The present disclosure relates generally to fan blade assemblies for use in gas turbine engines, and more specifically to fan blade restraints that limit movement of fan blades.
Gas turbine engines are used to power aircraft, watercraft, power generators, and the like. Gas turbine engines typically include a fan, a compressor, a combustor, and a turbine. The compressor compresses air drawn into the engine by the fan and delivers high pressure air to the combustor. In the combustor, fuel is mixed with the high pressure air and is ignited. Products of the combustion reaction in the combustor are directed into the turbine where work is extracted to drive the compressor and, sometimes, an output shaft. Left over products of the combustion are exhausted out of the turbine and may provide thrust in some applications.
The fan assembly generally includes a hub having a plurality of fan blades that rotate about a center axis of the gas turbine engine. Some fixed pitch dovetail fan blades require adjacent blade exerting forces on the dovetail surfaces to prevent any bending of the disc lug posts. In a variable pitch fan blade, each blade is independent of each other therefore the prying force to open the dovetail has no counteracting force. This exerts force on the dovetail that can create bending forces and generate edge loading on the corners of the dovetail. Given solidity constraints at the hub, there is less bearing area to support the dovetail blade load. Variable pitch fan blade design can also be challenging because of other solidity constraints near the hub. Accordingly, additional design options related to variable pitch fan blade systems are needed.
The present disclosure may comprise one or more of the following features and combinations thereof.
A blade assembly for use with a gas turbine engine is disclosed in this application. The blade assembly includes a blade configured to rotate about a center axis during operation of the gas turbine engine, a blade holder configured to support the blade as the blade rotates about the center axis, and a blade retainer configured to block axial movement of the root of the blade out of the blade receiver slot. The blade includes a root and an airfoil that extends radially away from the root. The blade holder includes a base, a first post, and a second post that cooperate to define a blade receiver slot that extends axially through a fore face and an aft face of the blade holder. The receiver slot also receives the root of the blade such that the first post and the second post block radial movement of the root of the blade out of the blade receiver slot.
In illustrative embodiments, the blade retainer includes an outer stop and a retainer insert. The retainer insert includes a web, a fore brace, and an inner stop. The web extends axially between a fore end and an aft end. The fore brace is coupled to the fore end of the web. The inner stop extends radially inward away from the web adjacent the aft end of the web. The outer stop is aligned axially with the inner stop and is coupled to the web to cause the outer stop and the inner stop to cooperate thereby providing an aft brace that is spaced apart axially from the fore brace. The fore brace is configured to engage the root of the blade and the fore face of the blade holder. The aft brace is configured to engage the root of the blade and the aft face of the blade holder. The web blocks relative movement between the fore brace and the aft brace so that the blade retainer blocks axial movement of the root of the blade out of the blade receiver slot.
In illustrative embodiments, the outer stop includes a radially extending abutment wall and a flange that extends axially away from the abutment wall. The web is formed to include a channel that extends radially into the web and a portion of the abutment wall is received in the channel to locate the outer stop axially relative to the retainer insert. The channel is aligned axially with the inner stop.
In illustrative embodiments, the blade retainer further includes a fastener that extends through the flange of the outer stop and the aft end of the web to couple the outer stop to the retainer insert. The blade retainer may further include a bond layer located between the flange of the outer stop and the aft end of the web to couple the outer stop to the retainer insert. In some embodiments, the outer stop may be removably coupled to the retainer insert.
In illustrative embodiments, the fore brace may be solid, continuous, and circular when viewed axially relative to the center axis. The fore brace, the web, and the inner stop are integrally formed as a single component. The fore brace may be solid, continuous, and rectangular when viewed axially relative to the center axis.
According to another aspect of the present disclosure, a blade retainer includes a first stop and a retainer insert. The retainer insert includes a web having a first end and a second end spaced apart axially from the first end relative to an axis, a first brace that extends radially outward and radially inward away from the web, and a second stop that extends radially inward away from the web. The first brace is located at the first end of the web and the first stop is coupled to the web at the second end of the web to cause the first stop and the second stop to provide a second brace.
In illustrative embodiments, the first stop includes a radially extending abutment wall and a flange that extends axially away from the abutment wall. The web is formed to include a channel that extends radially into the web. A portion of the abutment wall may be received in the channel to locate the first stop axially relative to the retainer insert.
In illustrative embodiments, the channel is aligned axially with the second stop. The blade retainer further includes a fastener that extends through the flange of the first stop and the second end of the web to couple the first stop to the retainer insert. The blade retainer may further include a bond layer located between the flange of the first stop and the second end of the web to couple the first stop to the retainer insert. In some embodiments, the first stop is removably coupled to the retainer insert.
In illustrative embodiments, the blade retainer may be part of an assembly that further includes a blade holder and a blade. The blade holder may have a first face and a second face spaced apart from the first face. The blade may have a root and an airfoil that extends away from the root. The root of the blade may be received in the blade holder. In some such embodiments, the web of the blade retainer is located between the root of the blade and the blade holder, the first brace is adapted to engage with the first face of the blade holder, and the second brace is adapted to engage with the second face of the blade holder.
In illustrative embodiments, the web has a circumferential width and the first brace has a circumferential width. In some such embodiments, the circumferential width of the first brace may be equal to the circumferential width of the web.
According to another aspect of the present disclosure, a method of making a blade retainer adapted to block axial movement of a blade in a gas turbine engine is disclosed. The method may include providing a first segment of a bar stock comprising metallic material. The method may further include removing material from the first segment of the bar stock to form an integral retainer insert that includes: (i) a web that extends axially relative to an axis of the bar stock, (ii) a first brace that extends radially outward and radially inward away from the web, and (iii) a first stop that extends radially away from the web, the first brace being spaced apart axially from the first stop.
In illustrative embodiments, the method may include providing a second segment of the bar stock. The method may then include removing material from the second segment of the bar stock to form a second stop that includes an abutment wall and a flange that extends axially away from the abutment wall.
In illustrative embodiments, the bar stock used in the disclosed method is cylindrical. However, other bar stock shapes can also be used.
These and other features of the present disclosure will become more apparent from the following description of the illustrative embodiments.
For the purposes of promoting an understanding of the principles of the disclosure, reference will now be made to a number of illustrative embodiments illustrated in the drawings and specific language will be used to describe the same.
A gas turbine engine 10 in accordance with the present disclosure is shown in
A gas turbine engine 10 in accordance with the present disclosure is shown in
The illustrative fan 12 is a variable pitch fan 12 that includes a plurality of fan blade assemblies 40 extending from a hub 38 and that each include a fan blade holder 42 and a fan blade 28 mounted in the fan blade holder 42. The fan blade assembly 40 is configured to rotate about the center axis 11 as suggested in
As one example, the pitch of the fan blades 28 may be varied to optimize fuel burn throughout a flight mission. The pitch of the fan blades 28 may be reversed to provide thrust reverse and reduce or eliminate the use of heavy thrust reverse units coupled to the engine nacelle. The fan blades 28 may be feathered in the event of an engine failure to reduce drag or windmill loads.
Referring to
The fan blade 28 includes a composite material and is configured to rotate about the center axis 11 during operation of the gas turbine engine 10. The fan blade 28 includes a dovetail shaped root 60 and an airfoil 62 extending radially outward from the root 60. The root 60 is positioned within the blade receiver slot 54 so that the fan blade 28 is secured to the fan blade holder 42. The airfoil 62 includes a leading edge 80 and an opposite trialing edge 82. A suction side 84 of the airfoil 62 extends between the leading edge 80 and the trialing edge 82. A pressure side 86 of the airfoil 62 extends between the leading edge 80 and the trialing edge 82 opposite the suction side 84. A blade retainer 130 is positioned between the fan blade 28 and the fan blade holder 42.
Referring to
The posts 74, 76 extend between the aft face 98 and the fore face 106 of the blade restraint 52. Each post 74, 76 includes a fixed end 94 coupled to the base 92 and a free end 96. The free end 96 is positioned radially outward from the fixed end 94. Each post 74, 76 includes an outer wall 100 and an inner wall 102 coupled by a join wall 104, the outer wall 100 being thicker than the inner wall 102. The outer wall 100, the join wall 104, and the inner wall 102 are solid and integrally formed. The outer wall 100 extends radially outward from the base 92. The join wall 104 extends at an angle relative to the outer wall 100 toward the opposite post 74, 76. The join wall 104 extends at an orthogonal angle relative to the outer wall 100. The inner wall 102 extends radially inward from the join wall 104 into the blade receiver slot 54. The inner wall 102 is cantilevered from the join wall 104.
A relief slot 110 is defined between the outer wall 100 and the inner wall 102. The relief slot extends through the fore face 106 and the aft face 98. That is, the inner wall 102 is spaced apart from the outer wall 100 to locate the relief slot 110 therebetween. The relief slot 110 extends radially relative to the center axis 11 through the post 74, 76 and opens into the blade receiver slot 54.
Each relief slot 110 is L shaped and includes an opening that faces the opposite post 74, 76. The relief slots 110 enable the posts 74, 76 to deform and distribute contact pressure along the mating surfaces 70 of the dovetail shaped root 60 in response to the fan blade 28 being urged radially outward relative to the center axis 30 by centrifugal forces acting on the fan blade 28 during operation of the gas turbine engine 10.
The inner wall 102 includes a planar engagement surface 112 and an inner surface 114. The engagement surface 112 is continuous such that it is formed without holes. The blade receiver slot 54 is defined between the engagement surfaces 112 of the posts 74, 76. The relief slot 110 is defined between the inner surface 114 and the outer wall 100. The engagement surface 112 is configured to engage the root 60 of the fan blade 28. Particularly, an angled mating surface 70 of the root 60 is configured to engage the engagement surface 112 of each post 74, 76 when the fan blade 28 is coupled to the fan blade holder 42 to block radial movement of the fan blade 28 out of the blade-receiver slot 54 relative to the center axis 11.
The fan blade 28 is configured to position in the fan blade holder 42 so that as air gap is formed between the root 60 of the fan blade 28 and the base 92 of the fan blade holder 42. When the gas turbine engine 10 is operated, centrifugal forces act on the fan blade 28. These forces move the fan blade 28 radially outward causing stresses to be created between the mating surfaces 70 of the root 60 and the engagement surfaces 112 of the posts 74, 76. Generally, these stresses may be non-uniform resulting in an uneven distribution of stress on the posts 74, 76. The uneven distribution of stress results in pressure points that may cause failures of the posts 74, 76, thereby resulting in the fan blade 28 becoming dislodged from the blade restraint 52.
To uniformly distribute the forces acting between the blade restraint 52 and the root 60, the inner walls 102 of the posts 74, 76 deform outward. That is, the inner walls 102 deform into the relief slots 110. The inner walls 102 are deformed so that the mating surfaces 70 of the root 60 maintain a substantially uniform engagement with the engagement surfaces 112. The uniform engagement results in the stresses being uniformly distributed across the engagement surfaces 112 to reduce the occurrence of pressure points on the posts 74, 76, thereby limiting failures in the blade restraint 52. It should be noted that the inner walls 102 deform to a point that uniformly distributes the stress while retaining the fan blade 28 in the fan blade holder 42.
The blade retainer 130 is configured to position in the air gap between the fan blade 28 and the fan blade holder 42. Referring to
The fore brace 136 is generally circular in shape and includes an inner stop 150 extending radially outward and an inner stop 152 extending radially inward. The fore brace 136 is solid, continuous, and circular when viewed axially relative to the center axis 11. The fore brace 136, the web 132, and the inner stops 150, 152 are integrally formed as a single component. The fore brace 136 has a diameter 154 that is substantially the same as width 140 of the web 132. The fore brace 136 includes a pair of engagement surfaces 160, 162 that engage the fore face 106 of the blade restraint 52 and the front face 78 of the root 60. The engagement surface 160 is positioned on the inner stop 150, and the engagement surface 162 is positioned on the inner stop 152.
The aft brace 134 include a substantially semi-circular abutment wall 170. The abutment wall 170 has a circumferential width that is substantially the same as the circumferential width 140 of the web 132. The abutment wall 170 extends radially inward from the web 132. An engagement surface 174 of the abutment wall 170 is configured to engage the aft face 98 of the blade restraint 52 and the rear face 88 of the root 60. A flange 180 extends in an aft direction from the abutment wall 170. The flange 180 is substantially planar with the web 132. The flange 180 includes a mating surface 182 on the radially outward face 184.
The outer stop 190 is removably coupled to the flange 180 to secure the blade retainer 130 to the fan blade assembly 40. The outer stop 190 is aligned axially with the inner stop 150. The outer stop 190 includes a semi-circular abutment wall 192 that extends radially outward from the web 132. The web 132 is formed to include a channel 198 that extends radially into the web 132 and a portion of the abutment wall 192 is received in the channel 198 to locate the outer stop 190 axially relative to the retainer insert 128. The channel 198 is aligned axially with the inner stop 150. The abutment wall 192 has a circumferential width 194 that is substantially the same as the circumferential width 140 of the web 132. The abutment wall 192 includes an engagement surface 196 that is configured to engage the aft face 98 of the blade restraint 52 and the rear face 88 of the root 60.
A flange 200 extends axially away from the abutment wall 192 in an aft direction. The flange 200 includes a mating surface 202 that engages the mating surface 182 of the flange 180.
Referring to
As shown, in
Referring to
Referring to
In the embodiments described herein the overall length of the blade restraint is approximately equal to the dovetail length. This reduces the total bearing area of the dovetail, thus limiting blade robustness.
In a variable pitch fan blade designs, each blade is independent of each other therefore the prying force to open the dovetail has no counteracting force. This can exert force on the dovetail that not only creates high bending forces, but generates edge loading on the corners of the dovetail. Given solidity constraints at the hub, there may be less bearing area to support the dovetail blade load. Point loading and edge of bedding have been a consistent problem in composite blade design. This edge loading can cause initiation of failure on composite root designs. This failure can propagate quickly under blade vibrations. Designs in accordance with the present disclosure can be used in solutions to these challenges.
Variable pitch fan blade design can also be challenged because of solidity constraints near the hub. Some fixed pitch fans usually have solidity greater than 1 while variable pitch fans have constraints less than 1. The solidity is constrained by the fact that the blades need to rotate past each other without clashing. A compact axial retention system provided by the disclosed designs and can prevent the blade from sliding out under aero or bird strike loads. The more the axial retention sticks out, the further the blade solidity has to be reduced. The solidity also drives hub to tip diameter ratio. Some fixed pitch designs use a shear key integrated into the dovetail. This can add length to the dovetail slot because it is done on both the forward and aft end, thus increasing overall length.
While the disclosure has been illustrated and described in detail in the foregoing drawings and description, the same is to be considered as exemplary and not restrictive in character, it being understood that only illustrative embodiments thereof have been shown and described and that all changes and modifications that come within the spirit of the disclosure are desired to be protected.
Embodiments of the present disclosure were made with government support under NASA Contract No. NNC14CA29C (Phase III). The government may have certain rights.
Number | Name | Date | Kind |
---|---|---|---|
2801074 | Brown | Jul 1957 | A |
3383095 | Anderson | May 1968 | A |
3632228 | Acres | Jan 1972 | A |
3936234 | Tucker | Feb 1976 | A |
4208170 | Tucker | Jun 1980 | A |
4836749 | Gavilan | Jun 1989 | A |
5259728 | Szpunar et al. | Nov 1993 | A |
5263898 | Elston et al. | Nov 1993 | A |
5425621 | Maar | Jun 1995 | A |
5584659 | Schmidt | Dec 1996 | A |
5720596 | Pepperman | Feb 1998 | A |
6481971 | Forrester | Nov 2002 | B1 |
8061995 | Prince et al. | Nov 2011 | B2 |
8764402 | Agaram et al. | Jul 2014 | B2 |
9695699 | Pernleitner et al. | Jul 2017 | B2 |
20080273982 | Chunduru et al. | Nov 2008 | A1 |
20180112543 | Thomas et al. | Apr 2018 | A1 |
Number | Date | Country |
---|---|---|
10031116 | Jan 2002 | DE |
2021206 | Nov 1979 | GB |
Entry |
---|
Extended European Search Report, European Application No. 19190916.7-1004, dated Mar. 23, 2020, 13 pages. |
Number | Date | Country | |
---|---|---|---|
20200056491 A1 | Feb 2020 | US |