The invention relates to gas turbine engines, and more particularly to blade outer air seals (BOAS) for gas turbine engines.
Gas turbine engines operate according to a continuous-flow, Brayton cycle. A compressor section pressurizes an ambient air stream, fuel is added and the mixture is burned in a central combustor section. The combustion products expand through a turbine section where bladed rotors convert thermal energy from the combustion products into mechanical energy for rotating one or more centrally mounted shafts. The shafts, in turn, drive the forward compressor section, thus continuing the cycle. Gas turbine engines are compact and powerful power plants, making them suitable for powering aircraft, heavy equipment, ships and electrical power generators. In power generating applications, the combustion products can also drive a separate power turbine attached to an electrical generator.
The BOAS as well as turbine vanes are exposed to high-temperature combustion gases and must be cooled to extend their useful lives. Cooling air is typically taken from the flow of compressed air. Therefore, some of the energy that could be extracted from the flow of combustion gases must instead be expended to provide the compressed air used to cool the BOAS as well as the turbine vanes. Energy expended on compressing air used for cooling the BOAS and turbine vanes is not available to produce power. Improvements in the efficient use of compressed air for cooling the BOAS and turbine vanes and/or materials that can better withstand the turbine operating environment can improve the total efficiency of the turbine engine and extend the operational life of the BOAS.
A blade outer air seal for a gas turbine engine includes a first side surface, a second side surface, and a wall. The wall extends between the first side surface and the second side surface and has one or more holes formed therein. The holes are spaced from the first side surface and/or the second side surface and have areas between about 0.005% and 0.450% of a surface area of the blade outer air seal.
A turbine section of a gas turbine engine includes an engine case, a support connected to the engine case, and a blade outer air seal. The blade outer air seal is mounted to the support and has a wall with a bond coat and a thermal barrier coating. Both the bond coat and the thermal barrier coating have a radial thickness between 3% and 10% of the total radial thickness of the wall.
A blade outer air seal for a gas turbine engine includes a first side surface, a second side surface, a wall, and one or more forward hooks. The one or more forward hooks extend from the wall and at least one of the hooks has a slot therein that is offset relative to an axis of symmetry of the blade outer air seal.
The present invention provides a BOAS design with higher convective efficiency and with improved durability due to improved corrosion and oxidation resistance. More particularly, the BOAS described herein utilizes optimally sized holes in an outer diameter surface of a wall and optimally sized passages within the wall to better control cooling air flow through the BOAS and thereby improve convective efficiency of the BOAS. These features improve the operational longevity of the BOAS. Additionally, the BOAS is adapted with features such as a non-symmetric slot and an angled hook wall that extends radially and axially to aid in assembly of the BOAS within a gas turbine engine.
An exemplary industrial gas turbine engine 10 is circumferentially disposed about a central, longitudinal axis or axial engine centerline axis 12 as illustrated in
As is well known in the art of gas turbines, incoming ambient air 30 becomes pressurized air 32 in the compressors 16 and 18. Fuel mixes with the pressurized air 32 in the combustor section 20, where it is burned. Once burned, combustion gases 34 expand through turbine sections 22, 24 and power turbine 26. Turbine sections 22 and 24 drive high and low rotor shafts 36 and 38 respectively, which rotate in response to the combustion products and thus the attached compressor sections 18, 16. Free turbine section 26 may, for example, drive an electrical generator, pump, or gearbox (not shown).
It is understood that
BOAS 40 comprises an arcuate shroud segment with an inner diameter wall forming the outer diameter of the engine flow path through which combustion gases 34 pass. As will be discussed subsequently, passages (not numbered) extend through at least a portion of wall of BOAS 40 to provide for cooling of BOAS 40 during operation. BOAS 40 is mounted within engine case 42 by forward and aft hooks, which engage BOAS support 48 and vane platform 43B, respectively. BOAS support 48 and vane platforms 43A and 43B are in turn connected to engine case 42. Band segment 50 is positioned radially outward of BOAS 40 and extends between BOAS support 48 and vane platform 43B. Conformal seals such as w-seals are disposed between vane platform 43B, BOAS support 48, and BOAS 40.
Rotor blade 46 comprises a single blade in a rotor stage disposed downstream of combustor section 20 (
Stator vanes 44A and 44B are disposed axially forward and rearward of BOAS 40, respectively. Like the rotor stage, the stator stages (of which vanes 44A and 44B are a part) extend in a circumferential direction about engine center line axis 12, and each stage has a plurality of stator vanes. Vanes 44A and 44B include outer diameter platforms 43A and 43B, respectively. Platforms 43A and 43B include features that facilitate the mounting stator vanes 44A and 44B to engine case 42.
In operation, the flow of combustion gases 34 impinges upon vanes 44A and 44B and is aligned for a subsequent rotor stage. As the flow of combustion gases 34 passes through turbine blades 46 between a blade platform (not shown) and BOAS 40 the flow of combustion gases 40 impinges upon rotor blade 46 causing the rotor stage to rotate about engine center line axis 12 (
Engine case 42 and other components including vane platforms 43A and 43B form plenums that can be used to communicate cooling air A to various components including BOAS 40, and in some embodiments, vanes 44A and 44B. Generally, cooling air A is supplied to plenums from a source such as high-pressure stage 18 and/or intermediate pressure stage of compressor (
Wall 51 of BOAS 40 has outer diameter surface 52, which extends between first side surface 56 and second side surface 58 and between forward hooks 64 and aft hooks 65. Wall 51 has a total radial thickness T between outer diameter surface 52 and inner diameter surface 54. Thickness T of wall 51 can vary from embodiment to embodiment, and can include a bond coat and/or a thermal barrier coating.
Inner diameter surface 54 is disposed on an opposing side of wall 51 from outer diameter surface 52. Inner diameter surface 54 extends between first side surface 56 and second side surface 58 and between forward surface 60 and aft surface 62. When BOAS 40 is installed in gas turbine engine 10 (
First and second side surfaces 56 and 58 are disposed to either lateral side of BOAS 40. First and second side surfaces 56 and 58 intersect with forward surface 60. Forward surface 60 is disposed axially forward (with respect to direction of flow of the combustion gases 34 through engine flow path) of forward hooks 64.
First and second side surfaces 56 and 58 also intersect with aft surface 62, which extends radially inward of aft hook 65. Aft hook 65 extends from wall 51 and is adapted to be received in a recess in vane platform 43B (
Holes 68A and 68B (other holes not shown) are formed in wall 51 and extend through outer diameter surface 52 adjacent second side surfaces 58. Holes 68A and 68B communicate with passages (
In the embodiment shown in
Angled wall 74 extends radially and axially from outer radial hook surface 75 to connect to outer diameter surface 52 of wall 51. Angled wall 74 provides for ease of identification of BOAS 40 during assembly and disassembly processes.
As illustrated in
As shown in
Thermal barrier coating 78 can be applied to bond coat 76 to form inner radial surface 52. In one embodiment, thermal barrier coating comprises a ceramic layer that simultaneously provides thermal insulation and abradability and has a thickness H3 between about 3% and 10% of the total radial thickness T of wall 51. The thermal bearing coating 78 can be applied using plasma deposition or other known methods.
BOAS 40 can be constructed of metallic material such as a nickel base alloy that offers high temperature strength and hot corrosion resistance. In one embodiment, BOAS 40 is formed of a single crystal alloy that is cast and directionally solidified. The alloy can additionally be heat treated at various temperature ranges for varying durations as desired.
The present invention provides a BOAS design with higher convective efficiency and with improved durability due to improved corrosion and oxidation resistance. More particularly, the BOAS described herein utilizes optimally sized holes in an outer diameter surface of a wall and optimally sized passages within the wall to better control cooling air flow through the BOAS and thereby improve convective efficiency of the BOAS. These features improve the operational longevity of the BOAS. Additionally, the BOAS is adapted with features such as a non-symmetric slot and an angled hook wall that extends radially and axially to aid in assembly of the BOAS within a gas turbine engine.
The following are non-exclusive descriptions of possible embodiments of the present invention.
A blade outer air seal for a gas turbine engine includes a first side surface, a second side surface, and a wall. The wall extends between the first side surface and the second side surface and has one or more holes formed therein. The holes are spaced from the first side surface and/or the second side surface and have areas between about 0.005% and 0.450% of a surface area of the blade outer air seal.
The blade outer air seal of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components.
The one or more holes have areas between about 0.02% and 0.30% of a surface area of the blade outer air seal.
The one or more holes comprise six holes with three holes positioned adjacent the first side surface and three holes positioned adjacent the second side surface.
Internal passages extend through the wall from the first side surface to the second side surface, and wherein the one or more holes communicate with the internal passages.
The six holes comprise one hole for each of the internal passages.
Each of the internal passages has a radial height between 30% to 40% of an total radial thickness the wall.
The internal passages together have an axial length that comprises between 75% and 85% of the axial length of the wall.
One or more forward hooks extend from the wall, and at least one of the forward hooks has a slot therein that is offset relative to an axis of symmetry of the blade outer air seal.
At least one of the forward hooks has an angled wall that extends from an outer radial surface of the at least one of the forward hooks to the wall.
The wall includes a bond coat, wherein the bond coat has a radial thickness between 3% and 10% of the total radial thickness of the wall.
The wall has a thermal barrier coating applied to an inner radial surface thereof, wherein the thermal barrier coating has a radial thickness between 3% and 10% of the total radial thickness of the wall.
A blade outer air seal for a gas turbine engine includes a first side surface, a second side surface, and a wall. The wall extends between the first side surface and the second side surface and has a bond coat and a thermal barrier coating. Both the bond coat and the thermal barrier coating have a radial thickness between 3% and 10% of the total radial thickness of the wall.
The blade outer air seal of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components.
One or more holes are formed in the wall and are spaced from at least one of the first side surface or second side surface, and the one or more holes have areas between about 0.005% and 0.450% of a surface area of the blade outer air seal;
One or more holes are formed in the wall and are spaced from at least one of the first side surface or second side surface, and the one or more holes have areas between about 0.020% and 0.30% of a surface area of the blade outer air seal;
The one or more holes comprise six holes with three holes positioned adjacent the first side surface and three holes positioned adjacent the second side surface.
Internal passages that extend through the wall from the first side surface to the second side surface, and the one or more holes communicate with the internal passages.
Each of the internal passages has a radial height between 30% to 40% of an total radial thickness the wall.
The internal passages together have an axial length that comprises between 75% and 85% of the axial length of the wall.
One or more forward hooks extend from the wall, wherein at least one of the forward hooks has a slot therein that is offset relative to an axis of symmetry of the blade outer air seal; and
At least one of the forward hooks has an angled wall extends from an outer radial surface of the at least one of the forward hooks to the wall.
A blade outer air seal for a gas turbine engine includes a first side surface, a second side surface, a wall, and one or more forward hooks. The one or more forward hooks extend from the wall and at least one of the hooks has a slot therein that is offset relative to an axis of symmetry of the blade outer air seal.
The blade outer air seal of the preceding paragraph can optionally include, additionally and/or alternatively, any one or more of the following features, configurations and/or additional components.
At least one of the forward hooks has an angled wall that extends from an outer radial surface of the at least one of the forward hooks to the wall.
While the invention has been described with reference to an exemplary embodiment(s), it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment(s) disclosed, but that the invention will include all embodiments falling within the scope of the appended claims.