FIG. 1 is an end view of a turbine wheel that may incorporate at least one possible embodiment.
FIGS. 2 and 3 are end and side views of a turbine blade for the turbine wheel of FIG. 1.
FIGS. 4 and 5 are partial end and side views of a turbine disc for the turbine wheel of FIG. 1.
FIGS. 6 and 7 are end and side views of a blade retainer clip for the turbine wheel of FIG. 1 according to a possible embodiment.
FIG. 8 is a side view of the turbine blade of FIGS. 2 and 3 with the blade retainer clip of FIGS. 6 and 7.
FIG. 9 is a side view of the turbine blade of FIGS. 2 and 3 with the blade retainer clip of FIGS. 6 and 7 inserted into the turbine disc of FIGS. 4 and 5.
FIG. 1 is an end view of a turbine wheel that may incorporate at least one possible embodiment. FIGS. 2 and 3 are end and side views of a turbine blade for the turbine wheel of FIG. 1. FIGS. 4 and 5 are partial end and side views of a turbine disc for the turbine wheel of FIG. 1. FIGS. 6 and 7 are end and side views of a blade retainer clip for the turbine wheel of FIG. 1 according to a possible embodiment. FIG. 8 is a side view of the turbine blade of FIGS. 2 and 3 with the blade retainer clip of FIGS. 6 and 7. FIG. 9 is a side view of the turbine blade of FIGS. 2 and 3 with the blade retainer clip of FIGS. 6 and 7 inserted into the turbine disc of FIGS. 4 and 5.
Referring to FIGS. 2 and 3 together, the blade retainer hook 12 on a heel end 14 of the foot 8 of the turbine blade 6 protrudes from a bottom 16 of the blade foot 8. A compound fillet 18 engages the hook 12 with the bottom 16 of the blade foot 8. The compound fillet 18 may comprise two fillets, such as a first fillet 20 of relatively small concave radius proximate a hook 12 side of the compound fillet 18, with the magnitude and position of its radius indicated by a first fillet radius 22, and a second fillet 24 of relatively large concave radius of curvature, with the magnitude and position of its radius indicated by a second fillet radius 26. As shown in FIG. 3, the radius 26 intersects the bottom 16 of the blade foot 8 with its tangent coincident with the bottom 16 of the blade foot 8.
The bottom 16 of the blade foot 8 may have a channel or slot 28 that extends from a toe end 30 of the blade foot 8 to a point intermediate the toe end 30 of the blade foot 8 and the heel end 14 of the blade foot 8. The end of the slot 28 intermediate the toe end 30 of the blade foot 8 and the heel end 14 of the blade foot 8 may have a cavity or recess 32.
The side of the hook 12 along the heel end 14 of the blade foot 8 may be curvilinear, such as with a convex hook surface 34, as indicated in magnitude and position by a convex radius of curvature 36, and a concave hook surface 38, as indicated in magnitude and position by a concave radius of curvature 40.
Referring to FIGS. 4 and 5 together, each shoe 10 of the turbine disc 4 has a toe end 42 and a heel end 44. Upon assembly, the heel end 44 of the turbine shoe 10 receives the toe end 30 of its mating blade foot 8.
Referring to FIGS. 6 through 8 together, a blade retainer clip 46 fits into the mating turbine blade foot slot 28. It may include a protuberance 48 that fits into the mating recess 32 of the turbine blade foot mating slot 28. It also includes a deformable clip toe 50. The deformable clip toe 50 extends beyond the turbine blade foot toe end 30. Referring to FIG. 9, the turbine blade foot toe end 30 of the turbine blade foot 8 and the blade retainer clip toe 34 together slip into the turbine disc heel end 44 of the mating turbine disc shoe 10 until the turbine blade foot toe end 30 is flush with the turbine disc shoe toe end 42, which engages the blade retainer hook 12 with the turbine disc shoe heel end 44 of the turbine disc shoe 10. Bending the clip toe 50 over to engage the turbine disc shoe toe end 42 of the turbine disc shoe 10 then locks the turbine blade 6 securely in the turbine disc 4. Since the blade retainer hook 12 engages the turbine blade foot heel end 44, it is not possible for the turbine blade foot 8 to “walk” in its turbine disc shoe 10 toward the turbine disc shoe toe end 42 under load.
Referring to FIGS. 3 and 9 together, the application of the compound fillet 18 between the blade hook 12 and the blade foot bottom 16 distributes stress concentration along the region between the hook 12 and the blade foot bottom 16 due to force that the blade foot 8 applies to the hook 12 against the heel end 44 of the turbine disc shoe 10. More specifically, the magnitude and position of the radius of the first fillet 20, as indicated by the first fillet radius 22, and the magnitude and position of the radius of the second fillet 24, as indicated by the second fillet radius 26, may have values that distribute such stress concentration relatively evenly along the compound fillet 18, thereby increasing resistance to breakage of the hook 12 from the blade foot 8 under extreme loading conditions. Determination of optimised values for the magnitudes and positions for the first fillet radius 22 and the second fillet radius 26 are possible using known methods of analysis, such as by finite element analysis.
The described embodiment as set forth herein represents only an illustrative implementation of the invention as set forth in the attached claims. Changes and substitutions of various details and arrangement thereof are within the scope of the claimed invention.