The present disclosure relates to tools for machining, and more particularly to tools for machining chamfers and the like.
Conventional manufacturing processes for production of blades, e.g., rotorcraft blades, depend of 5-axis machines. A 5-axis machine can be used, for example, to machine a chamfer on a root end of a main rotor blade for a helicopter. The 5-axis machines rely on reference features built into the blades for proper positioning of the cuts. However, during a repair or overhaul process, these reference features may be absent.
The conventional techniques have been considered satisfactory for their intended purpose. However, there is an ever present need for improved tools for chamfering and the like. This disclosure provides a solution for this problem.
A tool for machining chamfers includes a tool body defining a first reference and a second reference configured for proper positioning of the tool body on a workpiece. A router port is defined through the tool body to provide access to the workpiece for a router. A router attachment proximate the router port is configured to position a router mounted to the router attachment for machining a chamfer in the workpiece with reference to the first and second references.
The first and second references can be configured to mount the tool body to a workpiece. Each of the first and second references can include a bolt, spaced apart from one another, wherein the bolts are configured to mount the tool body to a workpiece with the router attachment positioned for correct placement of the chamfer in the workpiece. The first and second references can define a longitudinal workpiece axis.
The router attachment can include a pair of rails spaced apart across the router port. The rails are configured to mount a router to the tool body restricting all degrees of freedom except for a transverse translation relative to the work piece and tool body. The rails can be obliquely angled relative to the longitudinal axis to position a router to form a chamfer with an acute angle. Each rail can form an inward facing L-track configured for mounting a router to the rails by sliding the router into an end of the L-tracks.
A step gage configured for referencing router height can be removably mounted to the tool body. The step gage can include three reference steps, each configured for a different chamfer depth relative to the tool body.
Multiple routers can be used, or a single router can be adjusted to make multiple passes. For example, three routers can be included, each being configured for mounting to the router attachment. Each router can have a different set height for cutting a different chamfer depth relative to the tool body.
A method of machining a chamfer includes mounting a tool body to a workpiece using at least two references to positively position the tool body relative to the workpiece. A router is mounted to the tool body, with a router bit extending through a router port defined through the tool body. The router is slid along the tool body with the router forming a chamfer in the workpiece.
The chamfer can be formed at an acute angle relative to a longitudinal axis of the workpiece. The chamfer can be formed in a laminate substrate of the workpiece.
The router can form a chamfer in the workpiece to a first depth, and the method can include forming the chamfer to successively greater depths using one or more routers with successively lower router heights relative to the tool body. The router can be a first router that forms the chamfer to the first depth, and the method can include removing the first router from the tool body, mounting a second router to the tool body, and forming the chamfer to a second depth using the second router with a lower router height than the first router. The method can include removing the second router from the tool body, mounting a third router to the tool body, and forming the chamfer to a third depth using the third router with a lower router height than the second router.
The chamfer can be a first chamfer and the method can include removing the tool body from the workpiece, flipping the workpiece and mounting the tool body to a side of the workpiece opposite the first chamfer, and sliding the router along the tool body with the router forming a second chamfer in the workpiece opposite the first chamfer. The second chamfer can be formed to successively greater depths using one or more routers with successively lower router heights as described above for the first chamfer.
The workpiece can include a rotor blade for a rotorcraft, wherein mounting the tool body to the workpiece includes bolting the tool body to the rotor blade at a root thereof using a first bolt, and bolting the tool body to the blade root at a slotted aperture in the tool body. Forming a chamfer in the workpiece can include repairing a workpiece that is the rotor blade wherein references have been trimmed off of the rotor blade being repaired.
These and other features of the systems and methods of the subject disclosure will become more readily apparent to those skilled in the art from the following detailed description of the preferred embodiments taken in conjunction with the drawings.
So that those skilled in the art to which the subject disclosure appertains will readily understand how to make and use the devices and methods of the subject disclosure without undue experimentation, preferred embodiments thereof will be described in detail herein below with reference to certain figures, wherein:
Reference will now be made to the drawings wherein like reference numerals identify similar structural features or aspects of the subject disclosure. For purposes of explanation and illustration, and not limitation, a partial view of an exemplary embodiment of a tool in accordance with the disclosure is shown in
The tool 100 for machining chamfers includes a tool body 102 defining a first reference, i.e. bore 104, and a second reference, i.e., slotted bore 106, configured for proper positioning of the tool body 102 on a workpiece 108. Each of the first and second references can include a respective bolt 112 and 116. The workpiece 108 can include a rotor blade for a rotorcraft. Mounting the tool body 102 to the workpiece 108 includes bolting the tool body to the rotor blade at a root 110 thereof using a first bolt 112 passing through bore 104 and circular bore 114, and bolting the tool body 102 to the blade root 110 using a bolt 116 passing through slotted bore 106 and slotted aperture 118 in the blade root 110. This constraint allows for tool body 102 to be mounted only in a single, correct position on workpiece 108.
The first and second references are configured to mount the tool body 102 to a workpiece 108 for proper positioning of a machined chamfer on the workpiece 108. The first and second references define, or are in correct position relative to, a longitudinal workpiece axis A. Bolts 112 and 116 are spaced apart from one another along the direction of workpiece axis A, as are bores 104 and slotted bore 106, for mounting the tool body 102 to workpiece 108 with router attachment 120 positioned for correct placement of the chamfer in the workpiece 108.
A router port 122 is defined through the tool body 102 to provide access to the workpiece 108 for a router 124. The router attachment 120 proximate the router port 122 is configured to position the router 124 so router 124 is properly positioned for machining a chamfer in the workpiece 108 with reference to the first and second references. The router attachment 120 includes a pair of rails 126 spaced apart from one another across the router port 122. The rails 126 are configured to mount the router 124 to the tool body 102 so that router 124 can slide along the rails 126 to machine the chamfer. As shown in
Referring again to
A method of machining a chamfer includes mounting a tool body, e.g., tool body 102, to a workpiece, e.g., workpiece 108, using at least two references to positively position the tool body relative to the workpiece. A router, e.g. router 124, is mounted to the tool body, with a router bit, e.g., a router bit 138 of router 124 in
The chamfer can be formed at an acute angle, e.g., angle θ shown in
With reference now to
The chamfer can be a first chamfer and the method can include removing the tool body from the workpiece, flipping the workpiece, as indicated in
Systems and methods as disclosed herein can be used for repairing a workpiece, e.g., a main blade of a rotorcraft, wherein normal reference features have been trimmed off of the rotor blade being repaired, e.g., as a result of manufacturing, use and/or wear and tear.
The methods and systems of the present disclosure, as described above and shown in the drawings, provide for tools with superior properties including efficiently, accurately, and consistently machine chamfers into workpieces such as main rotor blades or the like, even when wear or use has partially or completely removed reference features from the blades. While the apparatus and methods of the subject disclosure have been shown and described with reference to preferred embodiments, those skilled in the art will readily appreciate that changes and/or modifications may be made thereto without departing from the scope of the subject disclosure.
Number | Name | Date | Kind |
---|---|---|---|
1566824 | Carter | Dec 1925 | A |
2630151 | Turnbull | Mar 1953 | A |
2702569 | Yelle | Feb 1955 | A |
2920663 | March | Jan 1960 | A |
3212541 | Burrows | Oct 1965 | A |
3241453 | Baldwin | Mar 1966 | A |
3454056 | Pahlck | Jul 1969 | A |
3543816 | Thomas | Dec 1970 | A |
3628579 | Roche | Dec 1971 | A |
3893372 | Strakeljahn | Jul 1975 | A |
3913447 | Roche | Oct 1975 | A |
3955607 | Roche | May 1976 | A |
4112987 | Pachnik | Sep 1978 | A |
4155383 | Welliver | May 1979 | A |
4273483 | Mendicino | Jun 1981 | A |
4281694 | Gorman | Aug 1981 | A |
4290464 | Marsan | Sep 1981 | A |
4299263 | Skinner | Nov 1981 | A |
4333288 | Coombs | Jun 1982 | A |
4335512 | Sheps | Jun 1982 | A |
4353672 | Smith | Oct 1982 | A |
4655653 | Hall | Apr 1987 | A |
4718468 | Cowman | Jan 1988 | A |
4735531 | Boerckel | Apr 1988 | A |
4742856 | Hehr | May 1988 | A |
4881857 | Tanaka | Nov 1989 | A |
4890657 | Shelhorse | Jan 1990 | A |
4914872 | Snyder et al. | Apr 1990 | A |
4964765 | Kishi | Oct 1990 | A |
4977938 | Greeson | Dec 1990 | A |
4988245 | Fukuda | Jan 1991 | A |
5004385 | Kishi | Apr 1991 | A |
5013195 | Strazar | May 1991 | A |
5013196 | Friegang | May 1991 | A |
5024257 | Lloyd | Jun 1991 | A |
5028179 | Grasset | Jul 1991 | A |
5044843 | Velepec | Sep 1991 | A |
5094279 | Dickey | Mar 1992 | A |
5123463 | Grisley | Jun 1992 | A |
5148730 | McCaw | Sep 1992 | A |
5197191 | Dunkman et al. | Mar 1993 | A |
5215134 | Gudeman | Jun 1993 | A |
5284406 | Mueller et al. | Feb 1994 | A |
5383503 | Johnson | Jan 1995 | A |
5423642 | Heck | Jun 1995 | A |
5451123 | Fertitta, Jr. | Sep 1995 | A |
5492160 | McCracken | Feb 1996 | A |
5772368 | Posh | Jun 1998 | A |
5778949 | Draves | Jul 1998 | A |
5823239 | Smith | Oct 1998 | A |
6070626 | Tully | Jun 2000 | A |
6374878 | Mastley | Apr 2002 | B1 |
7111655 | Hall | Sep 2006 | B1 |
7337812 | Williams | Mar 2008 | B2 |
8016005 | Weinstein | Sep 2011 | B1 |
8740520 | Jeon et al. | Jun 2014 | B2 |
9090027 | Sutton | Jul 2015 | B2 |
20020168241 | David | Nov 2002 | A1 |
20040253068 | Gerhardt | Dec 2004 | A1 |
20050236069 | O'Brien | Oct 2005 | A1 |
20050268897 | Harris | Dec 2005 | A1 |
20090188587 | Geisel | Jul 2009 | A1 |
20130167337 | Dupouy et al. | Jul 2013 | A1 |
20140283386 | Pirro | Sep 2014 | A1 |
20140363251 | Dieckilman | Dec 2014 | A1 |
20150034210 | Kieffer, Jr. | Feb 2015 | A1 |
20150300317 | Altmikus | Oct 2015 | A1 |
20160167141 | Dauner | Jun 2016 | A1 |
20160361832 | Brisson | Dec 2016 | A1 |
20180093334 | Lofstrom | Apr 2018 | A1 |
Number | Date | Country | |
---|---|---|---|
20180093334 A1 | Apr 2018 | US |