied under any of the foregoing instances. In addition, “X includes at least one of A and B” is intended to mean any of the natural inclusive permutations. That is, if X includes A; X includes B; or X includes both A and B, then “X includes at least one of A and B” is satisfied under any of the foregoing instances. The articles “a” and “an” as used in this application and the appended claims should generally be construed to mean “one or more” unless specified otherwise or clear from context to be directed to a singular form. Moreover, use of the term “an implementation” or “one implementation” throughout is not intended to mean the same embodiment, aspect or implementation unless described as such.
While the present disclosure has been described in connection with certain embodiments and measurements, it is to be understood that the invention is not to be limited to the disclosed embodiments and measurements but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
This application claims priority to and is a continuation-in-part of U.S. Provisional Application No. 61/974,064, filed Apr. 2, 2014, claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 14/676,364, filed Apr. 1, 2015, and claims priority to and is a continuation-in-part of U.S. Non-provisional application Ser. No. 15/923,051, filed Mar. 16, 2018, to the extent allowed by law and the contents of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
61974064 | Apr 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15923051 | Mar 2018 | US |
Child | 15960728 | US | |
Parent | 14676364 | Apr 2015 | US |
Child | 15923051 | US |