The present disclosure relates to the field of bite blocks and bite block assemblies for use during endoscopic procedures.
Upper endoscopy procedures are utilized to investigate, diagnose, and/or treat medical conditions relating to the upper digestive system. Such procedures typically require a flexible endoscopic tube to be inserted through the mouth, esophagus, stomach, and duodenum. Patients are often positioned on one of their sides and sedated for a period of time depending on the type of procedure. Bite blocks are often employed to prevent sedated patients from biting and damaging the endoscopic tube during the procedure.
Disclosed herein is a bite block assembly for providing gases to a subject and sampling exhaled gases from the subject during an endoscopic procedure. In some implementations, the bite block assembly comprises a bite block and a nasal cannula assembly. In some implementations, the bite block comprises a main body and a mouthpiece extending outward from the main body and configured to be positioned in a mouth of the subject when the bite block is in use. In some implementations, the mouthpiece comprises a main channel configured to receive an endoscopic tube and a sampling channel configured to receive orally exhaled gases from the subject. In some implementations, the nasal cannula assembly comprises: a nasal cannula manifold comprising a first end, a second end opposite the first end, a first interior portion, a second interior portion, a wall separating the first and second interior portions, and an opening in fluid communication with the second interior portion; a first gas delivery tube connected to the first end of the nasal cannula manifold and in fluid communication with the first interior portion of the nasal cannula manifold; a first nasal prong in fluid communication with the first interior portion of the nasal cannula manifold and configured to direct gases from the first gas delivery tube into a first nostril of the subject; a second nasal prong in fluid communication with the second interior portion of the nasal cannula manifold and configured to receive gases exhaled from a second nostril of the subject; a scoop configured to be connected to the nasal cannula manifold and direct said orally exhaled gases from the sampling channel of the bite block to the opening of the nasal cannula manifold; and a gas sampling tube. In some implementations, the scoop comprises: a body comprising a first surface and a second surface opposite the first surface, the first surface configured to face at least partially toward the sampling channel of the bite block when the bite block assembly is in use; and a rib extending outward from and along a portion of the first surface of the body, the rib defining a fluid passage configured to receive and direct said orally exhaled gases towards the opening of the nasal cannula manifold. The gas sampling tube can be connected to the second end of the nasal cannula manifold and in fluid communication with the second interior portion of the nasal cannula manifold. The gas sampling tube can be configured to direct said gases exhaled from the second nostril and said orally exhaled gases to a gas monitoring device.
In some implementations: the body of the scoop comprises a basin shape; the first surface comprises an interior surface of the basin shaped body and the second surface comprises an exterior surface of the basin shaped body; the basin shaped body further comprises an edge surface between the interior and exterior surfaces and extending along a plane; and the rib is spaced inward from said plane. In some implementations, the rib comprises an opening into the fluid passage of the rib, and wherein said opening of the rib faces away from the interior surface of the basin shaped body. In some implementations, an axis extending through a center of the opening of the rib is substantially perpendicular relative to a portion of the interior surface of the basin shaped body. In some implementations: the rib comprises a first end, a second end, and a length extending between the first and second ends; the first end of the rib terminates at a portion of the interior surface that is spaced inward from the edge surface of the basin shaped body; and an axis extending through a center of the opening of the rib is substantially perpendicular relative to the portion of the interior surface. In some implementations: the fluid passage of the rib comprises a first portion and a second portion, the first portion comprising said opening of the rib; and the first and second portions of the fluid passage of the rib are oriented transverse relative to one another. In some implementations, the first and second portions of the fluid passage of the rib are oriented substantially perpendicular relative to one another.
In some implementations, the scoop further comprises a connector extending outward from the body of the scoop and configured to connect to a portion of the nasal cannula manifold. In some implementations, said connector of the scoop is configured to secure within the opening of the nasal cannula manifold, and wherein said connector comprises a fluid passage in fluid communication with the fluid passage of the rib of the scoop. In some implementations, the rib comprises an opening into the fluid passage of the rib, and wherein the fluid passage of said connector is oriented transverse relative to the opening of the rib.
In some implementations, the bite block assembly further comprises: a second gas delivery tube configured to receive gases from a gas source; a branched connector comprising a first branch configured to be connected to the second gas delivery tube, a second branch configured to be connected to said first gas delivery tube, and a third branch configured to be connected to a third gas delivery tube; said third gas delivery tube; and a gas delivery channel in a portion of the bite block and configured to receive a portion of said third gas delivery tube; wherein the branched connector is configured to direct gases from said second gas delivery tube to the first and third gas delivery tubes when connected therewith. In some implementations, said first branch is permanently secured to said second gas delivery tube. In some implementations, said second branch is permanently secured to said first gas delivery tube. In some implementations, said third branch is configured to be removably connected to said third gas delivery tube.
In some implementations, said third gas delivery tube comprises a first end and a second end, said first end permanently secured within said gas delivery channel in the portion of the bite block. In some implementations, said second end of said third gas delivery tube is configured to be removably connected to said third branch. In some implementations, the bite block assembly further comprises a connector secured to the second end of said third gas delivery tube and having a tapered end configured to secure within the third branch. In some implementations, the bite block assembly further comprises a cap secured to the third branch, wherein the cap is configured to be transitioned from a first configuration in which the cap prevents gases from flowing out of the third branch to a second configuration in which the cap allows gases to flow out of the third branch. In some implementations, the cap comprises a base secured to the third branch, a lid, and a hinge between the base and lid and configured to allow the lid to move between an open position and a closed position. In some implementations, the cap further comprises a plug extending outward from the lid and configured to secure within an opening in the third branch when the lid in in the closed position.
In some implementations, said gas delivery channel is in fluid communication with the main channel of the bite block. In some implementations, an axis extending through a center of said gas delivery channel is oriented transverse relative to an axis extending through a center of said main channel. In some implementations, said gas delivery channel opens into the main channel. In some implementations, said gas delivery channel is formed from a recess on a portion of a surface of the main body and a hole extending through the main body and through a portion of the mouthpiece.
In some implementations: said main body of said bite block comprises an opening in fluid communication with the sampling channel of the mouthpiece; said bite block further comprises a pocket wall extending outward from the main body and around said opening in the main body; and said scoop is configured to fit at least partially within an interior space defined by said pocket wall and direct said orally exhaled gases from the sampling channel to the opening of the nasal cannula manifold.
In some implementations, the nasal cannula manifold comprises a first arm, a second arm, and a body positioned between the first and second arms, and wherein the first and second nasal prongs extend from the body. In some implementations, each of the first and second arms comprises a bent portion. In some implementations, the first and second arms are removably connectable to the body. In some implementations, the first gas delivery tube is connected to the first arm and wherein the gas sampling tube is connected to the second arm.
In some implementations, the opening of the nasal cannula manifold is in said body. In some implementations, the nasal cannula manifold further comprises a connector extending outward from the body and configured to receive and secure a connector of the scoop. In some implementations, the connector of the nasal cannula manifold and the connector of the scoop connect in a friction fit arrangement. In some implementations, an interior of the connector of the nasal cannula manifold is in fluid communication with the opening of the nasal cannula manifold.
In some implementations, the nasal cannula manifold further comprises a connector configured to receive and secure a connector of the scoop. In some implementations, the connector of the nasal cannula manifold and the connector of the scoop connect in a friction fit arrangement. In some implementations, an interior of the connector of the nasal cannula manifold is in fluid communication with the opening of the nasal cannula manifold. In some implementations, the bite block assembly further comprises a flange extending outward from a portion of the nasal cannula manifold and configured to assist in positioning the scoop relative to the nasal cannula manifold when the scoop is connected to the nasal cannula manifold. In some implementations, the bite block assembly further comprises a wall extending through a portion of the mouthpiece and configured to divide the main channel from the sampling channel. In some implementations, the mouthpiece comprises a first end connected to the main body, a second end opposite the first end, and a length extending between the first and second ends, wherein a length of the sampling channel is less than the length of the mouthpiece.
In some implementations, the main body of the bite block comprises a first wing, a second wing, and an intermediate portion between the first and second wings, and wherein the first and second wings are configured to extend laterally away from the subject's mouth and contact the subject's face when the mouthpiece is positioned in the subject's mouth. In some implementations, the bite block assembly further comprises a strap configured to secure the bite block to the subject's head, wherein each of the first and second wings comprises a hook configured to attach to a portion of the strap.
Disclosed herein is a bite block assembly for providing gases to a subject and sampling exhaled gases from the subject during an endoscopic procedure. In some implementations, the bite block assembly comprises a bite block and a nasal cannula assembly. In some implementations, the bite block comprises a main body and a mouthpiece extending outward from the main body and configured to be positioned in a mouth of the subject when the bite block is in use. In some implementations, the mouthpiece comprises: a main channel configured to receive an endoscopic tube; and a sampling channel configured to receive orally exhaled gases from the subject. In some implementations, the nasal cannula assembly comprises: a nasal cannula manifold comprising a manifold body, a first nasal prong extending outward from the manifold body, and a second nasal prong extending outward from the manifold body and spaced from the first nasal prong, wherein a first portion of the manifold body is configured to direct gases received from a gas delivery tube to the first nasal prong, and wherein a second portion of the manifold body is configured to direct exhaled gases received by the second nasal prong to a gas sampling tube; and a scoop configured to be connected to the nasal cannula manifold and direct said orally exhaled gases from the sampling channel of the bite block to the second portion of the manifold body. In some implementations, the scoop comprises: a body comprising a first surface and a second surface opposite the first surface, the first surface configured to face at least partially toward the sampling channel of the bite block when the bite block assembly is in use; and a rib extending outward from and along a portion of the first surface of the body, the rib defining a fluid passage configured to receive and direct said orally exhaled gases towards the second portion of the manifold body.
In some implementations, the first portion of the manifold body is not in fluid communication with the second portion of the manifold body. In some implementations, the manifold body further comprises an inner wall that partitions an interior of the manifold body into the first and second portions. In some implementations, the nasal cannula assembly further comprises said gas delivery tube, and wherein said gas delivery tube is connected to a first end of the manifold body and is configured to receive gases from a gas source. In some implementations, the nasal cannula assembly further comprises said gas sampling tube, and wherein said gas sampling tube is connected to a second end of the manifold body and is configured to direct said gases exhaled from the subject to a gas monitoring device. In some implementations, the manifold body further comprises an opening in fluid communication with the second portion of the manifold body, and wherein the fluid passage of the rib of the scoop is in fluid communication with the opening and second portion of the manifold body when the scoop is connected to the nasal cannula manifold.
Disclosed herein is a bite block comprising: a main body comprising a first surface and a second surface opposite the first surface; and a mouthpiece extending outward from the second surface of the main body and configured to be positioned in a mouth of the subject when the bite block is in use. In some implementations, the mouthpiece comprises: a main channel configured to receive an endoscopic tube; and a sampling channel configured to receive orally exhaled gases from the subject. In some implementations, the bite block further comprises a gas delivery channel configured to direct gases into the subject's mouth when the bite block is in use, the gas delivery channel extending through a portion of the main body and through a portion of the main channel such that the gas delivery channel is in fluid communication with the main channel. In some implementations, the bite block further comprises a recess extending along a portion of the first surface of the main body proximate the gas delivery channel, wherein the recess is configured to receive a portion of a gas delivery tube.
In some implementations, an axis extending through a center of the gas delivery channel is transverse relative to an axis extending through a center of the main channel. In some implementations, the bite block further comprises a tube clip extending outward from a portion of the main body, the tube clip configured to secure a portion of the gas delivery tube. In some implementations: the main body further comprises a first wing, a second wing, and an intermediate portion between the first and second wings; the first and second wings are configured to extend laterally away from the subject's mouth and contact the subject's face when the mouthpiece is positioned in the subject's mouth; the tube clip extending outward from the first surface and the first wing of the main body. In some implementations, the tube clip comprises a first arm and a second arm spaced from the first arm, and wherein free ends of the first and second arms are spaced away from one another by a gap, thereby allowing the first and second arms to be resiliently flexed to secure the portion of the gas delivery tube to the tube clip.
Disclosed herein is a bite block comprising a main body, a mouthpiece, and a gas delivery channel. The main body can comprise a first surface and a second surface opposite the first surface, a first wing, a second wing, and an intermediate portion between the first and second wings, the first and second wings extending laterally away from the intermediate portion. The mouthpiece can extend outward from the second surface of the main body and be positioned in a mouth of a subject when the bite block is in use. In some implementations, the first and second wings of the main body are configured to be positioned on opposite sides of the subject's mouth and adjacent the subject's face when the mouthpiece is positioned in the subject's mouth. In some implementations, the mouthpiece comprises: a main channel configured to receive an endoscopic tube; and a sampling channel configured to receive orally exhaled gases from the subject. The bite block can further comprise: a gas delivery channel configured to direct gases into the subject's mouth when the bite block is in use, the gas delivery channel extending through the intermediate portion of the main body and through a portion of the main channel of the mouthpiece such that the gas delivery channel is in fluid communication with the main channel. The bite block can further comprise: a gas delivery tube configured to deliver gases to the gas delivery channel, the gas delivery tube comprising a first end and a second end opposite the first end, wherein the second end is permanently secured within the gas delivery channel. The bite block can further comprise: a tube clip located on a portion of the first wing of the main body, the tube clip comprising a first arm and a second arm, each of the first and second arms extending outward from the first wing and having free ends that are separated from one another by a gap, wherein the first and second arms are configured to secure a first portion of the gas delivery tube. The bite block can further comprise: a recess extending along a portion of the first surface of the main body proximate the gas delivery channel, wherein the recess is configured to receive a second portion of the gas delivery tube when the first portion of the gas delivery tube is secured between the first and second arms of the tube clip.
In some implementations, an axis extending through a center of the gas delivery channel is transverse relative to an axis extending through a center of the main channel. In some implementations, a first end of the recess is located at the gas delivery channel and a second end of the recess is spaced away from the gas delivery channel. In some implementations, the recess extends from the first end to the second end, and wherein the second end of the recess is located at a junction where the first wing and the intermediate portion of the main body meet. In some implementations, the recess extends from the gas delivery channel along the intermediate portion and toward the first wing. In some implementations, the recess extends from the gas delivery channel along the intermediate portion and toward the tube clip. In some implementations, the recess comprises a substantially semi-circular cross-section. In some implementations, the recess is configured to surround less then an entire cross-section of the first portion of the gas delivery tube. In some implementations, the recess is configured to surround less then about ¾ of a cross-section of the first portion of the gas delivery tube. In some implementations, a first portion of the gas delivery channel comprises a first cross-section and a second portion of the gas delivery channel comprises a second cross-section that is different than the first cross-section. In some implementations, a ledge is defined at a juncture of the first and second cross-sections of the gas delivery channel, and wherein the second end of the gas delivery tube abuts the ledge.
Disclosed herein is a bite block comprising a main body and a mouthpiece. The main body can comprise a first surface and a second surface opposite the first surface. The mouthpiece can extend outward from the second surface of the main body and be configured to be positioned in a mouth of a subject when the bite block is in use. The mouthpiece can comprise: a main channel configured to receive an endoscopic tube; and a sampling channel configured to receive orally exhaled gases from the subject. The bite block can further comprise a gas delivery channel configured to direct gases into the subject's mouth when the bite block is in use, the gas delivery channel extending through a portion of the main channel of the mouthpiece such that the gas delivery channel is in fluid communication with the main channel. The bite block can further comprise a recess extending along a portion of the first surface of the main body proximate the gas delivery channel, wherein the recess is configured to receive a portion of a gas delivery tube.
In some implementations, an axis extending through a center of the gas delivery channel is transverse relative to an axis extending through a center of the main channel. In some implementations, a first end of the recess is located at the gas delivery channel and a second end of the recess is spaced away from the gas delivery channel. In some implementations, the main body comprises a first wing, a second wing, and an intermediate portion between the first and second wings, and wherein the second end of the recess is located at a junction where the first wing and the intermediate portion of the main body meet. In some implementations, the recess comprises a substantially semi-circular cross-section. In some implementations, the recess is configured to surround less then an entire cross-section of the portion of the gas delivery tube. In some implementations, the bite block further comprises a tube clip located on a portion of the main body, the tube clip comprising a first arm and a second arm, each of the first and second arms extending outward from the portion of the main body and having free ends that are separated from one another by a gap, wherein the first and second arms are configured to secure the gas delivery tube. In some implementations, a first portion of the gas delivery channel comprises a first cross-section and a second portion of the gas delivery channel comprises a second cross-section that is different than the first cross-section. In some implementations, the bite block further comprises said gas delivery tube, said gas delivery tube comprising a first end and a second end, wherein a ledge is defined at a juncture of the first and second cross-sections of the gas delivery channel, and wherein the second end of the gas delivery tube abuts the ledge.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of several devices, systems, and methods have been described herein. It is to be understood that not necessarily all examples of the present disclosure are disclosed herein. Thus, the devices, systems, and methods disclosed herein can be embodied or carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other advantages as can be taught or suggested herein.
Certain features of this disclosure are described below with reference to the drawings. The illustrated embodiments are intended to illustrate, but not to limit the embodiments. Various features of the different disclosed embodiments can be combined to form further embodiments, which are part of this disclosure.
Various embodiments will be described below in conjunction with the drawings for purposes of illustration. It should be appreciated that many other implementations of the disclosed concepts are possible, and various advantages can be achieved with the disclosed implementations.
Disclosed herein are bite block assemblies, bite blocks, nasal cannula assemblies, and components thereof which can be used during an endoscopic procedure to: deliver gases (for example, oxygen) to a subject's oral and/or nasal passages; and/or collect exhaled gases (which can include, for example, CO2) from the subject's oral and/or nasal passages for analysis and/or monitoring, for example, for capnography and/or anesthetic gas measurements.
As discussed further below, a nasal cannula assembly 15 can be utilized alongside the bite block 100 in order to: deliver gases to one or more of the subject's nostrils; and/or collect exhaled gases from one or more of the nostrils for sampling. With reference to at least
Advantageously, the nasal cannula assembly 15 and the bite block 100 can be removable from one another, thereby allowing the nasal cannula assembly 15 to continue to be utilized (for gas delivery and/or exhaled gas sampling) before, during, and after the bite block 100 is positioned within the subject's mouth. For example, in some implementations, the scoop 50 does not secure (for example, connect) to the bite block 100, but rather, rests and/or is otherwise positioned in a space defined by a pocket wall (for example, wall 112) of bite block 100. In some implementations, a connector 20 (which can be permanently or removably connected to tube 22) can removably secure within a branch 16c of branched connector 16, as shown in
With reference to
In some implementations, bite block 100 includes one or more tube clips configured to secure a portion of gas delivery tube 22. For example, with reference to at least
With reference to
Bite block 100 can include a gas delivery channel to allow gases (for example, oxygen) to be delivered to the subject's mouth when bite block 100 is in use, and such oral gas delivery can be in addition to or as an alternative to gas delivery via the nasal cannula assembly 15 (via the subject's nostrils) discussed elsewhere herein. This is advantageous since many subjects breath via oral inhalation either primarily or in a supplementary manner along with nasal inhalation. With reference to at least
As shown in at least
Gas delivery channel 110 is defined at least partially by a cross-section that varies, for example, along a length of gas delivery channel 110. For example, gas delivery channel 110 can have a first cross-section for a portion of a length of the channel 110 and a second cross-section for another portion of the length of the channel 110. Such configuration can define a ledge 110a (see
With reference to at least
With reference to at least
With continued reference to
With reference to
Scoop 50 can be configured to connect to nasal cannula manifold 30. In some implementations, scoop 50 includes a connector 56 configured to connect to a portion of nasal cannula manifold 30 (for example, to connector 32e of nasal cannula manifold 30 shown in at least
As shown in
In some implementations, nasal cannula manifold 30 includes a flange 32g extending outward from body 32 and adjacent to connector 32e. Flange 32g can act to position and/or at least partially secure scoop 50 relative to nasal cannula manifold 30, for example, as shown in
Similar to branched connector 16, branched connector 16′ can allow gases from a gas source to be split between tube 18′ (for delivery to the nasal cannula manifold 30) and a gas delivery tube 22′ that can be connected to a portion of the bite block 100 for delivery of such gases into the subject's mouth. Branched connector 16′ and tubes 18′, 22′ can be similar or identical to branched connector 16 and tubes 18, 22 described above with reference to nasal cannula assembly 15. As shown, branched connector 16′ can be positioned near or above coupler 10 such that branched connector 16′ is coupled with gas delivery tube 2 and gas sampling tube 4, in contrast to branched connector 16 that is illustrated as being disposed between tubes 6, 18, and 22 (see
As shown in
The bite block assemblies, bite blocks, nasal cannula assemblies, and/or components thereof disclosed herein can be utilized with monitoring devices that can provide capnography and/or anesthetic gas measurements. For example, the block assemblies, bite blocks, nasal cannula assemblies, and/or components thereof disclosed herein can be utilized with a gas analyzer such as ISA™ gas analyzers and/or Root® with ISA™ CO2 Capnography which are commercially sold by Masimo Corporation. As another example, in some implementations, connector 14 (described above) can connect to a port in a monitoring device that provides capnography and/or anesthetic gas measurements based on the exhaled gas that is directed by the bite block 100 and/or nasal cannula assembly 15 to connector 14 by way of tube 8 and/or tube 4 (in addition to other structure of bite block 100 and/or nasal cannula assembly 15 as described in more detail elsewhere herein).
Although this disclosure has been described in the context of certain examples, it will be understood by those skilled in the art that the present disclosure extends beyond the specifically disclosed examples to other alternative examples and/or uses of the disclosure and obvious modifications and equivalents thereof. In addition, while a number of variations of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the examples may be made and still fall within the scope of the disclosure. Accordingly, it should be understood that various features and aspects of the disclosure can be combined with or substituted for one another in order to form varying modes of the disclosed.
Features, materials, characteristics, or groups described in conjunction with a particular aspect, or example are to be understood to be applicable to any other aspect, or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing examples of devices or systems. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.
Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a subcombination.
Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the system, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific examples disclosed above may be combined in different ways to form additional examples of systems, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.
Conditional language used herein, such as, among others, “can,” “could,” “might,” “may,” “e.g.,” and the like, unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain features, elements, and/or steps are optional. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required or that one or more embodiments necessarily include logic for deciding, with or without other input or prompting, whether these features, elements, and/or steps are included or are to be always performed. The terms “comprising,” “including,” “having,” and the like are synonymous and are used inclusively, in an open-ended fashion, and do not exclude additional elements, features, acts, operations, and so forth. Also, the term “or” is used in its inclusive sense (and not in its exclusive sense) so that when used, for example, to connect a list of elements, the term “or” means one, some, or all of the elements in the list. Further, the term “each,” as used herein, in addition to having its ordinary meaning, can mean any subset of a set of elements to which the term “each” is applied.
Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.
Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 10 degrees, 5 degrees, 3 degrees, or 1 degree. As another example, in certain embodiments, the terms “generally perpendicular” and “substantially perpendicular” refer to a value, amount, or characteristic that departs from exactly perpendicular by less than or equal to 10 degrees, 5 degrees, 3 degrees, or 1 degree.
While the above detailed description has shown, described, and pointed out novel features, it can be understood that various omissions, substitutions, and changes in the form and details of the devices or systems illustrated can be made without departing from the spirit of the disclosure. As can be recognized, certain portions of the description herein can be embodied within a form that does not provide all of the features and benefits set forth herein, as some features can be used or practiced separately from others. The scope of certain embodiments disclosed herein is indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.
This application claims priority to U.S. Provisional Application No. 63/262,235, filed Oct. 7, 2021, entitled “Bite Block and Assemblies Including Same,” which is incorporated by reference herein in its entirety.
Number | Date | Country | |
---|---|---|---|
63262235 | Oct 2021 | US |