This application is a Continuation of, and claims priority under 35 U.S.C. § 120 to, International application number PCT/EP2005/051721, filed 19 Apr. 2005, and claims priority therethrough under 35 U.S.C. § 119 to European application number No 04101876.3, filed 30 Apr. 2004, the entireties of which are incorporated by reference herein.
1. Field of the Invention
The invention relates to a blade for a gas turbine and, in particular, to cooling for the shroud of the blade.
2. Brief Description of the Related Art
Shrouds for gas turbine blades serve for sealing and limiting the leakage flow in the gap region between the blade tips and the radially opposite stator or rotor. Such shrouds extend in the circumferential direction and, over a defined region, in the direction of the turbine axis, as far as possible so as to match the contour of the inner housing or of the rotor. For the purpose of improving the sealing, conventional shrouds in many instances also have one or more sealing ribs, also called fins, which run from a platform of the shroud, that is to say of an essentially flat portion of the shroud, along the radial direction.
For the purpose of prolonging their operating time in the gas turbine through which hot gas flows, the shrouds are cooled convectively, as disclosed, for example, in EP 1013884 and EP 1083299. These documents each describe a blade with a shroud which has a plurality of bores for a cooling air flow. The bores are connected to a cooling duct in the blade leaf and each lead to a lateral exit in the circumferential direction.
EP 1041247 discloses a gas turbine blade with inner radially cooling ducts which issue into a plenum 42 and 44. Bores 54, 56, 58 extend from there in the plane of the shroud, the shroud being cooled by means of film and convective cooling through the bores. In a variant, the bores extend from the plenum obliquely and in a slightly radial direction with respect to the radially outer surface of the shroud platform.
A shroud of a gas turbine blade is subjected to varying thermal load along the direction of flow of the hot gas and also, in various regions, to varying mechanical load. Consequently, the requirements for cooling and mechanical load-bearing capacity in various regions of the shroud are also different. This is taken into account, in the aforementioned gas turbine blades, by the matching of the bore diameters and other measures for changing the pressure differentials.
One aspect of the present invention includes providing a gas turbine blade with a cooled shroud, in which blade the different requirements, as regards cooling and mechanical load-bearing capacity in the various regions of the shroud are taken into account to an increased extent, in order to prolong the useful life and, as far as possible, reduce the cooling air consumption.
In an exemplary embodiment, the shroud of a gas turbine blade extends in the circumferential direction along the blade tip and in the radial direction with respect to the turbine rotor and is arranged opposite a stator housing. For efficient cooling corresponding to the thermal loads, the shroud is divided into regions which are subjected to different thermal load. According to the invention, the various regions are cooled by means of different cooling arrangements, each cooling arrangement allowing cooling with a different physical action adapted to the thermal load, such as, for example, film cooling, impingement cooling, convective cooling, or mixed cooling.
In a first version embodying principles of the present invention, the gas turbine blade has a first cooling arrangement for cooling a first region of the shroud by means of cooling air from a cooling system from inside the blade. This first region is the first region in the direction of the hot gas flow and is therefore subjected to the most thermal load. A second region downstream of the first region in the direction of the hot gas flow is subjected to lower thermal load in comparison with the first region. The second cooling arrangement is arranged at a stator arranged radially opposite the gas turbine blade and serves for cooling the second region of the shroud from outside the blade. The first and second cooling arrangements are different from one another in that the first cooling arrangement causes convective and film cooling and the second cooling arrangement causes impingement cooling. The cooling of the shroud has the effect of a cooling appropriate for the thermal load on the regions and of a correspondingly appropriate cooling air consumption.
In a preferred embodiment, the first region of the shroud of the gas turbine blade has, in particular, a fin which extends in a radial direction with respect to the gas turbine rotor and in its longitudinal direction runs in the circumferential direction and in which the first cooling arrangement is arranged. The fin has a plurality of bores which are flow-connected to a cooling duct of the blade leaf and have exits on the hot gas side of the shroud. A cooling air stream, during its flow through the bores, gives rise to a convective cooling of the fin. After its exit from the bores, it flows along the outer surface of the shroud and causes film cooling there.
The stator housing, which is arranged radially opposite the shroud, has a plurality of cooling ducts which are directed essentially perpendicularly to the platform of the shroud. They serve for cooling the second region of the shroud in the direction of flow of the hot gas. They are connected to the stator cooling system, with the result that cooling air branched off from the latter flows via the cooling ducts onto the platform of the shroud and causes impingement cooling there. The cooling air thereafter escapes in both axial directions, during which a blocking flow may occur in the opposite direction to the leakage flow. The second region of the shroud is limited in the axial direction, on both sides, by fins running radially.
In a further preferred version embodying principles of the present invention, the gas turbine blade has, in addition to the features of the first version, a further third region of the shroud in the direction of the hot gas flow, the third region being equipped with a third cooling arrangement. This cooling arrangement has a plurality of bores which are flow-connected to a cooling duct inside the blade leaf. The bores are directed in an at least partially radially outward direction at an angle to the radial and conduct a cooling air stream to the radially outer part of the shroud. Cooling air which flows through these bores gives rise to a convective cooling of this third region. In particular, the bores are oriented in the plane of the shroud platform at an angle with respect to the circumferential direction, in such a way that the cooling air is blown out of the bores essentially opposite to the direction of rotation of the blades.
In a particular version, the bores run parallel to one another in the end region.
In a further version, with regard to the gas turbine blade of the first version, a plurality of further cooling ducts are arranged in the stator located radially opposite the shroud and are directed essentially perpendicularly to a third region of the shroud in the direction of the hot gas flow. They serve for cooling this third region. The third region is limited in the axial direction and in the opposite direction to the hot gas flow by a fin. As in the first version, the cooling ducts are flow-connected to the cooling system of the stator, with the result that cooling air is directed out of the stator cooling system onto the end region of the shroud and causes impingement cooling there.
In the drawings:
A cooling duct 11, which is connected to the cooling system in the stator housing, is arranged, through the wall of the housing 4, opposite the second region B of the shroud 2. A cooling air stream, indicated by the arrow 12, flows from this cooling system through the cooling duct 11, and, by virtue of its orientation, is directed preferably perpendicularly to the shroud 2. Depending on the geometry of the turbine duct and of the shroud, the cooling duct 11 is also oriented at a different angle with respect to the shroud. The cooling air stream 12 thus gives rise to an impingement cooling of the middle region B of the shroud. The region B is limited in the axial direction and in the direction of the hot gas flow by the first fin 8 and a second fin 13. The cooling air stream 12 escapes from the limited region as a leakage flow, in that the cooling air stream flows away in both axial directions via the fin 8 and the fin 13. This may give rise, depending on the operating conditions, to a blocking flow counter to a hot gas leakage flow.
Normally, because of degradation effects, a mixed cooling of the shroud will in time occur.
Alternatively to this, in an advantageous embodiment, a special orifice or gap, allowing an exactly controlled outflow of the cooling air, is provided in the region of the second sealing fin 13.
According to a second exemplary version, in a further region C of the shroud, a plurality of bores are arranged which emanate from the cooling system 5 of the blade leaf and run to the radially outer surface of the shroud. A cooling air stream through these bores gives rise to a convective cooling of this region. They are illustrated in
In a variant of all the versions of the invention, the gas turbine blade is coated with a thermal barrier layer completely or in individual regions according to its use in the gas turbine.
List of reference symbols
1 Blade in a gas turbine
2 Shroud
3 Gas turbine rotor
4 Stator, housing of the gas turbine
5 Cooling system in the blade (leaf)
6 Cooling system in the stator
7 Hot gas flow
8 First fin
9 Transverse bore
10 Bores branching off from the bore 9 and running radially inward
11 Cooling air duct in the stator
12 Cooling air stream from the stator
13 Second fin
14 Blade root
15 Bores in the region C
16 Upper lip of the bores 15
17 Cooling air duct
18 Cooling air stream
20 Stopper
21 Duct
A First region of the shroud in the direction of flow of the hot gas
B Second region of the shroud in the direction of flow of the hot gas
C Third region of the shroud in the direction of flow of the hot gas
α Angle between the bores 15 and direction of rotation y
β Angle between the axis of the bores and the radial direction z
χ Angle between the exit plane of the bores 15 and the axis of the bores
s Diameter of the exit plane of the bores 15
While the invention has been described in detail with reference to exemplary embodiments thereof, it will be apparent to one skilled in the art that various changes can be made, and equivalents employed, without departing from the scope of the invention. The foregoing description of the preferred embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto, and their equivalents. The entirety of each of the aforementioned documents is incorporated by reference herein.
Number | Date | Country | Kind |
---|---|---|---|
04101876.3 | Apr 2004 | EP | regional |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP05/51721 | Apr 2005 | US |
Child | 11549767 | Oct 2006 | US |