The present invention relates to power tools and more particularly, to a braking device for a power tool, such as a hedge trimmer.
A portable trimmer, such as a shoulder-type portable trimmer, a backpack-type portable trimmer, a hedge trimmer or the like, generally employs a driving mechanism which transmits the power generated by an internal combustion engine to a cutter through a centrifugal clutch. In these portable trimmers, a brake device typically includes a friction member, such as a brake shoe or a brake band, which slidably engages with a clutch drum of the centrifugal clutch to prevent a cutter from free rotation. In operation, when an operator grips a brake lever, the brake device is actuated to stop rotation of the clutch drum and the cutter is prevented from being rotated unexpectedly. After having released the brake lever and thereby de-activating the brake device, the operator holds a throttle lever, adjusts a throttle opening of a throttle valve to control the power from the internal combustion engine, and thereby drives the cutter through the clutch drum to perform trimming work.
In this type of trimmer, however, if the brake device is released while the throttle lever is being gripped, the cutter might suddenly start to rotate at high speed before the safety at surrounding work operations is confirmed and might possibly cause a serious accident.
The following presents a simplified summary of the invention in order to provide a basic understanding of some aspects of the invention. This summary is not an extensive overview of the invention. It is intended to neither identify key or critical elements of the invention nor delineate the scope of the invention. Its sole purpose is to present some concepts of the invention in a simplified form as a prelude to the more detailed description that is presented later.
In accordance with an aspect of the present invention, a braking system for a power tool includes a roller bearing clutch mechanism provided within a drive assembly; and a stop pin which interacts with the roller bearing clutch mechanism to minimize a stopping time of a blade of the power tool. The stop pin engages the drive assembly via a throttle cable with a coiled return spring.
In according with another aspect of the present invention, a braking system for a power tool is provided. The braking system includes a drive assembly having a drive shaft, wherein the drive shaft is supported by bearings on only one end of the drive shaft. The braking system also includes a positive stop located at a top portion of the drive assembly; and a stop pin to engage the positive stop to minimize a blade stopping time of the power tool.
In accordance with yet another aspect of the present invention, a braking system for a power tool is provided. The braking system includes a drive assembly, which comprises a drive shaft; a counterweight secured to a bottom portion of the drive shaft; and a positive stop provided at a top portion of the drive shaft. The braking system further includes a stop pin that engages the positive stop to stop a cutting blade of the power tool.
To the accomplishment of the foregoing and related ends, the invention then, comprises the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative aspects of the invention. These aspects are indicative, however, of but a few of the various ways in which the principles of the invention may be employed and the present invention is intended to include all such aspects and their equivalents. Other objects, advantages and novel features of the invention will become apparent from the following detailed description of the invention when considered in conjunction with the drawings.
Referring initially to
The hedge trimmer 10 generally comprises a frame 12, an engine 14 connected to the frame 12, and a cutting blade 16. The frame 12 can be made of metal and/or plastic and includes a rear handle section 18 and a front handle 20 section. The engine 14, in the embodiment shown, is an internal combustion engine. However, any other suitable motor (e.g., an electric motor) could also be provided. The engine 14 is fixedly connected to the frame 12. The trimmer 10 has a throttle device, attached to the frame 12, which has a throttle trigger 24 at the rear handle section 18, and a clutch (not shown) located in the frame 12 that connects the engine 14 to the cutting blade 16. The throttle trigger 24 is generally biased in a home position or low motor speed position via a trigger spring (not shown). The trigger spring is typically a coiled spring located in the rear handle section 18; however, any suitable means to bias the trigger 24 at its low motor speed position can be provided.
Turning now to
Turning back to
Turning now to
A top portion of the bearing cage 78 includes one or more positive stops 80. In this example, two positive stops 80 are provided. Further within this example, each positive stop 80 of the roller bearing clutch mechanism 73 is an arm projecting radially outwardly from a top portion of the bearing cage 78. The two arms are at opposing sides of the bearing cage 78. The arms project to an outer periphery of the annular portion 62. The arms are employed in combination with the stop pin 50 to minimize a blade stopping time for the hedge trimmer 10, as will be described in further detail below.
The drive shaft 70 projects through a central aperture 81 in the bearing cage 78. The aperture diameter of the bearing cage 78 corresponds with an outer diameter of a drive bushing 82 coupled to the drive shaft 70. The drive bushing 82 may be may of a durable material (e.g., a metal). The drive bushing 82 also includes bearing slots 84, which correspond with the bearing slots 76 in the bearing cage 78, to house the roller bearings 74. A counterweight 85 is secured to a bottom portion of the drive shaft 70 to facilitate driving a blade of the hedge trimmer 10 while the drive shaft 70 rotates. First and second O-rings 86 and 88 are also included in the drive assembly 64. The first O-ring 86 is provided between the drive shaft 70 and the gear 72. The second O-ring 88 is provided between the gear 72 and the bearing cage 78. When the components of the drive assembly 64 are assembled together, a retainer clip 90 is employed in connection with a clip groove 92 to facilitate retaining the bearing cage 78 on the drive shaft 70.
Turning now to
During operation of the hedge trimmer 10, the throttle trigger 24 operates the cable assembly 32 for engaging and disengaging the stop pin 50 with the positive stop 80 on the drive assembly 64. When the trigger 24 is in a released position, the stop pin 50 is allowed to fully engage into the positive stop 80 on the bearing cage 78 at a top portion of the drive assembly 64, which is located near a bottom portion of the gear box 56. The coiled spring mechanism 58 keeps the stop pin 50 in position. When the stop pin 50 is engaged with the positive stop 80 of the bearing cage 78, the drive shaft 70, roller bearings 74, bearing cage 78, and cutting blade drive bushing 82 are locked together and stopped, while the drive gear 72 is allowed to rotate with the running engine 14. Thus, besides stopping the cutting blade 16 when the stop pin 50 is engaged, the present invention also allows the hedge trimmer 10 to be started at a fast idle speed, without pulling the trigger 24 and with no blade movement. The fast idle speed for starting is accomplished with the use of a unique carburetor.
When the trigger 24 is pulled, on the way to wide open throttle, the attached cable 38 pulls the stop pin 50 out of the positive stop 80 in the bearing cage 78, allowing the roller bearing clutch to engage and lock up the drive gear 72 to the drive shaft 70, thereby driving the cutting blade 16. The first and second O-rings 86 and 88 are employed as a stabilizing feature and for smooth operation.
What has been described above includes exemplary implementations of the present invention. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the present invention, but one of ordinary skill in the art will recognize that many further combinations and permutations of the present invention are possible. Accordingly, the present invention is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3361165 | Irgens | Jan 1968 | A |
4148173 | Hoff | Apr 1979 | A |
4875384 | Hirayama et al. | Oct 1989 | A |
4898039 | Aiyama et al. | Feb 1990 | A |
5150523 | McCurry | Sep 1992 | A |
5155914 | Ohkanda | Oct 1992 | A |
5305528 | Garrison | Apr 1994 | A |
5531027 | Martinez et al. | Jul 1996 | A |
5653030 | Yokoyama et al. | Aug 1997 | A |
5689887 | Heywood et al. | Nov 1997 | A |
5718052 | Taomo et al. | Feb 1998 | A |
5720371 | Kimura et al. | Feb 1998 | A |
5806191 | Yokoyama et al. | Sep 1998 | A |
5947866 | Nagashima | Sep 1999 | A |
6021757 | Nagashima | Feb 2000 | A |
6094822 | Lange et al. | Aug 2000 | A |
6105258 | Akaike | Aug 2000 | A |
6108867 | Nagashima | Aug 2000 | A |
6129189 | Kerr | Oct 2000 | A |
6167973 | Nagashima | Jan 2001 | B1 |
6170159 | Kramer et al. | Jan 2001 | B1 |
6454245 | Kobayashi | Sep 2002 | B2 |
6598299 | Stark et al. | Jul 2003 | B2 |
6640444 | Harada et al. | Nov 2003 | B1 |
Number | Date | Country |
---|---|---|
40 05 133 | Aug 1991 | DE |
4101705 | Mar 1992 | DE |
44 18 102 | Dec 1995 | DE |
44 21 746 | Jan 1996 | DE |
Number | Date | Country | |
---|---|---|---|
20050257379 A1 | Nov 2005 | US |