The invention relates to gas turbine engines. More particularly, the invention relates to casting of cooled shrouds or blade outer air seals (BOAS).
BOAS segments may be internally cooled by bleed air. For example, cooling air may be fed into a plenum at the outboard (OD) side of the BOAS. The cooling air may pass through passageways in the seal body and exit outlet ports in the ID side of the body (e.g. to film cool the ID face). Air may also exit along the circumferential ends (matefaces) of the BOAS so as to be vented into the adjacent inter-segment region (e.g., to help cool feather seal segments sealing the adjacent BOAS segments).
The BOAS segments may be cast via an investment casting process. In an exemplary casting process, wax may be molded in a die to form a pattern. The pattern may be shelled (e.g., a stuccoing process to form a ceramic shell). The wax may be removed from the shell. Metal may be cast in the shell. The shell may be destructively removed. After shell removal, the passageways may be drilled. Alternatively, some or all of the passageways may be cast using a casting core.
One aspect of the invention involves a blade outer air seal (BOAS). The BOAS has a body having an inner (ID) face and an outer (OD) face, first and second circumferential ends, and fore and aft longitudinal ends. The BOAS has one or more mounting hooks extending from the body. The OD face comprises a plurality of transversely elongate protuberances. The protuberances include rearwardly divergent first protuberances and forwardly divergent second protuberances.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Like reference numbers and designations in the various drawings indicate like elements.
To mount the BOAS to environmental structure 40 (
A circumferential ring array of a plurality of the BOAS 22 may encircle an associated blade stage of a gas turbine engine. The assembled ID faces 32 thus locally bound an outboard extreme of the core flowpath 52 (
The BOAS may be air-cooled. For example, bleed air may be directed to a chamber 58 (
Surface enhancements are provided along the floor 50 to maximize heat transfer from the flows 122 and 124. Exemplary surface enhancements are broken or interrupted chevrons 150 (
The flow of air over the chevrons is directed such that the sub-layer of the boundary layer is tripped into the turbulent regime. The directional bias of the chevrons allows this tripped region to grow along the direction of the chevron trip strips thereby causing additional coolant (air) to be in contact with the surface such increases the heat transfer.
The spacing of the chevrons is set so that the coolant flow will be tripped over one chevron and have adequate spacing to re-attach to the floor 50 before the next chevron is reached. This separation and re-attachment is believed to allow the chevrons to provide superior heat transfer relative to closely spaced pin protuberances as in the prior art. The prior art may merely serve to increase the wetted surface area rather than fundamentally changing the mode of heat transfer obtained on the BOAS surface.
The BOAS is cooled by three methods: impingement cooling from holes 60, convective heat transfer cooling from the chevron trip strips 154, and film-cooling from holes 70, 80, 90, and 92. The convective heat transfer from the chevron trip strips is believed to be the dominant mode of cooling. For several reasons this is believed more effective than the prior art arrays of small pin-fins providing the backside cooling. First, the apex of the chevron is oriented in the direction of the flow on the right and left part of the BOAS surface (with flow toward cooling holes 70 and 80). This increases turbulence of the flow. Second, the chevron generates double vortices, which further increases the heat transfer coefficients along the cooled surface uniformly. Third, the height of the chevron is selected to be higher than the sub-layer of the boundary layer to ensure flow separation and re-attachment between two neighboring chevrons. This reattachment enhances the heat transfer coefficient. In an exemplary reengineering from a pin-fin enhancement configuration, these three factors are believed provide the BOAS with relatively uniform cooling with much higher heat transfer coefficients (e.g., an increase of more than 50%, more particularly in the vicinity of 80-110%).
The particular value for the height was chosen in conjunction with the directional spacing of the chevrons (pitch) to optimize the effectiveness of the chevrons and helps to give a uniform wall temperature. The final method of cooling for the part is the film-cooling, which cools the extreme ends of the BOAS. With this method of cooling, it is the BOAS is relatively uniformly cooled with low temperature gradient, which leads to low stress and strain and much improved service life.
Nominal parameters defining the chevron shape are referred to as P/e and e/H, where P is the linear spacing between two consecutive chevrons in the 500 direction, e is the height of the chevron and H is the distance between the impingement holes 60 (plate underside) and the floor 50.
Exemplary dimensions are: 3≦P/e≦50, more narrowly 5≦P/e≦10 or 5≦P/e≦15; and 0.03≦e/h≦0.3, more narrowly 0.05≦e/h≦0.10. The height e may also reflect castability considerations. Exemplary e are 0.030+/−0.002 inch, more broadly 0.02-0.04 inch. In a reengineering situation, e will typically be greater (e.g., 10-50% greater) than a pin-fin height of the baseline part.
One or more embodiments of the present invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. For example, when implemented in the reengineering of a baseline BOAS, or using existing manufacturing techniques and equipment, details of the baseline BOAS or existing techniques or equipment may influence details of any particular implementation. Accordingly, other embodiments are within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
5609469 | Worley et al. | Mar 1997 | A |
5797726 | Lee | Aug 1998 | A |
6379528 | Lee et al. | Apr 2002 | B1 |
6393331 | Chetta et al. | May 2002 | B1 |
6957949 | Hyde et al. | Oct 2005 | B2 |
7033138 | Tomita et al. | Apr 2006 | B2 |
7306424 | Romanov et al. | Dec 2007 | B2 |
7335429 | Lee et al. | Feb 2008 | B2 |
Number | Date | Country | |
---|---|---|---|
20080089787 A1 | Apr 2008 | US |