The present invention relates to the field of gas turbine technology, in particular to a blade for a gas turbine.
Gas turbines with sequential combustion are known and have been proved to be successful in industrial operation.
Such a gas turbine, which has been known among experts as GT24/26, is disclosed for example in an article by Joos, F. et al., “Field Experience of the Sequential Combustion System for the ABB GT24/GT26 Gas Turbine Family”, IGTI/ASME 98-GT-220, 1998 Stockholm.
The compressed air flows into the premix burners, where the mixing with at least one fuel takes place, as explained above. This fuel/air mixture then flows into the first combustion chamber 14, into which this mixture is combusted, forming a stable flame front. The hot gas which is thus made available is partially expanded in the adjoining high-pressure turbine 15, performing work, and then flows into the second combustion chamber 17 where a further feed 16 of fuel takes place. As a result of the high temperatures which the hot gas, which is partially expanded in the high-pressure turbine 15, always has, a combustion, which is based on self-ignition, takes place in the second combustion chamber 17. The hot gas which is reheated in the second combustion chamber 17 is then expanded in a multistage low-pressure turbine 18.
The low-pressure turbine 18 comprises a plurality of rows, arranged in series in the flow direction, of rotor blades and stator blades, which are arranged in alternating sequence. For example, the stator blades of the third stator blade row in the flow direction are provided with the designation 20′ in
The stator blades in their interior are provided with a cooling passage which is guided back and forth mostly in a serpentine manner between the ends of the blade airfoil and through which flows a cooling medium, mostly cooling air. This also applies to all the thermally highly loaded rotor blades.
For producing such a blade, a casting process, in which a casting core is used for forming the cooling passage, is predominantly used. For production engineering reasons, the casting core projects from the blade at one or both ends and after completion of the casting process correspondingly leaves behind one or more core outlet openings which later have to be sealed off. A method for sealing off such openings is described for example in printed publication U.S. Pat. No. 6,837,417B2. With this method, the opening in the blade is sealed off by a sintered cap which neither on the inner side nor on the outer side aligns with the respective wall surface in a flush manner. This leads to uneven, stepped surfaces which impede the flow of the medium which is used for cooling and so impair the effectiveness of the cooling, even partially cancelling it out.
The present disclosure is directed to a blade for a gas turbine. The blade is produced in accordance with a casting process and includes a blade airfoil which extends in a radial direction between a blade tip and a shroud and in an interior of which extends a cooling passage, which bypasses the shroud and blade tip. A cooling medium flows through the cooling passage for cooling the blade. In end-face ends of the blade there are core outlet openings which arise from the use of a casting core and which connect the cooling passage to an outside space and are sealed off by a sealing element. The sealing element is formed and inserted into the core outlet openings so that it aligns with a wall surface of the cooling passage in a flush manner.
The present disclosure is also directed to a gas turbine including a blade which is produced in accordance with a casting process and includes a blade airfoil which extends in a radial direction between a blade tip and a shroud and in an interior of which extends a cooling passage, which bypasses the shroud and blade tip. A cooling medium flows through the cooling passage for cooling the blade. In end-face ends of the blade there are core outlet openings which arise from the use of a casting core and which connect the cooling passage to an outside space and are sealed off by a sealing element. The sealing element is formed and inserted into the core outlet openings so that it aligns with a wall surface of the cooling passage in a flush manner, with the blade being arranged in a turbine of the gas turbine.
The invention shall subsequently be explained in more detail based on exemplary embodiments in conjunction with the drawing. All elements which are not essential for the direct understanding of the invention have been omitted. Like elements are provided with the same designations in the different figures. The flow direction of the media is indicated by arrows. In the drawings:
It is an object of the invention to create a blade of the type referred to in the introduction which avoids the disadvantages of known blades and which provides an optimized, undisturbed flow of the cooling medium in the blade.
The object is achieved by the entirety of the features of the invention. In the invention, the sealing elements are formed and inserted into the core outlet openings so that they align with the wall surface of the cooling passage in a flush manner. As a result of this, negative influencing of the flow of the cooling medium by means of the sealing elements is reliably avoided.
In one development, the sealing elements are formed as prefabricated sealing plugs. These can be inserted into the core outlet openings in a simple manner and fixed quickly and reliably there. This takes place preferably by the sealing elements, or sealing plugs, being hard-soldered into the core outlet openings.
The sealing element or the sealing plug can be positioned especially simply if abutting surfaces, upon which lie the sealing elements or sealing plugs, are formed in the core outlet openings.
According to another development, the sealing elements or sealing plugs are inserted into the core outlet openings so that they align with the outer surfaces of the platforms in a flush manner. As a result of this, fluidic advantages also ensue in the outside space of the blade.
The blade according to the invention is advantageously used in a gas turbine.
The gas turbine in this case can be a gas turbine with sequential combustion, having a first combustion chamber with a downstream high-pressure turbine, and a second combustion chamber with a downstream low-pressure turbine, wherein the blades are arranged both in the low-pressure turbine and in the high-pressure turbine. In particular, the low-pressure turbine in such a gas turbine has a plurality of rows of stator blades and rotor blades in series in the flow direction.
In
The stator blade 20 is fastened on the turbine casing by hook-like fastening elements 24 and 25 which are formed on the upper side of the shroud 21, while blade tip 23 butts against the rotor with sealing effect.
In the interior of the blade airfoil 22, provision is made for a cooling passage (39 in
The core outlet openings 40, 41 are formed and sealed off by corresponding sealing plugs 32 or 36 according to
In the case of the round core outlet opening 40, which is provided in the shroud 21, an annular abutment surface 33 is created in the core outlet opening by a diameter step, the sealing plug 32 being seated on this by a corresponding shoulder (
A similar procedure is applied in the case of the four-sided core outlet opening 41 in the blade tip 23. In the core outlet opening 41, provision is made on opposite sides, at a specified depth, for abutting surfaces 37 on which is seated the sealing plug 36 which is inserted into the core outlet opening 41 and adapted in the edge contour (
By means of the invention, which in principle can be used in all cooled blades of turbines, the disturbing influence of the sealing elements upon the flow of the cooling medium is minimized. As a result, the walls of the blade are optimally cooled, which leads to an extension of the blade service life. A preferred use of the blade according to the invention is to be encountered in large stationary gas turbines, for example in gas turbines with sequential combustion, which have been known among experts under the designation GT24/26. In the case of the last-named gas turbines, the preferred use of such a blade can be in the low-pressure turbine. Such a blade can also be used in other gas turbine types.
Number | Date | Country | Kind |
---|---|---|---|
00470/08 | Mar 2008 | CH | national |
This application is a continuation of International Application No. PCT/EP2009/053116 filed Mar. 17, 2009, which claims priority to Swiss Patent Application No. 00470/08, filed Mar. 31, 2008, the entire contents of all of which are incorporated by reference as if fully set forth.
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2009/053116 | Mar 2009 | US |
Child | 12893276 | US |