The invention relates to gas turbine engines, and more particularly to blade outer air seals (BOAS) for gas turbine engines.
A gas turbine engine ignites compressed air and fuel to create a flow of hot combustion gases to drive multiple stages of turbine blades. The turbine blades extract energy from the flow of hot combustion gases to drive a rotor. The turbine rotor drives a fan to provide thrust and drives a compressor to provide a flow of compressed air. Vanes interspersed between the multiple stages of turbine blades align the flow of hot combustion gases for an efficient attack angle on the turbine blades.
The BOAS as well as turbine vanes are exposed to high-temperature combustion gases and must be cooled to extend their useful lives. Cooling air is typically taken from the flow of compressed air. Therefore, some of the energy extracted from the flow of combustion gases must be expended to provide the compressed air used to cool the BOAS as well as the turbine vanes. Energy expended on compressing air used for cooling the BOAS and turbine vanes is not available to produce thrust. Improvements in the efficient use of compressed air for cooling the BOAS and turbine vanes can improve the overall efficiency of the turbine engine.
A blade outer air seal for a gas turbine engine includes a first wall disposed radially inward from a casing of the gas turbine engine and a second wall disposed radially inward from the casing and adjacent to the first wall. The first wall at least partially defines a first plenum between the casing and the first wall. The second wall at least partially defines a second plenum. The first wall includes a forward hook and an aft hook adapted to mount the blade outer air seal to the casing. The first wall further includes a plurality of cored passages and a plurality of apertures along a trailing edge of the blade outer air seal. The cored passages communicate with the first plenum and at least one of the apertures to form a flow path therebetween, and each aperture communicates with the second plenum. Furthermore, each cored passage extends radially and axially through at least a portion of the first wall and is enclosed by the first wall for a substantial length of the cored passage.
A method of cooling a blade outer air seal includes supplying a cooling medium to a first plenum disposed between a blade outer air seal and an engine casing and directing the cooling medium through one or more cored passages within the blade outer air seal to cool the blade outer air seal. The method further includes directing the cooling medium from the one or more cored passages to a stator vane and directing the cooling medium to a second plenum that is at least partially defined by an outer platform of the stator vane.
A gas turbine engine includes an engine casing and a turbine section. The turbine section includes a rotor blade disposed radially inward of the engine casing with respect to a centerline axis of the gas turbine engine, a blade outer air seal, and a stator vane disposed axially aft of the rotor blade. The blade outer air seal has a wall disposed radially inward from the engine casing that at least partially defines a first plenum between the engine casing and the wall. The wall includes a forward hook, an aft hook, a cored passage, and an aperture. The forward and aft hooks are adapted to mount the blade outer air seal to the engine casing. The cored passages extend radially and axially through at least a portion of the wall such that the cored passage is enclosed by the wall for a substantial length thereof. The aperture is disposed along a trailing edge of the blade outer air seal such that the cored passage communicates with the first plenum and the aperture to form a flow path therebetween. The stator vane includes an outer platform disposed radially inward from the engine casing and adjacent to the wall to at least partially define a second plenum such that the aperture communicates with the second plenum to allow the flow path to communicate with the stator vane.
In other embodiments BOAS, turbine section and gas turbine engine can include one or more of the following components or features. In one embodiment, the cored passage includes a crossover passage that communicates through one or more inlets at an outer diameter surface of an in-line portion of the cored passage. The inlet of the one or more crossover passages is located where the coring minimizes impact to life capability, specifically low cycle fatigue. The one or more crossover passages communicate with a plenum which extends laterally through the aft hook, and wherein the plenum communicates with the one or more apertures disposed along the trailing edge of the aft hook.
In one embodiment, the cored passage extends substantially an entire length of the wall from adjacent the forward hook to the aft hook. The cored passage has at least one of a convective zone and an impingement zone. The impingement zone includes at least one of a plurality of radially extending passages through the wall and a cover plate with a plurality of radially extending holes therethrough. The cored passage has a convective zone that has at least one of an augmentation surface and a flow turbulator feature. The flow turbulator feature comprises a sinuously curved section of the cored passage.
In one embodiment, the cored passage communicates with a cored cavity within the wall between the forward hook and the aft hook. An impingement zone or augmentation surface is disposed within the cored cavity.
In one embodiment a stator vane is disposed axially aft of the rotor blade and one or more conformal seals are disposed between the trailing edge of the blade outer air seal and the stator vane. The one or more apertures that communicate with the cored passage are disposed radially outward of the conformal seals with respect to the centerline axis of the gas turbine engine.
The present invention provides a BOAS design with higher convective efficiency. More particularly, the various embodiments of the BOAS described herein utilize cored cooling air flow passages to better control cooling air flow and improve the heat transfer coefficient for the BOAS, thereby improving the operational longevity of the BOAS. Additionally, the cored passages of the BOAS are adapted to feed cooling air to a stator vane for reuse to allow the vane to meet cooling requirements. Thus, the cored passages decrease the use of less efficient higher pressure cooling air and improve the efficiency of the gas turbine engine. By having a geometry capable of passing cooling air to the stator vanes around various other components of the gas turbine engine, the cored passages allow for components such as a conformal seal (w-seal) to be disposed adjacent the BOAS. Utilizing a conformal rather than a chordal seal allows for further improvements in gas turbine engine efficiency.
As illustrated in
In operation, air flow F enters compressor 14 through fan 12. Air flow F is compressed by the rotation of compressor 14 driven by high-pressure rotor 20. The compressed air from compressor 14 is divided, with a portion going to combustor 16, and a portion employed for cooling components exposed to high-temperature combustion gases, such as BOAS and stator vanes, as described below. Compressed air and fuel are mixed and ignited in combustor 16 to produce high-temperature, high-pressure combustion gases Fp. Combustion gases Fp exit combustor 16 into turbine section 18. Stator stages 28 properly align the flow of combustion gases Fp for an efficient attack angle on subsequent rotor stages 26. The flow of combustion gases Fp past rotor stages 26 drives rotation of both high-pressure rotor 20 and low-pressure rotor 22. High-pressure rotor 20 drives a high-pressure portion of compressor 14, as noted above, and low-pressure rotor 22 drives fan 12 to produce thrust Fs from gas turbine engine 10. Although embodiments of the present invention are illustrated for a turbofan gas turbine engine for aviation use, it is understood that the present invention applies to other aviation gas turbine engines and to industrial gas turbine engines as well.
Rotor blade 26A comprises a single blade in rotor stage 26 disposed downstream of combustor 16 (
Stator vane 28A is disposed axially rearward of BOAS 30 and comprises a portion of stator stage 28. Like rotor stage 26, stator stage 28 extends in a circumferential direction about engine center line CL and has a plurality of stator vanes 28A. During operation, combustion gases Fp pass between adjacent stator vanes 28A. Although not shown in
BOAS 30 comprises an arcuate segment with an ID portion of wall 32 forming the OD of the engine flowpath through which combustion gases Fp pass. As will be discussed subsequently, cored passages 42 extend through at least a portion of wall 32 radially outward of the engine flowpath. BOAS 30 is mounted to engine case 24 by forward hook 44 and aft hook 46. In the embodiment shown, wall 32 includes forward and aft cored cavities 48A and 48B. Aft cavity 48B communicates with cored passage 42, which extends aftward through wall 32 and aft hook 46 to adjacent conformal seal 38. Conformal seal 38 (w-seal) is disposed between BOAS 30 and OD vane platform 40.
First plenum 34 is a cooling air source radially outward from BOAS 30 and bounded in part by engine casing 24. Cooling air is supplied to first plenum 34 from a high-pressure stage of compressor 14 (
BOAS 30 is cast via an investment casting process. In an exemplary casting process, a ceramic casting core is used to form cored passages 42. The ceramic casting core has a geometry which shapes cored passages 42. The ceramic casting core is placed in a die. Wax is molded in the die over the core to form a desired pattern. The pattern is shelled (e.g., a stuccoing process to form a ceramic shell). The wax is removed from the shell. Metal alloy is cast in the shell over the ceramic casting core. The shell and ceramic casting core are destructively removed. After ceramic casting core removal, the cored passages 42 are left in the resulting raw BOAS casting. Cored passages 42 can have complex and varied geometry compared to prior art drilled passages. Varied geometry allows cored passages 42 to feed cooling airflow around other engine components such as conformal seal 38 disposed between the BOAS 30 and stator vane 28A. Utilizing a conformal rather than a chordal seal allows for further improvements in gas turbine engine efficiency. Additionally, cored passages 42 offer better capability to control cooling air flow and improve the heat transfer coefficient for BOAS 30, improving the longevity of BOAS 30. In other embodiments, cored passages 42 can be formed using other known methods including the use of refractory metal cores. Refractory metal cores can be used to eliminate the use of ceramic from the manufacturing process in favor of select metal alloys.
In operation, as the flow of combustion gases Fp passes through rotor blades 26A between a blade platform (not shown) and BOAS 30 the flow of combustion gases Fp impinges upon rotor blade 26A causing rotor stage 26 to rotate about engine center line CL. BOAS 30 is mounted just radially outward from rotor blade 26A tip and provides a seal against combustion gases Fp radially bypassing rotor blade 26A. The flow of combustion gases Fp exits rotor stage 26 and enters stator vane stage 28, where it is channeled between vane ID platform (not shown) and vane OD platform 40. Within stator stage 28, the flow of combustion gases impinges upon vane 28A and is aligned for a subsequent rotor stage (not shown).
In this embodiment of the present invention, cooling air flow F passes from first plenum 34 through BOAS 30. Cooling air flow F provides desired cooling in order to increase the operational life of BOAS 30. Cored passages 42 allow cooling air flow F to pass through BOAS 30 and direct cooling air flow F around conformal seal 38. Eventually, cooling air flow F can pass to second plenum 36 where it is mixed and/or cooling air flow F can pass directly to separate flow circuits that extend through stator vane 28A.
Cavities 48A and 48B are formed in wall 32 and are separated by laterally extending rib 50. As shown in
Aft cavity 48B communicates with cored passages 42. Cored passages 42 extend from aft cavity 48B along wall 32 and through aft hook 46 to trailing edge of BOAS 30. More particularly, each cored passage 42 has in-line portion 54 that extends generally axially rearward from aft cavity 48B through wall 32. In-line portion 54 terminates at trailing edge face 56.
Outer diameter surface 55 of in-line portion 54 is the location of one or more inlets to each crossover passage 58. Thus, crossover passages 58 do not extend from trailing edge face 56. Crossover passages 58 extend through aft hook 46 to plenum 60. Plenum 60 extends laterally through aft hook 46 and communicates with several crossover passages 58 in one embodiment. Plenum 60 has an outlet to the trailing edge of BOAS 30 through apertures 62.
In operation, cooling air flow enters forward and aft cored cavities 48A and 48B and can pass through an impingement zone (not shown in
Cooling air flow passes through inlet(s) into crossover passages 58. Crossover passages 58 extend radially as well as axially through aft hook 46 to allow cooling air flow to be transported around conformal seal 38 (
From plenum 60 cooling air flow is discharged from the trailing edge of BOAS 30 through one or more apertures 62. Apertures 62 can be formed by a coring process or by traditional forms of machining.
Cover plates 64 (also known as an impingement plate) can be comprised of separate plates that are partially set on rib 50 or one single plate that is disposed over forward and aft cavities 48A and 48B to create impingement plenums of cavities 48A and 48B. A plurality of small holes 66 pass through cover plate 64. As is known in the art, impingement plates such as cover plate 64 operate to meter the flow of cooling air to cavities 48A and 48B and cored passages 42 (
In the embodiment shown in
In the embodiment described, outer diameter portion 68B adjacent forward hook 44A is configured with impingement zone 72A comprised of a plurality of cored radially extending holes 74A. Impingement zone 72A can be provided with augmentation features in other embodiments. From impingement zone 72A cored passages 42A travel through convection zone 76A to in-line portion 54A.
Cored passages 42A allow for flow turbulator features 78A such as sinuously curved lateral walls as shown in
Although the embodiment of
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.
This application is a continuation of U.S. Pat. No. 9,103,225, entitled “BLADE OUTER AIR SEAL WITH CORED PASSAGES”, filed Jun. 4, 2012.
Number | Name | Date | Kind |
---|---|---|---|
4392656 | Tirole et al. | Jul 1983 | A |
4551064 | Pask | Nov 1985 | A |
4573865 | Hsia | Mar 1986 | A |
4642024 | Weidner | Feb 1987 | A |
4752184 | Liang | Jun 1988 | A |
5423659 | Thompson | Jun 1995 | A |
5498126 | Pighetti | Mar 1996 | A |
5993150 | Liotta et al. | Nov 1999 | A |
6126389 | Burdgick | Oct 2000 | A |
6779597 | DeMarche | Aug 2004 | B2 |
6899518 | Lucas et al. | May 2005 | B2 |
7334985 | Lutjen | Feb 2008 | B2 |
7650926 | Tholen | Jan 2010 | B2 |
7665953 | Lee | Feb 2010 | B2 |
7686068 | Tholen et al. | Mar 2010 | B2 |
7704039 | Liang | Apr 2010 | B1 |
8128344 | McGovern | Mar 2012 | B2 |
8974174 | Khanin | Mar 2015 | B2 |
9103225 | Lutjen | Aug 2015 | B2 |
20030035722 | Barrett | Feb 2003 | A1 |
20060140753 | Romanov et al. | Jun 2006 | A1 |
20090123266 | Thibodeau et al. | May 2009 | A1 |
20110044802 | Di Paola et al. | Feb 2011 | A1 |
20110236188 | Knapp et al. | Sep 2011 | A1 |
20120057968 | Lee | Mar 2012 | A1 |
20140286751 | Brunelli | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
0694677 | Jan 1996 | EP |
0709550 | May 1996 | EP |
1176285 | Jan 2002 | EP |
1676981 | Jul 2006 | EP |
1905951 | Apr 2008 | EP |
2954401 | Jun 2011 | FR |
9412775 | Jun 1994 | WO |
Entry |
---|
The International Search Report dated Mar. 19, 2014 for International Application No. PCT/US2013/044032. |
European Examination Report for EP Application No. 13829503.5, dated Jul. 31, 2018, 6 pages. |
Number | Date | Country | |
---|---|---|---|
20150300195 A1 | Oct 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13487360 | Jun 2012 | US |
Child | 14789232 | US |