1. Field of the Invention
The present invention relates to a blade sharpener that sharpens blades such as kitchen knives and table knives with an abrasive wheel and more particularly to a manual blade sharpener having an abrasive wheel therein.
2. Background Art
Japanese Patent Application Laid-Open (Kokai) No. S62-181860 discloses a table knife sharpener that is comprised of a main frame casing, a adhesive wheel rotatably installed in this main frame casing and equipped with grinding surfaces that are of a truncated cone shape and forming an angle to each other, a guide part that guides the blade so that the blade being sharpened is pressed against both grinding surfaces, and a liquid vessel installed in the main frame casing so as to surround the bottom part of the abrasive wheel.
In this device, two sides of the blade of a knife is pressed against the two sides of the grindstone and the knife is moved back and forth at a bias relative to the axial direction of the abrasive wheel that has truncated conical grinding surfaces to sharpen both sides of the blade. This device has problems, however. During sharpening by the back and forth movements of the blade, frictional heat is generated, thus dulling the blade. Grinding dust from the blade would clog the pores of the abrasive wheel. Though the liquid vessel that contains liquid for cooling and cleaning the blade during the sharpening is provided, the problems of the frictional heat and clogging are not sufficiently solved. Furthermore, since the abrasive wheel is fixedly provided in the main frame casing, it is difficult to wash and clean the abrasive wheel.
Japanese Utility Model Registration No 3007312 discloses a blade sharpener that is to solve the problems above. This blade sharpener includes a main frame casing having a grip and a grinding chamber, a rotary shaft rotatably installed across the grinding chamber and arranged at a bias to the direction of the length of the main frame casing, an abrasive wheel that is installed in the center of the rotary shaft and has grinding surfaces which are truncated cones and form an angle to each other, a guide part that guides the blade so that the blade being sharpened is pressed against the two grinding surfaces, and a liquid vessel installed in the grinding chamber so that the liquid therein for cooling the abrasive wheel can surround the bottom part of the abrasive wheel. Also, Japanese Utility Model Registration No 3010973 discloses a sharpener for a single-blade knife in which an abrasive element is comprised of a pair of roller bodies having conical surfaces and one of the conical surfaces is a grinding surface and the other conical surface is a smooth, hard, non-grinding surface.
In these blade sharpeners described above, the side of a blade is, while being pressed against the grinding surface, sharpened by moving the blade back and forth along the guide part while it is being pressed against the conical surface of an abrasive wheel. Accordingly, sharpened conditions of blades can differ depending on how (in terms of pressing loads, pressing angles, etc.) the blade is pressed against the abrasive wheel. Pressing the blade too firmly will create defects in the cutting edge and can leave it to be able to cut less than before. In addition, blades with serrated cutting edges and fine ceramic blades cannot be sharpened very well even with use of a diamond abrasive wheel for the grinding surface.
Japanese Utility Model Registration No 3128435 discloses a blade sharpener that is to overcome the problems described above, and in this sharpener a rotary shaft that has an abrasive wheel is supported at both end thereof by a pair of vertically installed springs so that the blade can be evenly pressed against the abrasive wheel and evenly ground by the conical surfaces of the abrasive wheel.
Accordingly, the present invention is made with the above problems in mind, and it is an object of the present invention to provide a blade sharpener that is able to prevent variations in the force of pressing the cutting edge against conical surfaces of an abrasive wheel and can grind blades further evenly and smoothly compared to the existing blades sharpeners such as those described above.
The above object is accomplished by a unique structure of the present invention for a blade sharpener that includes:
Furthermore, the above object is accomplished by another unique structure of the present invention for a blade sharpener that comprises:
As seen from the above, in the structure of the blade sharpener of the present invention, since the abrasive element of the blade sharpener is constantly urged by the two horizontally urging means or lateral coil springs so that the abrasive element is at the mid point between the two vertical shaft supports or vertical shaft supports during the grinding process, the blade being ground receives lateral pressure (or pressing force) from both sides by the urging means and thus ca make good contact with the grinding surface of the abrasive element or abrasive wheel when the blade is moved back and forth with respect to the abrasive element and as a result is sharpened smoothly and efficiently.
Furthermore, since the blade sharpener of the present invention further includes vertically urging means or vertical coil springs, the blade that is receiving downwardly pressing force against the abrasive element by the user further receives upward pressing force caused by the vertically urging means or vertical coil springs that is in the direction opposite from the downward pressing force, in addition to the lateral pressure by the lateral urging means (or coil springs). Accordingly, the blade receives not only the lateral pressing force or pressure but also receives longitudinal pressure (or pressing force) from four directions (right and left and also downward and upward directions) and thus can make further good contact with the abrasive element when the blade is moved back and forth with respect to the abrasive element during grinding action, and the blade is thus sharpened further smoothly and efficiently.
In the present invention, since the sharpening assembly is detachable, it can be removed for cleaning or can be replaced with another or new one when the abrasive wheel is worn out.
Preferred embodiments of a blade sharpener according to the present invention will be described in detail below with reference to the accompanying drawings.
On the rectangular bottom 3a of the grinding chamber 3, one pair of (or two) holding means 6 (see
Each one of the pair of sharpening assemblies 10 that are detachably installed in the grinding chamber 3 of the main frame casing 1 as described above (they can thus be called grinder cassettes in view of the removability) comprises as shown in
In each one of the pair of (or two) vertical shaft supports 14 facing each other, a supporting window 14A is opened, and below this supporting window 14A, a vertical channel 14B is provided. In this vertical channel 14B, a vertical coil spring 20, which is greater (longer) than the depth of the vertical channel 14B, is installed so as to stand vertically within the vertical channel 14B. Thus, an upper end portion of the vertical coil spring 20 is outside of the vertical channel 14B to project out therefrom and is located inside the supporting window 14A. A supporting piece 20A is attached to the top end of the vertical coil spring 20 so that the supporting piece 20A is in the supporting window 14A.
The grinder frame 10A thus having a pair of vertical coil springs 20 further includes a rotary shaft 22. This rotary shaft 22 is provided in the grinder frame 10A horizontally with its both ends inside the supporting windows 14A of the vertical shaft supports 14 and on the shaft holder 20A of the coil springs 20. To the top surface of each one of the vertical shaft supports 14 of the grinder frame 10A is attached a holding piece 14C so as to cover the upper opening of each of the supporting windows 14A and prevent the rotary shaft 22 from being removed upwardly from the supporting windows 14A (or from the vertical shaft supports 14 of the sharpening assembly 10). The diameter of the rotary shaft 22 is (slightly) smaller than the width W′ of the supporting window 14A, and the height H′ of the supporting window 14A is greater than the width W′ of the supporting window 14A for substantially the same amount (length) as the upper end portion of the vertical coil spring 20 projecting out of the vertical channel 14B into the supporting window 14A. As a result, the rotary shaft 22 being supported by vertical coil springs 20 in the supporting windows 14A is rotatable within the supporting windows 14A and is movable within the supporting windows 14A vertically (or up and down) and is movable in its axial direction (left and right in
The rotary shaft 22 is provided thereon with an abrasive wheel (abrasive element) 30, a pair of lateral coil springs 40 (40A and 40B) on either side of the abrasive wheel 30, and a pair of washers 50 each on the far end side of each coil spring 40 from the abrasive wheel 30.
The abrasive wheel 30 is fixedly provided at substantially the center of the rotary shaft 22 in the axial direction. The abrasive wheel 30 is a cylindrical abrasive element having a V-groove 32 in the circumferential surface, so that it has such a shape that a pair of truncated cone-shaped elements are connected to each other at the smaller diameter end surfaces so as to form the V-groove 32 in between or that a pair of oppositely beveled abrasive disks are connected to each other at the smaller diameter end surfaces.
On either side of the abrasive wheel 30, the lateral coil spring 40 is provided so that one end thereof is in touch with the abrasive wheel 30 and another end thereof is in touch with the washer 50 and so that each coil spring 40 is compressed by and between the abrasive wheel 30 and the washer 50 or the vertical shaft supports 14. In other words, the abrasive wheel 30 is urged by the coil springs 40 towards the axial center of the rotary shaft 22 as shown by A-1 and A-2 arrows in
The washers 50 of a thin plate having an inner diameter slightly larger than the diameter of the rotary shaft 22 are disposed on the rotary shaft 22, and the outer diameter of the washers 50 is greater than the size of the supporting windows 14A, particularly greater than the width W′ (see
In the above-described sharpener, each one of the pair of sharpening assemblies 10 includes a box type grinder frame 10A that is comprised of the facing vertical shaft support 14 and the side walls 16. However, since the rotary shaft 22 is supported only by the facing vertical shaft support 14, the side walls 16 can be eliminated.
In other words, as seen from
The above described sharpening assembly 10, 300 comprising, among other elements, the grinder frame 10A, 310A, the rotary shaft 22, 322, the lateral coil springs 40, 340 and the vertical coil springs 20, 320, are installed in the grinding chamber 3 so that they are respectively directly below the blade guide slits 5 formed in the cover casing 4 of the main frame casing 1 and so that the rotary shafts 22, 322 and thus the grinding wheels 30, 330 of these two sharpening assemblies 10, 300 are at bias or diagonal with respect to the length direction L′ (see
The arrangement of the sharpening assemblies 10, 300 can take another manner in which the rotary shafts 22, 322 are set to be parallel to each other, and in which a only one (or single) sharpening assembly 10, 300 is installed in a grinding chamber 3. Furthermore, as seen from
In the above described structure, the abrasive wheel 30, 330 has a cylindrical shape in which the V-groove 32, 332 is in the axial center and in such a shape that a pair of two truncated cones (or beveled disks) of the same diameter are connected to each other at the smaller diameter end surfaces, thus having a symmetric grinding surfaces 32A and 32B, 332A and 332 along the V-groove 32, 332 and thus being called in the description a “symmetric abrasive wheel.” This symmetric abrasive wheel is suitable to sharpen a double-edged blade X as shown in
The abrasive wheel in the present invention can be of another type as shown in
In use of the above-described blade sharpener, a pair of sharpening assemblies 10 (more specifically, two sharpening assemblies both having symmetric abrasive wheels, or both having asymmetric abrasive wheels or one having a symmetric abrasive wheel and the other having an asymmetric wheel) are set in the grinding chamber 3 by being held by the holding means 6. The sharpening assembly or assemblies 10 can be provided with a liquid Lq, therein such as water or oil, and the grinding chamber 3 is covered by the cover casing 4. In use of the sharpening assembly 300 installed in the grinding chamber 3, the liquid is provided inside the grinding chamber 3.
With the cover casing 4 thus set and the grip 2 gripped by one hand, the blade (such as the blade X) of a knife held by another hand at the handle is inserted into the guide slit 5 and pressed down against the abrasive wheel 30, 330 so that the cutting edge of the blade X comes into contact with the V-groove 32, 332 of the abrasive wheel 30, 330 and then moved back and forth inside the blade guide slit 5 along its length direction or in the direction of the width W of the grinding chamber 3. As a result, the blade surfaces XA and XB contact the grinding surfaces 32A and 32B, 332A and 332B while being pressed against thereto, and the blade X is thus sharpened. Since the blade X is pressed against the abrasive wheel 30, 330, the rotary shaft 22, 322 is pressed and moved down within the supporting windows 14A 314A as shown in
In addition to these vertical pressing forces, the blade X receives lateral or horizontal pressing forces from one side (for instance, from the left side by the lateral coil spring 40A, 340A) and from another side (for instance, from the right side by the lateral coil spring 40B, 340B) when the blade X is moved back and forth in a reciprocating manner in the blade guide slit 5. More specifically, since the rotary shaft 22, 322 is set to have a biased or diagonal angle relationship (of 10-20 degrees) with respect to the blade guide slit 5, when the blade X is moved in one direction, one lateral coil spring (for instance the spring 40A, 340A) is compressed and the other lateral coil spring (for instance spring 40B, 340B) expands; and when the blade X is moved in another or opposite direction, then the coil spring compressed (spring 40A, 340A) expands and the spring expanded (spring 40B, 340B) is compressed. When grinding is thus performed and continued, these lateral or horizontal pressing forces that are opposite from each other in direction and are equal to each other in strength are repeatedly applied to the blade X. As a result, in addition to the vertical pressing forces given by the user and vertical coil springs 20, 320, the blade X repeatedly receives equal amount of lateral or side pressing forces from the two lateral springs 40, 340 (40A, 340A, 40B. 340B) and is pressed sideways substantially uniformly and repeatedly against the grinding surfaces 32A, 332A and 32B, 332B of the abrasive wheel 30, 330. The blade X is, accordingly, sharpened further evenly, efficiently and smoothly.
Also, during the back and forth movements of blade X with a pressing force applied thereto from above, the rotating abrasive wheel 30, 330 can come in contact with the liquid Lq in the sharpening assembly 10 or in the grinding chamber 3. This liquid Lq absorbs the heat generated during the grinding and prevents the blade X from dulling that would be caused by heat, and it washes away the grinding debris or residue and thus allows the grinding surfaces 32A, 332A and 32B, 332B clean and in good grinding conditions without getting clogged.
When the blade X is pressed against the abrasive wheel 30, 330 as described above, the pressing back forces by the vertical coil springs 22, 322 make the force of the abrasive wheel 30, 330 applying to the blade X substantially uniform. As a result, with an addition of the lateral or horizontal pressing forces by the lateral coil springs 40, 340, grinding of even a serrated edge knife such as bread slicing knives and fine ceramic blades and the like can be performed efficiently.
A single-edged blade Y shown in
As seen from the above, according to the present invention, a blade to be sharpened (including both double-edged blade and single-edged blade) receives pressing forces of not only in the vertical direction (or in the up and down directions) but also in the horizontal direction (or in the right and left directions). Accordingly, the blade is ground and sharpened smoothly and evenly, producing a sharp cutting edge.
In the above describe structure and operation, the sharpening assembly 10, 300 is provided with a pair of vertical coil springs and a pair of lateral coil springs. However, the object of the present invention can be accomplished by a structure that includes only a pair of lateral springs.
In this aspect of the present invention, as seen from
In addition, the sharpening assembly 110 further includes a rotary shaft 122. This rotary shaft 122 is provided within the sharpening assembly 110 horizontally with its both ends inside the supporting windows 114A of the vertical shaft supports 114. To the top surface of each one of the vertical shaft supports 114 is attached a holding piece 114C so as to cover the upper opening of each of the supporting windows 114A and prevent the rotary shaft 122 from being removed upwardly from the supporting windows 114A (or from the vertical shaft supports 114 of the sharpening assembly 110). The diameter of the rotary shaft 122 is (slightly) smaller than the width W″ and height H″ of the supporting window 114A. As a result, the rotating shaft 122 is rotatable within the supporting windows 114A.
The rotary shaft 122 is provided thereon with an abrasive wheel (abrasive element) 130, a pair of lateral coil springs 140 (140A and 140B) each on either side of the abrasive wheel 130, and a pair of washer 150 each on the far end side of each coil spring 140 from the abrasive wheel 130. This structure that includes the rotary shaft 122 with the abrasive wheel 130, the lateral coil springs 140 and the washers 150 thereon and the functions of the these parts are the same as those of the structure of the rotary shaft 22 having thereon the abrasive wheel 30, the lateral coil springs 40 and the washers 50 shown in
In addition, an asymmetric abrasive wheel 130′ as shown in
In the above-described sharpener, the sharpening assembly includes a box type grinder frame that is comprised of the facing vertical shaft supports 114 and side walls 116. However, since the rotary shaft 122 is supported only by the facing shaft supports 114, the side walls 116 can be eliminated.
In other words, as seen from
The above described sharpening assembly 110, 400 including the horizontal rotary shaft 122, 422 and the lateral coil springs 140, 440 are installed in the grinding chamber 3 shown in
In use, the sharpening assembly 110, 400 (in other words, two sharpening assemblies both having symmetric abrasive wheel, or both having asymmetric abrasive wheels or one having a symmetric abrasive wheel and the other having an asymmetric wheel) is set in the grinding chamber 3 by being held by the holding means 5. The sharpening assembly 110 can be filled with a liquid Lq, such as water or oil, and the grinding chamber 3 is covered by the cover casing 4. In use of the sharpening assembly 400, the liquid is provided inside the grinding chamber 3.
With the cover casing 4 thus set and the grip 2 gripped by one hand, the blade X of a knife held by another hand at the handle is inserted into the guide slit 5 and pressed down against the abrasive wheel 130, 430 so that the cutting edge XE of the blade X comes into contact with V-groove 132, 432 of the abrasive wheel 130, 430 and then moved back and forth inside the blade guide slit 5 along its length direction or in the direction of the width W of the grinding chamber 3. As a result, the blade surfaces XA and XB contact the grinding surfaces 132A and 132B, 432A and 432B while being pressed against thereto, and the blade X is thus sharpened.
More specifically, the blade X receives lateral pressing forces from one side (for instance from the left side by the lateral coil spring 140A, 440A) and from another side (for instance from the right side by the lateral coil spring 140B, 440B) when the blade X is moved back and forth in a reciprocating manner in the blade guide slit 5. In other words, since the rotary shaft 122, 422 is set to have a biased or diagonal angle relationship (of 10-20 degrees) with respect to the blade guide slit 5, when the blade X is moved in one direction, one lateral coil spring (for instance the spring 140A, 440A) is compressed and the other lateral coil spring (for instance spring 140B, 440B) expands, and when the blade X is moved in another or opposite direction, then the coil spring compressed (spring 140A, 440A) expands and the spring expanded (spring 140B, 440B) is compressed. When grinding is performed and continued, these lateral or horizontal pressing forces that are opposite from each other in direction and are equal to each other in strength are repeatedly applied to the blade X. As a result, the blade X repeatedly receives equal amount of lateral or side pressing forces from the two lateral springs 140 (140A, 140B), 440 (440A, 440B) and is pressed sideways substantially uniformly and repeatedly against the grinding surfaces 132A and 132B of the abrasive wheel 130 or the grinding surfaces 432A and 432B of the abrasive wheel 430. The blade X is thus sharpened evenly, efficiently and smoothly. The blade Y as shown in
As seen from the above, according to the above-described structure, since a blade to be sharpened (including both double-edged blade and single-edged blade) receives pressing forces in the horizontal direction (or in the right and left directions), the blade is ground and sharpened smoothly and evenly, producing a sharp cutting edge.
The above-described abrasive wheel 430 on the rotary shaft 422 can be indeed replaced by the abrasive wheel 130′ shown in
Furthermore, a single sharpening assembly 110, 400 can be installed in the grinding chamber 3 of the main frame casing 1 that is of a single type with the cover casing 4 having only one blade guide slit 5.
While the abrasive wheels 30, 130, 330, 430 are formed by the same material entirely, the materials that make the grinding surface 32A, 132A, 332A, 432A can be alumina- or silicon-carbide ceramics, and the like, and the materials that make the grinding surfaces 32B, 132B, 332B, 432B can be different substances including silica clay ceramics, or alumina fine ceramics or alumina new ceramics, forming the surfaces smooth and hard. This different substance grinding surfaces can be applied to the abrasive wheels 30′ and 130′ as well.
Furthermore, as seen from
Cylindrical stopper elements 550 are greater in diameter than the width of the supporting window 514A (see, for instance,
Also, though the coil springs are described as a horizontally urging means to keep the abrasive wheel to the mid point between the facing shaft supports of the sharpening assembly, any other urging means can be used instead in the present invention such as a so-called washer-less-spring that is made of plastic. In addition, a permanent magnet and/or rubber sheets can be affixed to the underside of the main frame casing so as to help prevent the sharpener from slipping during the use or grinding.
Number | Name | Date | Kind |
---|---|---|---|
7722443 | Levsen | May 2010 | B2 |
8585462 | Jensen et al. | Nov 2013 | B2 |
Number | Date | Country |
---|---|---|
S62-181860 | Aug 1987 | JP |
3007312 | Feb 1995 | JP |
3010973 | May 1995 | JP |
3128435 | Jan 2007 | JP |
Number | Date | Country | |
---|---|---|---|
20130295824 A1 | Nov 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13463642 | May 2012 | US |
Child | 13594650 | US |