The novel features which are characteristic of the blade sharpening device are set forth in the appended claims. However, the blade sharpening device, together with further embodiments and attendant advantages, will be best understood by reference to the following detailed description taken in connection with the accompanying drawings in which:
The present invention solves the problems in blade sharpening devices by providing a new and unique construction for consistent and effective sharpening of blades. Generally, the present invention is a blade sharpening device 10 designed for sharpening a blade 20 for a uniform sharpening of the edge 21 thereof. Most importantly, the present invention provides a sharpening path defined by a contour of the blade 20 with minimal user input
Now referring to
The base 30 contains a blade holder 40 for securing the blade 20 during sharpening. The blade holder 40, in one embodiment, contains a post 41 attached to the base 30 for securing the blade 20 during the sharpening process. The post 41 extends vertically from the top 30A of the base 30 and is stationary. A vertical stabilizer 42 is slidably movable along the post 41. The user may control a desired height of the vertical stabilizer 42 at anytime. In one embodiment, the post 41 has a metal strip 43 on the post 41 to facilitate the movement of the stabilizer 42. An adjustable screw 44 is inserted through the vertical stabilizer 42 to contact the metal strip 43. When the screw 44 is sufficiently tightened, it fixes the vertical stabilizer 42 in a fixed position against the post 41.
The vertical stabilizer 42 also includes a blade mount 45 for securing the blade 20 in a fixed horizontal position. The blade mount 45 consists of a clamp 45A attached to the vertical stabilizer 42 that secures the blade 20 in a horizontal position relative to the post 41. The clamp 45A is designed to accommodate blades of varying sizes and depths. A user tightens or loosens the blade mount 45 by turning a tension knob 45B located within the blade mount 45.
The blade holder 40 also contains at least one scale 70 connected to the post 41 and to the vertical stabilizer 42. In an alternative embodiment, two scales 70 are connected to the post 41 and to the blade mount 45. A user may select the force applied by the scale 70 in either a downward or upward direction. The direction of the force is determined by whether a top edge 21A or a bottom edge 21B of the blade 20 is being sharpened. If the top edge 21A is being sharpened (as shown in
A guide 60, in one embodiment, consists of a top plate 60A and a bottom plate 60B. The top plate 60A and the bottom plate 60B are connected by two sides 60C, 60D to form a shape of a box. In addition, the wheels 61A-D are attached to the bottom plate 60B to allow slidable movement of the guide 60 along the top 30A of the base 30. The wheels 61A-D substantially protrudes from the bottom plate 60B to contact the sides 30C, 30D of the base 30. Furthermore, a handle 62 is attached to the bottom plate 60B to facilitate the movement of the guide 60 relative to the top 30A of the base 30.
The guide 60 contains material capable of receiving an impression defining the contour of the blade 20. In one embodiment, the material is a series of metallic sheets 63, preferably with a small width. The sheets 63 are positioned between the top plate 60A and bottom plate 60B, which restricts the movement of the sheets 63 along a Y axis. The sheets 63 have a sufficient length capable of moving along an X axis in opposite correlation to the contour of the blade 20. The sheets 63 are vertically stacked between the sides 60C,60D of the guide 60 to prevent any movement along the Z axis. In one embodiment, at least one hundred metallic sheets 63 are positioned between the sides 60C,60D. It is, however, contemplated that materials other than metallic sheets 63, such as memory foam or rods, may be used to create an impression by defining the contour of the blade 20.
Now referring to
Now returning to
At least one axle 51A, 51B is connected to a pivot structure 55 for angling the abrasive surface 51 relative to the edge 21 of the blade 20. The pivot structure 55 contains a plate 55A connected to at least one axle 51A, 51B. A knob 55B for manipulation of the pivot structure 55 by a user is connected to the plate 55A. To angle the abrasive surface 51, the user turns the pivot structure 55 according to the respective need. If the top edge 21A (as shown in
The carriage 50 also contains a means for interacting with the impression of the contour of the blade 20 defined by the sheets 63 of the guide 60. In one embodiment, the means for interacting with the impression is at least one wheel extension 56A, 56B vertically connected on a bottom surface of the mounting plate 50. In a preferred embodiment, two wheel extensions 56A, 56B are vertically connected to the bottom surface of the mounting plate 50. The wheel extensions 56A, 56B have a sufficient length to contact an outer edge 63A of the sheets 63. It is contemplated that a means other than wheel extensions 56A, 56B, such as magnetic posts or rollers, may track along the sheets 63.
Now referring to
Now referring to
Now referring to
In a second embodiment of the present invention, the blade sharpening device 10 contains a base 30, guide 60, and carriage 50. The guide 60 defines a preformed sharpening path, as opposed to creating an impression during the sharpening, substantially aligning with the contour of the blade 20. The preformed sharpening path is created by taking an impression of the contour of the blade 20 during the manufacturing process of the blade sharpening device 10. The carriage 50 sharpens the edge 21 of the blade 20 with the abrasive surface 51 while tracking the preformed sharpening path of the guide 60. The angle of the abrasive surface 51 may also be adjusted according to markings on the pivot structure 55 for the specific knife or blade 20. It should be noted that multiple preformed sharpening paths of the guide 60 may be created that are suitable for a set of knives or blades.
During operation of the second embodiment, the user selects a preformed sharpening path on the guide 60 and angle of the abrasive surface 51 according to the requirements of specific knife blade 20. For example, a manufacturer of a set knives or blades may provide a preformed sharpening path for each of the knives within the set. Each knife may have a number or other symbol associated with the knife to correspond to a particular setting on the blade sharpening device—corresponding to the angle of the abrasive surface 51 or the preformed sharpening path of the guide 60. Subsequently, the carriage 50 tracks the preformed sharpening path while utilizing the specific angle optimal for that specific knife or blade setting as recommended by the manufacturer of the knife or blade set. While the carriage 50 tracks the preformed sharpening path of the guide 60, the abrasive surface 51 sharpens the edge 21 of the blade 20 to provide a consistent contour and uniform edge 21 along the blade 20.
Therefore, the present invention provides a blade sharpening device 10 that requires less skill and provides a consistent contour and more uniform edge 21 of a blade 20 than prior art blade sharpeners. The blade sharpening device 10 includes a unique construction that has a guide 60 capable of receiving an impression of the contour of the blade 20 before or after the manufacturing of the device 10. The carriage 50 contains an abrasive surface 51 and tracks along the guide 60 while sharpening the edge 21 of the blade 20. Together, the guide 60 and carriage 50 direct the movement and angle of the abrasive surface 51 along the contour of the blade 20 for a uniform sharpening of the edge thereof.
It would be appreciated by those skilled in the art that various changes and modifications can be made to the illustrated embodiments without departing from the spirit of the present invention. All such modifications and changes are intended to be covered by the appended claims and the present invention.
This application is related to and claims priority from earlier filed provisional patent application Ser. No. 60/852,940, filed Oct. 20, 2006.
Number | Date | Country | |
---|---|---|---|
60852940 | Oct 2006 | US |