This invention relates to a color display and, more particularly to a color display having phosphor deposits on a faceplate panel.
Many color displays, such as, for example, color cathode-ray tubes (CRTs) and field emission devices (FEDs) typically include display screens. The display screens are formed from glass plates coated with an array of three different color-emitting phosphors. To provide contrast, a graphite-based matrix is placed in the interstitial regions between each of the three different color-emitting phosphors.
Many graphite-based matrix compositions lose adherence to glass and exhibits weak internal strength when physical contact is made thereto. During assembly of filed emission devices, spacers are placed in contact with the graphite-based matrix composition. Because of the weakness of the graphite matrix coating, adhesive failure may occur primarily at the coating/glass interface, such that the spacers may fall over. Adhesive failure may also occur within the body of the graphite-based matrix composition causing it to come away from the display screen.
Thus, a need exists for a graphite-based matrix composition with improved adhesion to a glass display screen.
The present invention relates to a display screen of a color display. The display screen includes a glass plate having an array of three different color-emitting phosphors thereon. A graphite-based matrix is placed in the interstitial regions between each of the three different color-emitting phosphors. The graphite-based matrix is formed from an aqueous composition including graphite, an alkali silicate and titanium dioxide.
A preferred implementation of the principles of the present invention will now be described in greater detail, with relation to the accompanying drawings, in which:
The graphite-based matrix is formed from an aqueous composition including graphite, an alkali silicate and titanium dioxide. The alkali silicate and titanium dioxide may be present in the aqueous composition in a ratio of about 1:1 to about 2.5:1 alkali silicate to titanium dioxide. Further, the aqueous composition should preferably include up to 12% by weight alkali silicate and titanium dioxide.
Suitable alkali silicates may include potassium silicate and sodium silicate. The titanium dioxide (TiO2) should preferably be rutile (tetragonal crystals) or anatase (octangonal crystals) and the particle size distribution of the titanium dioxide powder should be less than about 1 micron.
An exemplary aqueous graphite-based matrix solution is formed by mixing 7.2 grams of Kasil 2135 potassium silicate (commercially available from PQ Corporation, Valley Forge, Pa.) in 76.8 grams of deionized water. After stirring, 2.8 grams of titanium dioxide powder having a particle size distribution less than about 1 micron is added to the potassium silicate solution. The titanium dioxide/potassium silicate mixture is then added with stirring to 25 grams Electrodag 1530 graphite dispersion (commercially available from Acheson Colloids Company, Port Huron, Mich.). The aqueous graphite-based matrix solution is further mixed on a jar roller for more than about 30 minutes. After mixing the graphite-based matrix composition should be applied to a display screen within about 24 hours to avoid agglomeration.
Referring to
As shown in
The graphite-based matrix 20 is patterned, as indicated by reference numeral 106 in
The above-described graphite-based matrix composition has improved adherence to the glass of the color display screen. In addition, the graphite-based matrix composition has improved coating strength.
Although an exemplary color display screen for a color cathode-ray tube (CRT) or field emission device (FED) which incorporates the teachings of the present invention has been shown and described in detail herein, those skilled in the art can readily devise many other varied embodiments that still incorporate these teachings.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US06/24811 | 6/23/2006 | WO | 00 | 11/18/2008 |