This application is a U.S. national stage application of PCT/JP2008/073494 filed on Dec. 24, 2008, and claims priority to, and incorporates by reference, Japanese Patent Application No. 2007-337779 filed on Dec. 27, 2007.
The present invention relates to a blade member used, for example, in a razor, and an apparatus for working the edge of the blade member.
Conventionally, the edge of this type of blade member is worked with a razor strop to remove burrs. This reduces the sharpness of the edge and degrades the cutting quality. Also, the hardness and rigidity of the edge are reduced.
According to the technique disclosed in Patent Document 1, a cutting blade is subjected to ion implantation to improve the hardness. According to the technique disclosed in Patent Document 2, an edge is subjected to reactive-ion etching to increase the sharpness.
Accordingly, it is an objective of the present invention to provide a blade member having a superior edge by improving the processing techniques of ion beam treatment and plasma ion implantation, and a working apparatus capable of efficiently working such edges.
In accordance with a first aspect of the present invention, a blade member is provided in which edges of a group of blades are subjected to ion beam treatment using a plasma ion gun in a vacuum chamber, in which argon is used as a medium. The pressure of the argon gas is 0.1 to 1 Pa, a bias voltage applied to the blade group is 0.1 to 1000 V, and the processing time is 5 to 300 minutes. This increases the sharpness of the edge, so that the cutting quality is enhanced.
In accordance with a second aspect of the present invention, a blade member is provided, in which, in a vacuum chamber, edges of a group of blades, of which the edge angle is 10 to 35 degrees and the height of burr is 0.1 to 10 μm, are subjected to plasma ion implantation of nitrogen plasma using a plasma ion implantation gun, and thereafter, the edges are subjected to ion beam treatment using a plasma ion gun, in which argon is used as a medium.
Accordingly, the ion beam treatment is performed in the same vacuum chamber subsequent to the plasma ion implantation, thereby working the edge efficiently. This allows the rigidity to be increased while leaving a hardened layer on the edge. Also, the entire edge line of the edge 11 is uniformly finished, so that the cutting quality is enhanced. The plasma ion implantation and the subsequent ion beam treatment may be repeated.
In accordance with a third aspect of the present invention, a blade member is provided in which edges of a group of blades are subjected to ion beam treatment using a plasma ion gun in a vacuum chamber, in which argon is used as a medium. The ion beam treatment is performed to a depth of 0.1 to 1.5 μm from the pointed end of the edge and to a depth of 0.1 to 1.5 μm in the direction of the thickness of the edge. This increases the sharpness of the edge 11, so that the cutting quality is enhanced.
In accordance with a fourth aspect of the present invention, a blade member is provided in which, in a vacuum chamber, a plurality of blade groups, each of which is formed by laminating a plurality of blades in a horizontal direction and passing a skewer through the blades, are caused to rotate while orbiting relative to each other. The edges are subjected to ion beam treatment using a plasma ion gun, in which argon is used as a medium. In this case, each blade group spins while orbiting about the plasma ion gun. Thus, ion beam treatment is evenly performed on the entire blade. Therefore, the sharpness of the entire edge is averagely increased, so that the cutting quality is enhanced.
In accordance with a fifth aspect of the present invention, an edge working apparatus for a blade member is provided that includes, in a vacuum chamber, a rotating body and a plurality of plasma ion guns arranged in parallel. The rotating body causes a plurality of blade groups, each of which is formed by laminating a plurality of blades and passing a skewer through the blades, to rotate while orbiting. The edges of each blade group are subjected to ion beam treatment using the plasma ion guns, in which argon is used as a medium. In this case, each blade group spins while orbiting about the plasma ion gun. Thus, ion beam treatment is evenly performed on the entire blade group.
In accordance with a sixth aspect of the present invention, a blade member is provided in which edges of a group of blades are subjected to ion plasma implantation of nitrogen plasma using a plasma ion implantation gun in a vacuum chamber, in which the pressure of the nitrogen is 0.5 to 5 Pa, a bias voltage applied to the blade group is 0.1 to 1000 V, a filament current is 100 to 200 A, and the processing time is 10 to 1000 minutes. In this case, the hardness of the edge is increased so that the rigidity is enhanced.
In accordance with a seventh aspect of the present invention, a blade member is provided in which, in a vacuum chamber, edges of a group of blades, of which the edge angle is 10 to 35 degrees and the height of burr is 0.1 to 10 μm, are subjected to ion beam treatment using a plasma ion gun, in which argon is used as a medium, and thereafter, the edges are subjected to plasma ion implantation of nitrogen plasma using a plasma ion implantation gun. In this case, the edge is worked efficiently by sequentially performing the ion beam treatment and the plasma ion implantation in the same vacuum chamber, so that a sufficient hardened layer is formed on the entire edge to improve the rigidity. The ion beam treatment and the subsequent plasma ion implantation may be repeated.
In accordance with an eighth aspect of the present invention, a blade member is provided in which edges of a group of blades are subjected to plasma ion implantation of nitrogen plasma using a plasma ion implantation gun in a vacuum chamber. The plasma ion implantation is performed to a depth of 0.1 to 1.5 μm from the pointed end of the edge and to a depth of 0.1 to 1.5 μm in the direction of the thickness of the edge. In this case, the hardness of the edge is increased so that the rigidity is enhanced.
In accordance with a ninth aspect of the present invention, a blade member is provided in which, in a vacuum chamber, a plurality of blade groups, each of which is formed by laminating a plurality of blades in a horizontal direction and passing a skewer through the blades, are caused to rotate while orbiting relative to each other. The edges are subjected to plasma ion implantation of nitrogen plasma using a plasma ion implantation gun. In this case, each blade group spins while orbiting about the plasma ion implantation gun. Thus, plasma ion implantation is evenly performed on the entire blade group. Therefore, the hardness of the entire edge is averagely increased, so that the rigidity is enhanced.
In accordance with a tenth aspect of the present invention, an edge working apparatus for a blade member is provided that includes, in a vacuum chamber, a rotating body, a plasma ion gun, and a plasma ion implantation gun. The rotating body causes a plurality of blade groups, each of which is formed by laminating a plurality of blades and passing a skewer through the blades, to rotate while orbiting. The working apparatus subjects the edges of each blade group to ion beam treatment using the plasma ion guns, in which argon is used as a medium, and subjects the edges of each blade group to plasma ion implantation of nitrogen plasma using the plasma ion implantation gun. In this case, each blade group spins while orbiting about the plasma ion gun and the plasma ion implantation gun. Thus, ion beam treatment is evenly performed on the entire blade group. Also, the plasma ion implantation is evenly performed on the edges of each blade group. Further, the ion beam treatment and the plasma ion implantation are performed in the same vacuum chamber. Thus, these processes can be subsequently performed, so that the edge can be worked efficiently. For example, one of the ion beam treatment and the plasma ion implantation may be performed after the other. Also, the plasma ion implantation and the subsequent ion beam treatment may be repeated. Alternatively, the ion beam treatment and the subsequent plasma ion implantation may be repeated.
a) and 3(b) are explanatory diagrams showing the principles of plasma ion implantation;
a), 4(b), 4(c), and 4(d) are explanatory diagrams each schematically showing a working procedure of the edge of a blade;
One embodiment of the present invention will now be described with reference to the drawings.
When the orbit base 6 and the spinning bases 7 rotate, each blade group 9 spins and orbits. In this state, each blade group 9 is subjected to ion beam treatment and plasma ion implantation in accordance with working procedures shown in, for example,
A plurality of blades 10 (10A) are coupled along the longitudinal direction to form a belt-like blade material in a first working procedure shown in
In a second working procedure shown in
In a third working procedure shown in
In a fourth working procedure shown in
In the edge 11 that is worked though the working procedure of
As shown in
a) and 3(b) illustrate the principles of the plasma ion implantation. When a current is applied to a tungsten filament W while nitrogen gas is being injected into the vacuum chamber 2, the nitrogen gas enters a plasma state. In this state, negative bias is applied to the blade to cause nitrogen plasma (N+) to hit and be implanted into the edge. This generates Fe4N, thereby hardening the edge. In the plasma ion implantation, the filament current is set to 100 to 200 A, the discharge current is set to 100 to 300 A, the bias voltage to the blade groups 9 is set to 0.1 to 1000 V, the nitrogen pressure is 0.5 to 5 Pa, and the processing time is set to 10 to 1000 minutes. The discharge current refers to a current applied between the ion gun and the blade group to cause nitrogen plasma (N+) to hit and be implanted into the edge.
The plasma ion implantation is performed over a distance of 0.1 to 3 mm along the two edge surfaces 11b in the entire length of the edge 11, to a depth of 0.1 to 1.5 μm from the pointed end 11a of the edge 11, and to a depth of 0.1 to 1.5 μm along the thickness of the edge 11 as shown in
In the edge 11, which has been worked through any of the procedure of
That is, the ideal shape of the edge 11 is achieved when, at each position of the distance L from the pointed end 11a of 0.5 μm, 1 μm, 2 μm, 4 μm, 10 μm, 20 μm, 30 μm, 50 μm, the thickness between the edge surfaces 11b of the blade 10 is between the maximum thickness Tmax (0.5 μm, 0.85 μm, 1.4 μm, 2.5 μm, 4.5 μm, 7.5 μm, 11.0 μm, 16.5 μm) and the minimum thickness Tmin (0.4 μm, 0.65 μm, 1.1 μm, 2.1 μm, 4.0 μm, 6.5 μm, 9.0 μm, 14.0 μm).
Up to 4 μm of the distance L from the pointed end 11a, the edge 11 is relatively thick and the durability is increased. In a region where the distance L from the pointed end 11a is 4 μm or greater, the edge 11 is relatively thin, so that the cut resistance is reduced.
The edge 11 is subjected to film forming process to form a film of DLC (Diamond Like Carbon) or TiCrAlN to improve the strength of the edge 11. Also, the pointed end 11a of the edge 11 is rounded with a radius of curvature of 20 to 50 nm, thereby preventing the edge 11 from biting into skin. The edge 11 is also coated with fluorocarbon resin.
In the felt cutting test shown in
In the organoleptic test shown in Table 2, the blade 10 of the present invention, which had been subjected to the above described additional treatment, and a prior art blade that had been subjected to the same additional treatment after being stropped, were tested for shaving feel five times by thirty triers under the same conditions. Each time, the cutting quality was evaluated on a scale of one to five, and the average of the evaluation by the thirty triers was calculated. As a result, the points of the blade 10 of the present invention were higher than those of the conventional blade, and the cutting quality of the blade 10 of the present invention were improved.
Number | Date | Country | Kind |
---|---|---|---|
2007-337779 | Dec 2007 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2008/073494 | 12/24/2008 | WO | 00 | 5/13/2010 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/084552 | 7/9/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3911579 | Lane et al. | Oct 1975 | A |
5032243 | Bache et al. | Jul 1991 | A |
20040099120 | Yamada et al. | May 2004 | A1 |
20060201001 | Teeuw et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
1 380 583 | Jan 1975 | GB |
B2-54-28379 | Sep 1979 | JP |
A-01-109643 | Apr 1989 | JP |
A-03-171630 | Jul 1991 | JP |
4321223 | Nov 1992 | JP |
B2-2779453 | May 1998 | JP |
A-11-191208 | Jul 1999 | JP |
A-2007-61212 | Mar 2007 | JP |
A-2007-307673 | Nov 2007 | JP |
WO 9003455 | Apr 1990 | WO |
WO 2007116522 | Oct 2007 | WO |
Entry |
---|
International Preliminary Report on Patentability mailed on Aug. 10, 2010 for the corresponding International patent application No. PCT/JP2008/073494 (English translation enclosed). |
International Search Report mailed on Mar. 17, 2009 for the corresponding International patent application No. PCT/JP2008/073494 (English translation enclosed). |
Number | Date | Country | |
---|---|---|---|
20100288097 A1 | Nov 2010 | US |