The present invention relates to a clamp assembly for a working member of a reciprocating tool and relates particularly, but not exclusively, to a clamp assembly for the blade of a reciprocating jigsaw.
Jigsaws are power tools which comprise a reciprocating saw blade for cutting a work piece of wood or other material. Most jigsaws comprise a plastic housing containing an electric motor. The rotary output of the motor is geared to a drive conversion mechanism which converts rotary motion of the motor output into reciprocating motion of an output shaft to cause reciprocating motion of a saw blade.
Jigsaws are usually designed to enable the blade to be removed from the output shaft. This serves two purposes. Firstly, due to the high frictional forces encountered when in use, jigsaw blades are subject to wear and tear and have limited lifetimes, so that there is a necessity to enable the blade to be easily replaced. Secondly, several different types of blade may be supplied with the jigsaw to enable it to be used to cut a variety of different types of workpiece, or cut the workpiece in a variety of ways.
European Patent Application EP0792713 describes a jigsaw blade clamp which comprises a channel formed in a jigsaw output shaft shaped to accommodate a jigsaw blade and a pin that is urged into contact with the blade by a spring, such that the pin forces the blade into the channel thereby holding it in place. This prior art clamp suffers from the drawback that if sufficient force is applied to the blade, it can still slip out of place and even be pulled away from the jigsaw.
Preferred embodiments of the present invention seek to overcome the above disadvantage of the prior art.
According to an aspect of the present invention, there is provided a clamp assembly for removably mounting a working member of a reciprocating tool to a reciprocating output shaft, the assembly comprising:
a body member adapted to be mounted to said output shaft;
at least one engaging member having at least one first engaging portion adapted to be located at least partially in front of a respective second engaging portion on said working member in the direction of reciprocation of the working member, wherein said engaging member is pivotable in use relative to said body member between a first position, in which said first engaging portion engages said second engaging portion to retain the working member in position on the output shaft, and a second position in which the working member is removable from the output shaft; and
first biasing means for urging said engaging member towards said first position;
wherein application of a force to said working member tending to remove the working member from the body member when at least one said engaging member is in a first position thereof causes movement of at least one said second engaging portion to be prevented by the corresponding said first engaging portion.
By providing a clamp assembly in which at least one first engaging portion of an engaging member is adapted to be located partially front of a respective second engaging portion on the working member (in the direction of reciprocation of the working member), this provides the advantage that the working member can be more effectively held in position on the tool than a clamp assembly using friction alone.
The assembly may comprise a plurality of said first engaging portions, wherein at least one said first engaging portion is capable of limited pivotal movement relative to at least one other said first engaging portion.
This provides the advantage of minimising the risk that only one side of an engaging member correctly holds the working member in position, for example as a result of manufacturing tolerances.
In a preferred embodiment, the assembly comprises a plurality of said engaging members, wherein at least one said engaging member is capable of limited pivotal movement relative to at least one other said engaging member about a common axis.
The assembly may comprise at least one first said engaging member having a respective protrusion, and at least one corresponding second said engaging member having a respective recess for receiving at least one respective said protrusion, wherein at least one said recess permits limited pivotal movement of the corresponding said protrusion therein such that the corresponding said first engaging member is pivotable about said common axis.
This provides the advantage that manufacturing tolerances can be accommodated by enabling a plurality of the engaging members to be pivotable about a common axis relative to each other, while enabling pivoting of a single engaging member by a user to cause pivoting of more than one engaging member.
In a preferred embodiment, at least one said engaging member further comprises at least one elongate protrusion adapted to enable the user to pivot said engaging means towards said second position.
This provides the advantage that it is made easier for the user to release the blade from the clamp by minimising the force which the user needs to apply to the engaging member because of leverage obtained by the elongate protrusion.
At least one said elongate protrusion may be formed on a corresponding said first engaging member.
Said first biasing means may comprise at least one torsional spring adapted to engage at least one said elongate protrusion and said body member.
In a preferred embodiment, at least one said first engaging portion comprises at least one respective cam surface for engaging the working member wherein application of a force to said working member so as to remove the working member from the output shaft urges at least one said cam surface further into engagement with said working member.
This provides the advantage that if the working member is pulled outwardly of the tool, the grip provided by the clamp on the working member is tightened.
The or each said engaging member may be adapted to be displaced from the first position thereof by movement of the working member towards the output shaft to enable mounting of the working member to the assembly by such movement thereof.
According to another aspect of the present invention, there is provided a reciprocating tool comprising:
a body;
a motor having a rotary shaft;
drive means for converting rotary movement of said rotary shaft to reciprocating movement of an output shaft; and
a clamp assembly as defined above.
In a preferred embodiment, the tool comprises a jigsaw.
The tool may further comprise at least one working member having at least one second engaging portion for engaging at least one corresponding said first engaging portion.
At least one said second engaging portion may comprise at least one respective slot.
In a preferred embodiment, said working member is a saw blade and at least one said second engaging portion is provided in an edge of the blade.
The tool may further comprise second biasing means for urging said working member out of engagement with said output shaft.
This provides the advantage of facilitating removal of the working member from the tool, as well as providing an indication whether the working member is correctly mounted to the tool.
Preferred embodiments of the present invention will now be described, by way of example only and not in any limitative sense, with reference to the accompanying drawings in which:
a is a front and side perspective view of a jigsaw drive shaft and blade clamp of a first embodiment of the present invention;
b is a rear and side perspective view of the jigsaw blade clamp and drive shaft of
c is a front perspective view of the jigsaw drive shaft and blade clamp of
a is a sideways perspective view of a body of the blade clamp of
b is a front view of the blade clamp body of
c is a side view of the blade clamp body of
d is a rear view of the blade clamp body of
a is a side perspective view of a first part of a cam body of a second embodiment of the invention;
b is a side view of the cam body of
c is a bottom view of the cam body of
d is a front view of the cam body of
a is a side perspective view of a second part of the cam body of the embodiment of
b is a side view of the cam body of
c is a bottom view of the cam body of
d is a front view of the cam body of
a is a side view of a first spring for use with the embodiment of
b is a front view of the spring of
a is a side view of a second spring for use with the embodiment of the
b is a front view of the spring of
Referring to
Referring now to
Referring now to
Referring to
The operation of the jigsaw blade clamp will now be described.
Referring to
When a blade is mounted in the hollow portion of the clamp body 12, as shown in
In order to effect the release of the blade 3 from the blade clamp 5, the cam body 16 is pivoted out of clamp body 12 by pressing on protrusion 18, such that the cam surfaces 17 move out of engagement with indentations 9 of the blade 3. Referring to
Referring now to
Referring to
Referring now to
The first and second cam body parts 130, 132 are adapted to be mounted on a pin 150 (
Referring to
The operation of the jigsaw blade clamp of
Referring to
As the peg 146 has a limited amount of travel in aperture 148, each cam body part 130, 132 is independently pivotable to a limited extent about the pin 150. However the user only has to move the first cam body part 130 in order to effect eventual movement of the second cam body part 132. Independent movement of the first and second cam body parts 130, 132 will therefore absorb any manufacturing tolerances in the cam surfaces themselves or the indentations of the blades.
It will be appreciated by persons skilled in the art that the above embodiments have been described by way of example only and not in any limitative sense, and various alterations and modifications are possible without departure from the scope of the invention as defined by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
0325077.6 | Oct 2003 | GB | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10975063 | Oct 2004 | US |
Child | 13016191 | US |