Claims
- 1. A pinned vane type, positive displacement, rotary device comprising:
- a housing having a working fluid chamber surrounding a first axis and an inlet port through which a working fluid is introduced into said working fluid chamber;
- an inner hub surrounding and rotatable about said first axis;
- an outer hub assembly, having a plurality of spreader elements, disposed inside said chamber and surrounding said inner hub, said outer hub assembly being rotatable about a second axis, which is offset from said first axis;
- a plurality of blades, each of which extends radially from said inner hub and passes through said spreader elements of said outer hub assembly to an interior surface of said chamber, thereby forming a plurality of relatively airtight compartments between said interior surface of said chamber, said spreader elements of said outer hub assembly, and respective pairs of blades, with the volume of said compartments varying as a function of rotative position about said first axis; and
- a linkage arrangement, which interconnects said inner hub with said outer hub exclusive of said blades; and wherein said outer hub assembly contains a ring member arrangement which supports a first, loaded roller element at a first side of said blade spreader element for rotation about a first longitudinal axis of said first roller element, and supports a second, unloaded roller element at a second side of said blade spreader element for rotation about a second longitudinal axis of said second roller element and which allows said second, unloaded roller element to translate generally tangentially with respect to a travel path described by said ring member arrangement of said outer hub assembly in accordance with the rotational position of said outer hub assembly about said second axis.
- 2. A pinned vane type, positive displacement, rotary device according to claim 1, wherein a respective blade spreader element includes a first sealing element which is supported in intimate fluid sealing contact with said first roller element, and a second sealing element which is supported in intimate fluid sealing contact with said second roller element, so as to minimize the passage of working fluid from the outer high pressure side of the outer hub assembly to a lower pressure internal portion of the outer hub assembly.
- 3. A pinned vane type, positive displacement, rotary device according to claim 1, wherein said blades are pivotally attached to said inner hub to allow rotation of a respective one of said blades relative to an axis extending radially through the center line of said blade from said inner hub.
- 4. A rotary device comprising:
- a housing having an interior working fluid chamber surrounding a first axis and an inlet port into which a working fluid is introduced;
- an outer hub assembly, disposed inside said chamber and surrounding a second axis, said second axis being offset from said first axis;
- an inner hub, disposed inside said outer hub assembly, and surrounding said first axis;
- a plurality of blades, each of which extends radially from said inner hub and passes through said outer hub assembly to an interior surface of said chamber, thereby forming a plurality of relatively airtight compartments between said interior surface of said chamber, said outer hub assembly, and respective pairs of blades, with the volume of said compartments varying as a function of rotative position about said first axis; and
- a linkage arrangement, which interconnects said inner hub with said outer hub exclusive of said blades; and wherein
- said outer hub assembly includes a pair of ring members arranged at opposite ends of said blades, each ring member supporting opposite ends of first, non load-bearing and second, load-bearing sealing roller elements of respective pairs of sealing roller elements on first and second sides of respective blades, and further including a plurality of blade spreader elements respectively disposed between respective pairs of sealing roller elements adjacent said blades, such that, irrespective of the rotational position of said outer hub assembly about said second axis, said first, non load-bearing sealing roller elements are translatable with respect to said ring members and are urged into sealing engagement with first sides of said blades, and such that said second, load-bearing sealing roller elements are urged in load-bearing engagement with second sides of said blades and said ring members.
- 5. A rotary device according to claim 4, wherein said ring members include first roller element-terminating bearings translatable along said ring members and arranged to receive opposite ends of said first, non load-bearing, translatable sealing roller elements, and second roller element-terminating bearings arranged to receive opposite ends of said second, load-bearing sealing roller elements.
- 6. A rotary device according to claim 5, wherein said first, translatable sealing roller element terminating bearings are spring-biased toward said first sides of said blades.
- 7. A rotary device according to claim 5, wherein said ring members of said outer hub assembly include sliding block elements in which said first, translatable sealing roller element terminating bearings are captured, said sliding block elements being spring-biased along said ring members toward engagement with said first sides of said blades.
- 8. A rotary device according to claim 4, wherein each of said blades is pivotally attached to said inner hub so as to allow rotation of said each of said blades about a respective axis extending radially of said inner hub.
- 9. A rotary device according to claim 8, wherein said radially extending axis passes through said each of said blades.
- 10. A rotary device according to claim 4, wherein a respective blade spreader element further comprises a first fluid sealing element which is supported in intimate sealing contact with a first, non load-bearing, translatable sealing roller element, so as to minimize the passage of working fluid from an outer portion of the hub assembly to an inner portion of said outer hub assembly.
- 11. A rotary device according to claim 10, wherein a respective blade spreader element comprises a first, translatable, non load-bearing sealing roller element-receiving slot which receives and allows rotation of a first, translatable, non load-bearing sealing roller element, and a first bore, coupled with said first, translatable, non load-bearing sealing roller element-receiving slot, and wherein said first sealing element is disposed in said first bore and maintained in intimate sealing contact with said first, translatable, non load-bearing sealing roller element.
- 12. A rotary device according to claim 11, wherein a respective blade spreader element further comprises a second, load-bearing sealing roller element-receiving slot, which receives and allows rotation of a second load-bearing sealing roller element, and a second bore, coupled with said second load-bearing sealing roller element-receiving slot, and wherein said second sealing element is disposed in said second bore and maintained in intimate sealing contact with said second load-bearing sealing roller element.
- 13. A rotary device according to claim 11, wherein said first bore contains a spring element for urging said first sealing element into intimate fluid-sealing contact with said first, translatable, non load-bearing sealing roller element.
- 14. A rotary device according to claim 12, wherein said first bore contains a first element for urging said first sealing element into intimate fluid-sealing contact with said first, translatable, non load-bearing sealing roller element, and wherein said second bore contains a second spring element for urging said second sealing element into intimate fluid-sealing contact with said second load-bearing sealing roller element.
- 15. A rotary device according to claim 10, wherein each of said blades is pivotally attached to said inner hub so as to allow rotation of said each of said blades about a respective axis extending radially of said inner hub.
- 16. A rotary device according to claim 15, wherein said radially extending axis passes through said each of said blades.
- 17. A rotary device comprising:
- a housing having an interior working fluid chamber surrounding a first axis and an inlet port into which a working fluid is introduced;
- an outer hub assembly, disposed inside said chamber and surrounding a second axis, said second axis being offset from said first axis;
- an inner hub, disposed inside said outer hub assembly, and surrounding said first axis;
- a plurality of blades, each of which extends radially from said inner hub and passes through said outer hub assembly to an interior surface of said chamber, thereby forming a plurality of relatively airtight compartments between said interior surface of said chamber, said outer hub assembly, and respective pairs of blades, with the volume of said compartments varying as a function of rotative position about said first axis, each of said blades being pivotally attached to said inner hub so as to allow rotation of said each of said blades about a respective axis extending radially of said inner hub; and
- a linkage arrangement, which interconnects said inner hub with said outer hub exclusive of said blades.
- 18. A rotary device according to claim 17, wherein said radially extending axis passes through said each of said blades.
CROSS-REFERENCE TO RELATED APPLICATIONS
The present application is a continuation-in-part of my co-pending application Ser. No. 940,446 (hereinafter referenced as the '466 application), filed Sep. 4, 1992, entitled: "Rotary Compressor and Engine System," assigned to the assignee of the present application, and the disclosure of which is incorporated herein. It also relates to the subject matter of a new and improved continuous combustion, pinned vane type, positive displacement, rotary compressor and expander engine system, described in my co-pending application entitled: "Method and Apparatus for Transferring Heat Energy from Engine Housing to Expansion Fluid Employed in Continuous Combustion, Pinned Vane Type, Positive Displacement, Integrated Rotary Compressor-Expander Engine System, Increasing Energy Density of Expansion Fluid," Ser. No. 08/315,103 filed coincident herewith, (hereinafter referred to as the '103 application assigned to the assignee of the present application, and the disclosure of which is also incorporated herein.
US Referenced Citations (4)
Foreign Referenced Citations (2)
Number |
Date |
Country |
4524513 |
Feb 1967 |
JPX |
1382603 |
Feb 1975 |
GBX |
Continuation in Parts (1)
|
Number |
Date |
Country |
Parent |
940446 |
Sep 1992 |
|