This invention relates to bitumen recovery from oil sand and more particularly to a treatment process for the removal of water and mineral from the product produced in a primary oil sand bitumen extraction process. In a particular aspect, the invention relates to a hydrocarbon cyclone for processing a bitumen froth stream.
Oil sands are a geological formation, which are also known as tar sands or bituminous sands. The oil sands deposits provide aggregates of solids such as sand, clay mineral plus water and bitumen—a term for extra heavy oil. Significant deposits of oil sands are found in Northern Alberta in Canada and extend across an area of more than thirteen thousand square miles. The oil sands formation extends from the surface or zero depth to depths of two thousand feet below overburden. The oil sands deposits are measured in billions of barrels equivalent of oil and represent a significant portion of the worldwide reserves of conventional and non-conventional oil reserves.
The oil sands deposits are composed primarily of particulate silica mineral material. The bitumen content varies from about 5% to 21% by weight of the formation material, with a typical content of about 12% by weight. The mineral portion of the oil sands formations generally includes clay and silt ranging from about 1% to 50% by weight and more typically 10% to 30% by weight as well as a small amount of water in quantities ranging between 1% and 10% by weight. The in-situ bitumen is quite viscous, generally has an API gravity of about 6 degrees to 8 degrees and typically includes 4% to 5% sulfur with approximately 38% aromatics.
The Athabasca oil sands are bitumen-bearing sands, where the bitumen is isolated from the sand by a layer of water forming a water-wet tar sand. Water-wet tar sand is almost unique to the Athabasca oil sands and the water component is frequently termed connate water. Sometimes the term water-wet is used to describe this type of tar sand to distinguish it from the oil-wet sand deposits found more frequently in other tar sand formations and in shale deposits including those oily sands caused by oil spills.
The extraction of the bitumen from the sand and clay-like mineral material is generally accomplished by heating the composition with steam and hot water in a rotating vessel or drum and introducing an extraction agent or process aid. The process aid typically is sodium hydroxide NaOH and is introduced into the processing to improve the separation and recovery of bitumen particularly when dealing with difficult ores. The hot water process is carried out in a vessel called a separator cell or more specifically a primary separator vessel (PSV) after the oil sand has been conditioned in the rotating drum.
The PSV process produces a primary bitumen froth gathered in a launder from the upper perimeter of the vessel; a mineral tailings output from the lower portion of the vessel and a middlings component that is removed from the mid-portion of the vessel. It has been found that production of the middlings component varies with the fines and clay content of the originating oil sand and is described more fully, for example in Canadian patent 857,306 to Dobson. The middlings component contains an admixture of bitumen traces, water and mineral material in suspension. The middlings component is amenable to secondary separation of the bitumen it contains, by introducing air into the process flow in flotation cells. The introduced air causes the bitumen to be concentrated at the surface of the flotation cell. The flotation of the bitumen in preference to the solids components permits the air entrained bitumen to be extracted from the flotation cell. Flotation of the air-entrained bitumen from the process flow is sometimes termed differential flotation. The air-entrained bitumen froth is also referred to as secondary froth and is a mixture of the bitumen and air that rises to the surface of the flotation cell. Typically, the secondary froth may be further treated, for example by settling, and is recycled to the PSV for reprocessing.
Further treatment of the primary bitumen froth from the PSV requires removal of the mineral solids, the water and the air from the froth to concentrate the bitumen content. Conventionally, this is done by the use of centrifuges. Two types of centrifuge systems have heretofore been deployed. One, called a solids-bowl centrifuge has been used to reduce the solids in froth substantially. To remove water and solids from the froth produced by a solids-bowl centrifuge; a secondary centrifuge employing a disk has been used. Disk centrifuges are principally de-watering devices, but they help to remove mineral as well. Examples of centrifuge systems that have been deployed are described in Canadian patents 873,854; 882,667; 910,271 and 1,072,473. The Canadian patent 873,854 to Baillie for example, provides a two-stage solid bowl and disk centrifuge arrangement to obtain a secondary bitumen froth from the middlings stream of a primary separation vessel in the hot water bitumen recovery process. The Canadian patent 882,667 to Daly teaches diluting bitumen froth with a naphtha diluent and then processing the diluted bitumen using a centrifuge arrangement.
Centrifuge units require an on-going expense in terms of both capital and operating costs. Maintenance costs are generally high with centrifuges used to remove water and solid minerals from the bitumen froth. The costs are dictated by the centrifuges themselves, which are mechanical devices having moving parts that rotate at high speeds and have substantial momentum. Consequently, by their very nature, centrifuges require a lot of maintenance and are subject to a great deal of wear and tear. Therefore, elimination of centrifuges from the froth treatment process would eliminate the maintenance costs associated with this form of froth treatment. Additional operating cost results from the power cost required to generate the high g-forces in large slurry volumes.
In the past, cyclones of conventional design have been proposed for bitumen froth treatment, for example in Canadian patents 1,026,252 to Lupul and 2,088,227 to Gregoli. However, a basic problem is that recovery of bitumen always seems to be compromised by the competing requirements to reject water and solids to tailings while maintaining maximum hydrocarbon recovery. In practice, processes to remove solids and water from bitumen have been offset by the goal of maintaining maximal bitumen recovery. Cyclone designs heretofore proposed tend to allow too much water content to be conveyed to the overflow product stream yielding a poor bitumen-water separation. The arrangement of Lupul is an example of use of off-the-shelf cyclones that accomplish high bitumen recovery, unfortunately with low water rejection. The low water rejection precludes this configuration from being of use in a froth treatment process, as too much of the water in the feed stream is passed to the overflow or product stream.
A hydrocyclone arrangement is disclosed in Canadian patent 2,088,227 to Gregoli. Gregoli teaches alternative arrangements for cyclone treatment of non-diluted bitumen froth. The hydrocyclone arrangements taught by Gregoli attempt to replace the primary separation vessel of a conventional tar sand hot water bitumen processing plant with hydrocyclones. The process arrangement of Gregoli is intended to eliminate conventional primary separation vessels by supplanting them with a hydrocyclone configuration. This process requires an unconventional upgrader to process the large amounts of solids in the bitumen product produced by the apparatus of Gregoli. Gregoli teaches the use of chemical additive reagents to emulsify high bituminous slurries to retain water as the continuous phase of emulsion. This provides a low viscosity slurry to prevent the viscous plugging in the hydrocyclones that might otherwise occur. Without this emulsifier, the slurry can become oil-phase continuous, which will result in several orders of magnitude increase in viscosity. Unfortunately, these reagents are costly making the process economically unattractive.
Another arrangement is disclosed in Canadian patent 2,029,756 to Sury, which describes an apparatus having a central overflow conduit to separate extracted or recovered bitumen from a froth fluid flow. The apparatus of Sury is, in effect, a flotation cell separator in which a feed material rotates about a central discharge outlet that collects a launder overflow. The arrangement of Sury introduces process air to effect bitumen recovery and is unsuitable for use in a process to treat deaerated naphtha-diluted-bitumen froth as a consequence of explosion hazards present with naphtha diluents and air.
Other cyclone arrangements have been proposed for hydrocarbon process flow separation from gases, hot gases or solids and are disclosed for example in Canadian patents 1,318,273 to Mundstock et al; 2,184,613 to Raterman et al and in Canadian published patent applications 2,037,856; 2,058,221; 2,108,521; 2,180,686; 2,263,691, 2,365,008 and the hydrocyclone arrangements of Lavender et al in Canadian patent publications 2,358,805, 2,332,207 and 2,315,596.
In the following narrative wherever the term bitumen is used the term diluted bitumen is implied. This is because the first step of this froth treatment process is the addition of a solvent or diluent such as naphtha to reduce viscosity and to assist hydrocarbon recovery. The term hydrocarbon could also be used in place of the word bitumen for diluted bitumen.
In one aspect, the present invention provides an apparatus to perform a process to remove water and minerals from a bitumen froth output of a oil sands hot water extraction process which comprises:
(i) a cyclone body having an elongated conical inner surface defining a cyclone cavity extending from an upper inlet region with a diameter DC to a lower apex outlet with a diameter DU;
(ii) an inlet means forming an inlet channel extending into the upper inlet region of the cyclone cavity; and
(iii) a vortex finder forming an overflow outlet of a diameter (DO) extending into the upper inlet region of the cyclone cavity toward the lower apex outlet and having a lower end extending an excursion distance below the inlet channel;
wherein a fluid composition entering the inlet channel into the cyclone cavity is urged by force of gravity and velocity pressure downward toward the lower apex and variations in density of the constituent components of the fluid composition cause the lighter component materials to be directed toward the overflow outlet of the vortex finder.
In a further aspect, the present invention provides a method of processing bitumen froth comprising:
(i) providing a cyclone body having an elongated conical inner surface defining a cyclone cavity extending from an upper inlet region with a diameter DC to a lower apex outlet with a diameter DU;
(ii) supplying a fluid composition along an input path into the upper inlet region of the cyclone cavity which fluid composition is urged by force of gravity and velocity pressure downward toward the lower apex; and
(iii) recovering lighter density component materials of the fluid composition from an overflow outlet passage formed by a vortex finder that extends into the upper inlet region of the cyclone cavity toward the lower apex outlet and which has a lower end extending an excursion distance below the inlet channel.
In another aspect, the present invention provides a bitumen froth process circuit that uses an arrangement of hydrocarbon cyclones and inclined plate separators to perform removal of solids and water from the bitumen froth that has been diluted with a solvent such as naphtha. The process circuit has an inclined plate separator and hydrocarbon cyclone stages. A circuit configured in accordance with the invention provides a process to separate the bitumen from a hybrid emulsion phase in a bitumen froth. The hybrid emulsion phase includes free water and a water-in-oil emulsion and the circuit of the present invention removes minerals such as silica sand and other clay minerals entrained in the bitumen froth and provides the removed material at a tailings stream provided at a circuit tails outlet. The process of the invention operates without the need for centrifuge equipment. The elimination of centrifuge equipment through use of hydrocarbon cyclone and inclined plate separator equipment configured in accordance with the invention provides a cost saving in comparison to a process that uses centrifuges to effect bitumen de-watering and demineralization. However, the process of the invention can operate with centrifuge equipment to process inclined plate separator underflow streams if so desired.
In one aspect, the apparatus of the invention provides an inclined plate separator (IPS) which operates to separate a melange of water-continuous and oil-continuous emulsions into a cleaned oil product and underflow material that is primarily a water-continuous emulsion. The cyclone apparatus processes a primarily water-continuous emulsion and creates a product that constitutes a melange of water-continuous and oil-continuous emulsions separable by an IPS unit. When the apparatus of the invention is arranged with a second stage of cyclone to process the underflow of a first stage cyclone, another product stream, separable by an IPS unit can be created along with a cleaned tails stream.
In accordance with an aspect of the invention, the bitumen froth to be treated is supplied to a circuit inlet for processing into a bitumen product provided at a circuit product outlet and material removed from the processed bitumen froth is provided at a circuit tails outlet. The bitumen froth is supplied to a primary inclined plate separator (IPS) stage, which outputs a bitumen enhanced overflow stream and a bitumen depleted underflow stream. The underflow output stream of the first inclined plate separator stage is a melange containing a variety of various emulsion components supplied as a feed stream to a cyclone stage. The cyclone stage outputs a bitumen enhanced overflow stream and a bitumen depleted underflow stream. The formation of a stubborn emulsion layer can block the downward flow of water and solids resulting in poor bitumen separation. These stubborn emulsion layers are referred to as rag-layers. The process of the present invention is resistant to rag-layer formation within the inclined plate separator stage, which is thought to be a result of the introduction of a recycle feed from the overflow stream of the hydrocarbon cyclone stage.
The material of the recycle feed is conditioned in passage through a hydrocarbon cyclone stage. When the recycle material is introduced into the inclined plate separator apparatus, a strong upward bitumen flow is present even with moderate splits. Static deaeration, that is removal of entrained air in the froth without the use of steam, is believed to be another factor that promotes enhanced bitumen-water separation within the inclined plate separators. A bitumen froth that has been deaerated without steam is believed to have increased free-water in the froth mixture relative to a steam deaerated froth, thus tending to promote a strong water flow in the underflow direction, possibly due to increased free-water in the new feed. In a process arranged in accordance with this invention distinct rag-layers are not manifested in the compression or underflow zones of the IPS stages.
The underflow output stream of the first inclined plate separator stage is supplied to a primary hydrocarbon cyclone stage, which transforms this complex mixture into an emulsion that is available from the primary cyclone stage as an overflow output stream. In a preferred arrangement, the overflow output stream of the primary cyclone stage is supplied to an FPS stage to process the emulsion. The overflow output stream of an IPS stage provides a bitumen product that has reduced the non-bitumen components in an effective manner.
The hydrocarbon cyclone apparatus of the present invention has a long-body extending between an inlet port and a cyclone apex outlet, to which the output underflow stream is directed, and an abbreviated vortex finder to which the output overflow stream is directed. This configuration permits the cyclone to reject water at a high percentage to the underflow stream output at the apex of the cyclone. This is accomplished in process conditions that achieve a high hydrocarbon recovery to the overflow stream, which is directed to the cyclone vortex finder, while still rejecting most of the water and minerals to the apex underflow stream. Mineral rejection is assisted by the hydrophilic nature of the mineral constituents. The cyclone has a shortened or abbreviated vortex finder, allowing bitumen to pass directly from the input bitumen stream of the cyclone inlet port to the cyclone vortex finder to which the output overflow stream is directed. The long-body configuration of the cyclone facilitates a high water rejection to the apex underflow. Thus, the normally contradictory goals of high hydrocarbon recovery and high rejection of other components are simultaneously achieved.
The general process flow of the invention is to supply the underflow of an inclined plate separator stage to a cyclone stage. To have commercial utility, it is preferable for the cyclone units to achieve water rejection. Water rejection is simply the recovery of water to the underflow or reject stream.
In addition to the unique features of the hydrocarbon cyclone apparatus the process units of this invention interact with each other in a novel arrangement to facilitate a high degree of constituent material separation to be achieved. The bitumen froth of the process stream emerging as the cyclone overflow is conditioned in passage through the cyclone to yield over 90% bitumen recovery when the process stream is recycled to the primary inclined plate separator stage for further separation. Remarkably, the resultant water rejection on a second pass through the primary cyclone stage is improved over the first pass. These process factors combine to yield exceptional bitumen recoveries in a circuit providing an alternate staging of an inclined plate separator stage and a cyclone stage where the bitumen content of the output bitumen stream from the circuit exceeds 98.5% of the input bitumen content. Moreover, the output bitumen stream provided at the circuit product outlet has a composition suitable for upgrader processing.
Other aspects and features of the present invention will become apparent to those ordinarily skilled in the art upon review of the following description of specific embodiments of the invention in conjunction with the accompanying figures.
a is an enlarged cross-section view of a portion of an operating cyclone.
While the process flows and apparatus description of the invention made with reference to
The processing circuit has a circuit inlet 10 to receive a process feed stream 48. The process feed stream is a bitumen froth output of an oil sands extraction process and is diluted at 11 with a suitable solvent, for example naphtha, or a paraffinic or alkane hydrocarbon solvent. Naphtha is a mixture of aromatic hydrocarbons that effectively dissolves the bitumen constituent of the bitumen froth feed stream 48 supplied via line 10 to produce bitumen froth with a much-reduced viscosity. The addition of a solvent partially liberates the bitumen from the other components of the bitumen froth feed stream 48 by reducing interfacial tensions and rendering the composition more or less miscible. The diluted bitumen feed stream 50 including a recycle stream 57 is supplied to a primary IPS stage comprising IPS units 12 and 14 shown as an example of multiple units in a process stage. The overflow output stream 52 of the primary IPS stage is supplied as a product stream, which is sent to the circuit product outlet line 42 for downstream processing, for example at an upgrader plant.
The underflow output stream of the primary IPS stage is supplied via line 30 as the feed stream 68 to a primary hydrocarbon cyclone stage (HCS) comprising for example, a primary cyclone 16. The hydrocarbon cyclone processes a feed stream into a bitumen enriched overflow stream and a bitumen depleted underflow stream. The overflow output stream 56 of the primary cyclone stage on line 18 is directed for further processing depending on the setting of diverter valve 34. Diverter valve 34 is adjustable to direct all or a portion of the primary HCS overflow output stream 56 to a recycle stream 60 that is carried on line 24 to become recycle stream 57 or a part of it. Recycle stream 57 is supplied to the primary IPS stage. The portion of the primary HCS overflow output stream that is not directed to recycle stream 60 becomes the secondary IPS feed stream 58 that is delivered to a secondary IPS stage 22 via line 20. Naturally diverter valve 34 can be set to divert the entire HCS overflow stream 56 to the secondary IPS feed stream 58 to the limit of the secondary IPS capacity.
The circuit bitumen froth feed stream 48 will have varying quantities or ratios of constituent components of bitumen, solids, fines and water. The quantities or ratios of the component of froth feed stream 48 will vary over the course of operation of the circuit depending on the composition of the in situ oil sands ore that are from time to time being mined and processed. Adjustment of diversion valve 34 permits the processing circuit flows to be adjusted to accommodate variations in oil sands ore composition, which is reflected in the composition of the bitumen froth feed stream 48. In this manner, the circuit process feed flow 50 to the primary cyclone stage can be set to adapt to the processing requirements providing optimal processing for the composition of the bitumen froth feed. In some circumstances, such as when the capacity of the secondary IPS stage 22 is exceeded, all or a portion of the primary cyclone stage overflow stream 56 on line 18 is directed to recycle stream 60 by diverter valve 34. Recycle stream 60 is carried on line 24 to form part of the recycle stream 57 supplied to the primary IPS stage IPS units 12 and 14. However, the composition of stream 48 is nearly invariant to the composition of mine run ore over a wide range of ores that might be fed to the upstream extraction process.
The preferred embodiment of a process circuit in accordance with the principles of the invention preferably includes secondary IPS processing equipment interconnecting with the primary processing equipment by means of diverter valve 34. Where the entire overflow output stream of the primary stage is recycled back to the primary IPS stage, the primary IPS stage process acts as a secondary IPS stage and no stream is supplied to the secondary IPS stage for processing. However, a secondary IPS stage is preferably provided to accommodate the variations in composition of the feed froth stream 48 encountered in operation of the process. Secondary IPS unit 22 processes the feed stream 58 received from the overflow of the primary cyclone stage into a bitumen enriched secondary IPS overflow output stream on line 32 and a bitumen depleted secondary IPS underflow output stream 59 on line 26. The recovered bitumen of the secondary IPS overflow stream on line 32 is combined with the overflow stream of the primary IPS stage to provide the circuit output bitumen product stream 52 delivered to the circuit product outlet line 42 for downstream processing and upgrading.
The secondary stage IPS 22 underflow output stream 59 is supplied by line 26 where it is combined with the primary cyclone underflow stream 61 to provide a feed stream 62 to a secondary stage cyclone 28. The secondary hydrocarbon cyclone stage (HCS) 28 processes input feed stream 62 into a bitumen enriched secondary HCS overflow output stream 64 on line 40 and a bitumen depleted secondary HCS underflow output stream 66 on line 36. The secondary HCS underflow output stream 66 is directed to a solvent recovery unit 44, which processes the stream to produce the circuit tailings stream 54 provided to the circuit tails outlet 46 of the circuit. The operating process of the secondary HCS 28 is varied during the operation of the process. The operating process of the secondary HCS 28 is optimized to reduce the bitumen content of the secondary HCS underflow output stream 66 to achieve the target bitumen recovery rate of the process. Preferably, the operation of the secondary HCS is maintained to achieve a hydrocarbon content in the secondary HCS underflow output stream 66 that does not exceed 1.6%. Preferably, a solvent recovery unit 44 is provided to recover diluent present in the secondary HCS underflow output stream 66. Solvent recovery unit (SRU) 44 is operated to maintain solvent loss to the tailings stream 54 below 0.5% to 0.7% of the total solvent fed to the circuit on line 11. The tailings stream 54 is sent for disposal on the circuit tails outlet line 46.
The primary and secondary HCS cyclone units achieve a so-called ternary split in which a high hydrocarbon recovery to the output overflow stream is obtained with a high rejection of solids and water reporting to the output underflow stream. In a ternary split, even the fines of the solids are rejected to a respectable extent.
The primary HCS cyclone unit 16 receives the underflow output stream on line 30 from the primary EPS stage IPS units 12, 14 as an input feed stream 68. The primary hydrocarbon cyclone 16 processes feed stream 68 to obtain what is referred to herein as a ternary split. The hydrocarbon and other constituents of the cyclone feed stream are reconstituted by the hydrocarbon cyclone 16 so as to enable the primary HCS overflow output stream on line 18 to be supplied, via line 20, as a feed stream 58 to a secondary IPS stage unit 22. This process flow obtains a ternary split, which achieves a high bitumen recovery. The process within primary HCS cyclone unit 16 involves a complex transformation or re-conditioning of the received primary IPS underflow output stream 68. The primary HCS underflow output stream 61 is passed via line 38 to become part of the feed stream 62 of secondary HCS cyclone unit 28 and yield further bitumen recovery. Further bitumen recovery from the secondary HCS overflow output stream 64 is obtained by recycling that stream on line 40 back to the primary IPS stage for processing.
The closed loop nature of the recycling of this process reveals an inner recycling loop, which is closed through line 26 from the secondary IPS stage and an outer recycling loop, which is closed through line 40 from the secondary HCS. These recycle loops provide a recycle stream 57 which contains material from the primary and secondary HCS and the bitumen recovered from this recycle material is called second-pass bitumen. Remarkably the second-pass bitumen in recycle stream 57 is recovered in the primary IPS stage at greater than 90% even though the bitumen did not go to product in the first pass through the primary IPS stage. Thus, the arrangement provides a cyclic process in which the overflow stream of a HCS is reconditioned by an IPS stage and the underflow stream of an IPS stage is reconditioned by a HCS. In this way, the individual process stages recondition their overflow streams in the case of cyclone stages and their underflow streams in the case of IPS stages for optimal processing by other downstream stages in the process loops. In the HCS cyclone units, the flow rates and pressure drops can be varied during operation of the circuit. The HCS unit flow rates and pressure drops are maintained at a level to achieve the performance stated in Tables 1 and 2. An input stream of a cyclone is split to the overflow output stream and the underflow output stream and the operating flow rates and pressure drops will determine the split of the input stream to the output streams. Generally, the range of output overflow split will vary between about 50% to about 80% of the input stream by varying the operating flow rates and pressure drops.
Table 1 provides example compositions of various process streams in the closed-loop operation of the circuit.
Table 2 lists process measurements taken during performance of process units arranged in accordance with the invention. In the table, the Bitumen column is a hydrocarbon with zero solvent. Accordingly, the Hydrocarbon column is the sum of both the Bitumen and Solvent columns. The Mineral column is the sum of the Coarse and the Fines columns. These data are taken from a coherent mass balance of operational data collected during demonstration and operational trials. From these trials it was noted that water rejection on the HCS is over 50%. It was also noted that the nominal recovery of IPS stage is about 78%, but was boosted to over 85% by the recycle. All of the stages in the circuit operate in combination to produce a recovery of bitumen approaching 99% and the solvent losses to tails are of the order of 0.3%.
As depicted in
The vortex finder 82 has a shortened excursion where the vortex finder lower end 92 extends only a small distance below cyclone inlet 80. A shortened vortex finder allows a portion of the bitumen in the inlet stream to exit to the overflow output passage 84 without having to make a spiral journey down into the cyclone chamber 98 and back up to exit to the overflow output passage 84. However, some bitumen in the fluid introduced into the cyclone for processing does make this entire journey through the cyclone chamber to exit to the overflow output passage 84. The free vortex height FVH, measured from the lower end of the vortex finder 92 to the underflow outlet 76 of lower apex 88, is long relative to the cyclone diameters DI and DO. Preferably, a mounting plate 94 is provided to mount the cyclone, for example, to a frame structure (not shown).
Preferably the lower portion 88 of the cyclone is removably affixed to the body of the cyclone by suitable fasteners 90, such as bolts, to permit the lower portion 88 of the cyclone to be replaced. Fluid velocities obtained in operation of the cyclone, cause mineral materials that are entrained in the fluid directed toward the lower apex underflow outlet 76 to be abrasive. A removable lower apex 88 portion permits a high-wear portion of the cyclone to be replaced as needed for operation of the cyclones. The assembly or packaging of the so-called cyclopac has been designed to facilitate on-line replacement of individual apex units for maintenance and insertion of new abrasion resistant liners.
In the preferred embodiment of the cyclone, the dimensions listed in Table 3 are found:
The cyclones are dimensioned to obtain sufficient vorticity in the down vortex so as to cause a vapor core 97 in the centre of the up-vortex subtended by the vena cava. The effect of this vapor core is to drive the solvent preferentially to the product stream, provided to the overflow output port 84, thereby assuring minimum solvent deportment to tails or underflow stream, provided to the underflow outlet 76 of lower apex. This is a factor contributing to higher solvent recovery in the process circuit. At nominal solvent ratios the vapor core is typically only millimeters in diameter, but this is sufficient to cause 3% to 4% enrichment in the overhead solvent to bitumen ratio.
A workable cyclone for use in processing a diluted bitumen froth composition has a minimum an apex diameter of 40 mm to avoid plugging or an intolerably high fluid vorticity. An apex diameter below 40 mm would result in high fluid tangential velocity yielding poor life expectancy of the apex due to abrasion even with the most abrasion resistant material. Consequently, a Lupul Ross cyclone design is undesirable because of the small size of openings employed.
The embodiments of the primary and secondary cyclones of the dimensions stated in Table 3 sustain a small vapour core at flow rates of 180 gallon/min or more. This causes enrichment in the solvent content of the overflow that is beneficial to obtaining a high solvent recovery. The vapour core also balances the pressure drops between the two exit paths of the cyclone. The long body length of these cyclones fosters this air core formation and assists by delivering high gravity forces within the device in a manner not unlike that found in centrifuges, but without the moving parts. In the preferred embodiment of the primary cyclone, the upper inlet region has an inner diameter of 200 mm. The injection path is an involute of a circle, as shown in
The IPS units 12, 14 and 22 of the IPS stages are available from manufacturers such as the Model SRC slant rib coalescing oil water separator line of IPS equipment manufactured by Parkson Industrial Equipment Company of Florida, U.S.A.
In the general arrangement of the apparatus adapted to carry out the process, inclined plate separator (IPS) units are alternately staged with either cyclone units or centrifuge units such that an IPS stage underflow feeds a cyclone stage or a centrifuge stage or both a cyclone stage and a centrifuge stage. In addition a cyclone stage overflow or a centrifuge stage overflow is sent to product or feeds an IPS stage. This circuit enables one to take full advantage of centrifuges that might be destined for replacement. In another sense it provides a fallback to the circuit depicted in
In
The underflow output stream of the primary IPS stage is supplied via line 30 as the feed stream 68 to a primary hydrocarbon cyclone stage (HCS) comprising for example, a primary cyclone 16. The hydrocarbon cyclone processes a feed stream into a bitumen enriched overflow stream and a bitumen depleted underflow stream. The overflow output stream 56 of the primary cyclone stage on line 18 is directed for further processing depending on the setting of diverter valve 34. Diverter valve 34 is adjustable to direct all or a portion of the primary HCS overflow output stream 56 to a recycle stream 60 that is carried on line 3 to become a recycle input to the feed stream 50 supplied to the primary IPS stage. The portion of the primary HCS overflow output stream that is not directed to recycle stream 60 can become all or a portion of either the secondary IPS feed stream 58 that is delivered to a secondary IPS stage 22 via line 2 or a centrifuge stage feed stream 100 that is delivered to a centrifuge stage 102 via line 1. Naturally diverter valve 34 can be set to divert all of the HCS overflow stream 56 either to the secondary IPS feed stream 58 or to the centrifuge stage 102.
When paraffinic solvents are deployed asphaltene production will occur. Under these circumstances the first stage cyclone underflow stream 61 can be configured separate from the second stage cyclones to provide two separate tailings paths for asphaltenes. On the other hand, asphaltene production is very low when naphtha based solvents are deployed in this process and, consequently, two separate tailings paths are not required.
Adjustment of diversion valve 34 permits the processing circuit flows to be adjusted to accommodate variations in oil sands ore composition, which is reflected in the composition of the bitumen froth feed stream 48. In this manner, the circuit process feed flow 50 to the primary cyclone stage can be set to adapt to the processing requirements providing optimal processing for the composition of the bitumen froth feed. In some circumstances, such as when the capacity of the secondary IPS stage 22 and centrifuge stage 102 is exceeded, all or a portion of the primary cyclone stage overflow stream 56 on line 18 is directed to recycle stream 60 by diverter valve 34.
The preferred embodiment of a process circuit in accordance with the principles of the invention preferably includes secondary IPS processing equipment or centrifuge processing equipment interconnecting with the primary stage processing equipment by means of diverter valve 34. Where the entire overflow output stream of the primary stage is recycled back to the primary IPS stage, the primary IPS stage process acts as a secondary IPS stage and no stream is supplied to the secondary IPS stage or the centrifuge stage for processing. However, a secondary IPS stage or centrifuge stage or both is preferably provided to accommodate the variations in composition of the feed froth stream 48 encountered in operation of the process. Secondary IPS unit 22 processes the feed stream 58 received from the overflow of the primary cyclone stage into a bitumen enriched secondary IPS overflow output stream on line 32 and a bitumen depleted secondary IPS underflow output stream 59 on line 26. The recovered bitumen of the secondary IPS overflow stream on line 32 is combined with the overflow stream of the primary IPS stage to provide the circuit output bitumen product stream 52 delivered to the circuit product outlet line 42 for downstream processing and upgrading. The centrifuge stage unit 102 processes the feed stream 100 received from the overflow of the primary cyclone stage into a bitumen enriched centrifuge output stream on line 104 and a bitumen depleted centrifuge underflow output stream 106 on line 108. The recovered bitumen of the centrifuge overflow stream on line 104 is supplied to the circuit output bitumen product stream 52, which is delivered to the circuit product outlet line 42 for downstream processing and upgrading.
The secondary stage IPS 22 underflow output stream 59 is processed in this embodiment in the same manner as in the embodiment depicted in
The closed loop nature of the recycling of this process reveals two recycling loops. One recycling loop is closed through line 3 from the primary IPS stage and primary HCS. Another recycling loop is closed from line 2 through the secondary IPS stage via line 26 and through the secondary HCS 28 via stream 64. The feed to the disk centrifuges on line 1 does not provide a recycle loop; thus material sent to the disk centrifuge stage is not recycled back to the primary IPS stage. The HCS unit flow rates and pressure drops are maintained at a level that achieves the performance stated in Tables 1 and 2. An input stream of a cyclone is split to the overflow output stream and the underflow output stream and the operating flow rates and pressure drops will determine the split of the input stream to the output streams. Generally, the range of output overflow split will vary between about 50% to about 80% of the input stream by varying the operating flow rates and pressure drops.
Although a preferred and other possible embodiments of the invention have been described in detail and shown in the accompanying drawings, it is to be understood that the invention in not limited to these specific embodiments as various changes, modifications and substitutions may be made without departing from the spirit, scope and purpose of the invention as defined in the claims appended hereto.
This application is a continuation of U.S. patent application Ser. No. 11/360,597, filed on Feb. 24, 2006, now abandoned which is a division of U.S. patent application Ser. No. 10/306,003, filed on Nov. 29, 2002, now U.S. Pat. No. 7,141,162, which claims priority from Canadian Patent Application No. 2,400,258, filed on Sep. 19, 2002, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
2724503 | Fontein | Nov 1955 | A |
2819795 | Dijksman et al. | Jan 1958 | A |
2910424 | Tek et al. | Oct 1959 | A |
3392105 | Poettmann et al. | Jul 1968 | A |
3402896 | Daman | Sep 1968 | A |
3607720 | Paulson | Sep 1971 | A |
3711238 | Dancy et al. | Jan 1973 | A |
3798157 | Manzanilla et al. | Mar 1974 | A |
3808120 | Smith | Apr 1974 | A |
3876532 | Plundo et al. | Apr 1975 | A |
3893907 | Canevari | Jul 1975 | A |
3956417 | Franz et al. | May 1976 | A |
3962070 | Stotler | Jun 1976 | A |
3967777 | Canevari | Jul 1976 | A |
3971718 | Reid | Jul 1976 | A |
3972861 | Gardner, Jr. et al. | Aug 1976 | A |
3998702 | Opoku | Dec 1976 | A |
4017263 | Holmes et al. | Apr 1977 | A |
4033853 | Hann | Jul 1977 | A |
4035282 | Stuchberry et al. | Jul 1977 | A |
4036664 | Priebe | Jul 1977 | A |
4090943 | Moll et al. | May 1978 | A |
4139646 | Gastrock | Feb 1979 | A |
4146534 | Armstrong | Mar 1979 | A |
4216796 | Gastrock | Aug 1980 | A |
4257760 | Schuurman et al. | Mar 1981 | A |
4279743 | Miller | Jul 1981 | A |
4284360 | Cymbalisty et al. | Aug 1981 | A |
4337143 | Hanson et al. | Jun 1982 | A |
4373325 | Shekleton | Feb 1983 | A |
4378289 | Hunter | Mar 1983 | A |
4383914 | Kizior | May 1983 | A |
4397741 | Miller | Aug 1983 | A |
4399027 | Miller | Aug 1983 | A |
4410417 | Miller et al. | Oct 1983 | A |
4416620 | Morck | Nov 1983 | A |
4470262 | Shekleton | Sep 1984 | A |
4470899 | Miller et al. | Sep 1984 | A |
4486294 | Miller et al. | Dec 1984 | A |
4487573 | Gottschlich et al. | Dec 1984 | A |
4505811 | Griffiths et al. | Mar 1985 | A |
4514305 | Filby | Apr 1985 | A |
4545892 | Cymbalisty et al. | Oct 1985 | A |
4556422 | Reynolds et al. | Dec 1985 | A |
4558743 | Ryan et al. | Dec 1985 | A |
4580504 | Beardmore et al. | Apr 1986 | A |
4581142 | Fladby et al. | Apr 1986 | A |
4604988 | Rao | Aug 1986 | A |
4744890 | Miller et al. | May 1988 | A |
4838434 | Miller et al. | Jun 1989 | A |
4851123 | Mishra | Jul 1989 | A |
4859317 | Shelfantook et al. | Aug 1989 | A |
4914017 | Mifune | Apr 1990 | A |
4994097 | Brouwers | Feb 1991 | A |
5029557 | Korenberg | Jul 1991 | A |
5032275 | Thew | Jul 1991 | A |
5035910 | Jones | Jul 1991 | A |
5037558 | Kalnins | Aug 1991 | A |
5039227 | Leung et al. | Aug 1991 | A |
5045218 | Prendergast et al. | Sep 1991 | A |
5055202 | Carroll et al. | Oct 1991 | A |
5062955 | Sciamanna | Nov 1991 | A |
5071556 | Kalnins et al. | Dec 1991 | A |
5071557 | Schubert et al. | Dec 1991 | A |
5073177 | Brouwers | Dec 1991 | A |
5085577 | Muller | Feb 1992 | A |
5090498 | Hamill | Feb 1992 | A |
5110471 | Kalnins | May 1992 | A |
5118408 | Jansen et al. | Jun 1992 | A |
5123361 | Nieh et al. | Jun 1992 | A |
5143598 | Graham et al. | Sep 1992 | A |
5207805 | Kalen et al. | May 1993 | A |
5223148 | Tipman et al. | Jun 1993 | A |
5236577 | Tipman et al. | Aug 1993 | A |
5242580 | Sury | Sep 1993 | A |
5242604 | Young et al. | Sep 1993 | A |
5264118 | Cymerman et al. | Nov 1993 | A |
5302294 | Schubert et al. | Apr 1994 | A |
5316664 | Gregoli et al. | May 1994 | A |
5340467 | Gregoli et al. | Aug 1994 | A |
5350525 | Shaw et al. | Sep 1994 | A |
5462430 | Khinkis | Oct 1995 | A |
5556545 | Volchek et al. | Sep 1996 | A |
5572956 | Hallstrom et al. | Nov 1996 | A |
5620594 | Smith et al. | Apr 1997 | A |
5667543 | Brouwers | Sep 1997 | A |
5667686 | Schubert | Sep 1997 | A |
5711374 | Kjos | Jan 1998 | A |
5740834 | Sherowski | Apr 1998 | A |
5832846 | Mankowski et al. | Nov 1998 | A |
5840198 | Clarke | Nov 1998 | A |
5876592 | Tipman et al. | Mar 1999 | A |
5879541 | Parkinson | Mar 1999 | A |
5958256 | Ocel, Jr. et al. | Sep 1999 | A |
5968349 | Duyvesteyn et al. | Oct 1999 | A |
5996690 | Shaw et al. | Dec 1999 | A |
6036475 | Matsui et al. | Mar 2000 | A |
6077433 | Brun Henriksen et al. | Jun 2000 | A |
6119870 | Maciejewski et al. | Sep 2000 | A |
6167818 | Dejanovich | Jan 2001 | B1 |
6189613 | Chachula et al. | Feb 2001 | B1 |
6190543 | Christiansen | Feb 2001 | B1 |
6197095 | Ditria et al. | Mar 2001 | B1 |
6213208 | Skilbeck | Apr 2001 | B1 |
6315837 | Barclay | Nov 2001 | B1 |
6322845 | Dunlow | Nov 2001 | B1 |
6346069 | Collier | Feb 2002 | B1 |
6378608 | Nilsen et al. | Apr 2002 | B1 |
6398973 | Saunders et al. | Jun 2002 | B1 |
6468330 | Irving et al. | Oct 2002 | B1 |
6543537 | Kjos | Apr 2003 | B1 |
6596170 | Tuszko et al. | Jul 2003 | B2 |
6607437 | Casey et al. | Aug 2003 | B2 |
6702877 | Swanborn | Mar 2004 | B1 |
6719681 | Collier | Apr 2004 | B2 |
6730236 | Kouba | May 2004 | B2 |
6800116 | Stevens et al. | Oct 2004 | B2 |
6800208 | Bolman | Oct 2004 | B2 |
7011219 | Knox-Holmes et al. | Mar 2006 | B2 |
7060017 | Collier | Jun 2006 | B2 |
7111738 | Allen, III | Sep 2006 | B2 |
7140441 | Hauge et al. | Nov 2006 | B2 |
7141162 | Garner et al. | Nov 2006 | B2 |
7147788 | Tveiten | Dec 2006 | B2 |
7160518 | Chen et al. | Jan 2007 | B2 |
7202389 | Brem | Apr 2007 | B1 |
7223331 | Stark et al. | May 2007 | B2 |
7223344 | Zavattari et al. | May 2007 | B2 |
7250140 | Chen et al. | Jul 2007 | B2 |
7255790 | Rogers et al. | Aug 2007 | B2 |
7261807 | Henry et al. | Aug 2007 | B2 |
7261870 | Coulson et al. | Aug 2007 | B2 |
7314441 | Collier | Jan 2008 | B2 |
7316564 | Muschelknautz et al. | Jan 2008 | B2 |
7438189 | Garner et al. | Oct 2008 | B2 |
7438807 | Garner et al. | Oct 2008 | B2 |
20010005986 | Matsubara et al. | Jul 2001 | A1 |
20010042713 | Conrad et al. | Nov 2001 | A1 |
20010047964 | Matherly et al. | Dec 2001 | A1 |
20020018842 | Dunlow | Feb 2002 | A1 |
20020068673 | Collier | Jun 2002 | A1 |
20020068676 | Collier | Jun 2002 | A1 |
20020148777 | Tuszko | Oct 2002 | A1 |
20030029775 | Cymerman et al. | Feb 2003 | A1 |
20030085185 | Kouba | May 2003 | A1 |
20030127387 | Aarebrot et al. | Jul 2003 | A1 |
20030168391 | Tveiten | Sep 2003 | A1 |
20040055972 | Garner et al. | Mar 2004 | A1 |
20040069705 | Tuszko et al. | Apr 2004 | A1 |
20040094456 | Dries | May 2004 | A1 |
20040140099 | Hauge et al. | Jul 2004 | A1 |
20040182754 | Lange | Sep 2004 | A1 |
20040192533 | Collier | Sep 2004 | A1 |
20040262980 | Watson | Dec 2004 | A1 |
20050016904 | Knox-Holmes et al. | Jan 2005 | A1 |
20050051500 | Price et al. | Mar 2005 | A1 |
20050084812 | Rakhmailov et al. | Apr 2005 | A1 |
20060084022 | Kruger | Apr 2006 | A1 |
20060112724 | Chang et al. | Jun 2006 | A1 |
20060122449 | van Egmond | Jun 2006 | A1 |
20060138036 | Garner et al. | Jun 2006 | A1 |
20060138055 | Garner et al. | Jun 2006 | A1 |
20060186038 | Nassif | Aug 2006 | A1 |
20060217255 | Collier | Sep 2006 | A1 |
20060272983 | Droughton et al. | Dec 2006 | A1 |
20070014905 | Chen et al. | Jan 2007 | A1 |
20070095032 | Nilsen et al. | May 2007 | A1 |
20070114489 | Powell et al. | May 2007 | A1 |
20070138085 | Biester | Jun 2007 | A1 |
20070179326 | Baker | Aug 2007 | A1 |
20070180741 | Bjornson et al. | Aug 2007 | A1 |
20070187321 | Bjornson et al. | Aug 2007 | A1 |
20070196257 | Khattaty et al. | Aug 2007 | A1 |
20070197845 | Beech et al. | Aug 2007 | A1 |
20070202452 | Rao | Aug 2007 | A1 |
20080000810 | Garner et al. | Jan 2008 | A1 |
20080035586 | Chen et al. | Feb 2008 | A1 |
20080149542 | Bjornson et al. | Jun 2008 | A1 |
20080217212 | Garner et al. | Sep 2008 | A1 |
20090134095 | Hann | May 2009 | A1 |
Number | Date | Country |
---|---|---|
518320 | Nov 1955 | CA |
680576 | Feb 1964 | CA |
694547 | Sep 1964 | CA |
741303 | Aug 1966 | CA |
817869 | Jul 1969 | CA |
970308 | Jul 1975 | CA |
970309 | Jul 1975 | CA |
970310 | Jul 1975 | CA |
970311 | Jul 1975 | CA |
971124 | Jul 1975 | CA |
1005774 | Feb 1977 | CA |
1026252 | Feb 1978 | CA |
1059052 | Jul 1979 | CA |
1066644 | Nov 1979 | CA |
1071130 | Feb 1980 | CA |
1072439 | Feb 1980 | CA |
1072473 | Feb 1980 | CA |
1076504 | Apr 1980 | CA |
1097574 | Mar 1981 | CA |
1117353 | Feb 1982 | CA |
1126187 | Jun 1982 | CA |
1138822 | Apr 1983 | CA |
1152918 | Aug 1983 | CA |
1194622 | Jan 1985 | CA |
1201412 | Mar 1986 | CA |
228288 | Oct 1987 | CA |
1248476 | Jan 1989 | CA |
1254171 | May 1989 | CA |
1266250 | Feb 1990 | CA |
1267860 | Apr 1990 | CA |
269063 | May 1990 | CA |
2000984 | Apr 1991 | CA |
2029795 | May 1991 | CA |
2037856 | Sep 1991 | CA |
1283465 | Dec 1991 | CA |
1293465 | Dec 1991 | CA |
2024756 | May 1992 | CA |
1305390 | Jul 1992 | CA |
2058221 | Jul 1992 | CA |
1313845 | Feb 1993 | CA |
2049178 | Feb 1993 | CA |
2049793 | Feb 1993 | CA |
1318273 | May 1993 | CA |
1322177 | Sep 1993 | CA |
1325180 | Dec 1993 | CA |
2088227 | Apr 1994 | CA |
2108521 | Apr 1994 | CA |
2086073 | Jun 1994 | CA |
2155198 | Aug 1994 | CA |
2049793 | Jun 1995 | CA |
2184613 | Nov 1995 | CA |
2133911 | Apr 1996 | CA |
2149737 | Nov 1996 | CA |
2180686 | Feb 1997 | CA |
2231543 | Mar 1997 | CA |
2185256 | Mar 1998 | CA |
2263691 | Mar 1998 | CA |
2021185 | Sep 1998 | CA |
2200899 | Sep 1998 | CA |
2217300 | Mar 1999 | CA |
2249679 | Apr 1999 | CA |
2308410 | May 1999 | CA |
2236183 | Oct 1999 | CA |
2269710 | Oct 1999 | CA |
2246841 | Mar 2000 | CA |
2365008 | Aug 2000 | CA |
2262343 | Oct 2000 | CA |
2298122 | Jul 2001 | CA |
2090618 | Oct 2001 | CA |
2358805 | Oct 2001 | CA |
2311738 | Nov 2001 | CA |
2409129 | Nov 2001 | CA |
2315596 | Feb 2002 | CA |
2332207 | Feb 2002 | CA |
857306 | Mar 2002 | CA |
873854 | Mar 2002 | CA |
882667 | Mar 2002 | CA |
910271 | Mar 2002 | CA |
2217300 | Aug 2002 | CA |
2350001 | Dec 2002 | CA |
2419325 | Aug 2003 | CA |
2400258 | Mar 2004 | CA |
2471048 | Mar 2004 | CA |
2527058 | Mar 2004 | CA |
2435113 | Jan 2005 | CA |
2436158 | Jan 2005 | CA |
2439436 | Mar 2005 | CA |
2532737 | Mar 2005 | CA |
2535702 | Mar 2005 | CA |
2537603 | Mar 2005 | CA |
2445645 | Apr 2005 | CA |
2483896 | Apr 2005 | CA |
2493677 | Jun 2005 | CA |
2549895 | Jun 2005 | CA |
2554725 | Jun 2005 | CA |
2454942 | Jul 2005 | CA |
2455623 | Jul 2005 | CA |
2462359 | Sep 2005 | CA |
2558424 | Oct 2005 | CA |
2467372 | Nov 2005 | CA |
2565980 | Dec 2005 | CA |
2510099 | Jan 2006 | CA |
2505449 | Feb 2006 | CA |
2517811 | Feb 2006 | CA |
2538464 | Feb 2006 | CA |
2563922 | Mar 2006 | CA |
2520943 | Apr 2006 | CA |
2522031 | Apr 2006 | CA |
2580836 | Apr 2006 | CA |
2582078 | Apr 2006 | CA |
2506398 | May 2006 | CA |
2587866 | Jun 2006 | CA |
2494391 | Jul 2006 | CA |
2506398 | Nov 2006 | CA |
2547147 | Nov 2006 | CA |
2512227 | Jan 2007 | CA |
2524995 | Jan 2007 | CA |
2559833 | Jan 2007 | CA |
2520223 | Mar 2007 | CA |
2560223 | Mar 2007 | CA |
2524110 | Apr 2007 | CA |
2526336 | May 2007 | CA |
2567644 | May 2007 | CA |
2567702 | May 2007 | CA |
2531007 | Jun 2007 | CA |
2531262 | Jun 2007 | CA |
2570231 | Jun 2007 | CA |
2550623 | Dec 2007 | CA |
2561539 | Mar 2008 | CA |
2610122 | May 2008 | CA |
2590300 | Nov 2008 | CA |
2540561 | Dec 2009 | CA |
1112033 | Nov 1995 | CN |
2263552 | Oct 1997 | CN |
2520942 | Nov 2002 | CN |
1701856 | Nov 2005 | CN |
3202358 | Aug 1983 | DE |
4239501 | Nov 1993 | DE |
4432395 | Mar 1996 | DE |
0021321 | Jan 1981 | EP |
0475467 | Apr 1987 | EP |
262916 | Jun 1988 | EP |
355127 | Jun 1989 | EP |
0398864 | May 1990 | EP |
0451343 | Nov 1990 | EP |
0522686 | Jan 1993 | EP |
332641 | Mar 1994 | EP |
0585100 | Mar 1994 | EP |
605746 | Jul 1994 | EP |
0699867 | Mar 1996 | EP |
0734751 | Oct 1996 | EP |
0816756 | Jan 1998 | EP |
0866268 | Sep 1998 | EP |
1028811 | Aug 2000 | EP |
1069234 | Jan 2001 | EP |
1087055 | Mar 2001 | EP |
1166882 | Jul 2003 | EP |
1445420 | Aug 2004 | EP |
1600215 | Nov 2005 | EP |
1501636 | Aug 2006 | EP |
195055 | Jan 1924 | GB |
639468 | Jun 1950 | GB |
719379 | Dec 1954 | GB |
719380 | Dec 1954 | GB |
726841 | Mar 1955 | GB |
767944 | Feb 1957 | GB |
814610 | Jun 1959 | GB |
1015428 | Dec 1965 | GB |
1234455 | Jun 1971 | GB |
1262417 | Feb 1972 | GB |
1302064 | Jan 1973 | GB |
1425122 | Feb 1976 | GB |
2047735 | Jan 1980 | GB |
2062840 | May 1981 | GB |
2075543 | Nov 1981 | GB |
2116447 | Sep 1983 | GB |
57157951 | Sep 1982 | JP |
60251307 | Dec 1985 | JP |
6182856 | Apr 1986 | JP |
74616 | Jan 1995 | JP |
1182933 | Mar 1999 | JP |
2091668 | Sep 1997 | RU |
2154234 | Aug 2000 | RU |
79967 | Aug 2007 | UA |
WO9115712 | Oct 1991 | WO |
WO 9204123 | Mar 1992 | WO |
WO 9423823 | Oct 1994 | WO |
WO9610716 | Apr 1996 | WO |
WO 0074815 | Dec 2000 | WO |
WO 03068407 | Aug 2003 | WO |
WO 03092901 | Nov 2003 | WO |
WO 2004005673 | Jan 2004 | WO |
WO2005044871 | May 2005 | WO |
WO 2006085759 | Aug 2006 | WO |
WO2006132527 | Dec 2006 | WO |
WO2007001174 | Jan 2007 | WO |
WO2007021181 | Feb 2007 | WO |
WO2007081816 | Jul 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20080217212 A1 | Sep 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10306003 | Nov 2002 | US |
Child | 11360597 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11360597 | Feb 2006 | US |
Child | 12123381 | US |