The present disclosure relates to a blade unit for shaving a body hair of an animal such as a human, and an electric razor.
Conventionally, there is a blade unit comprising a plurality of types of outer blades. Such a blade unit is used for an electric razor. When the blade unit is pressed against a skin surface when using an electric razor, the blade unit is configured such that each outer blade sinks independently according to the unevenness of the skin. The blade unit described in PTL 1 employs a mechanism in which each outer blade sinks independently within a predetermined range, and each outer blade sinks in conjunction with each other when the predetermined range is exceeded.
However, the conventional blade unit has a structure that allows other types of outer blades to sink more than a slit-shaped outer blade that scoops up and cuts relatively long hair, so that an edge of a tip of the slit-shaped outer blade could cause severe damage to the skin.
The present disclosure has been made in view of the above problem, and an object of the present disclosure is to provide a blade unit in which an outer blade for scooping up body hair does not project more than other types of outer blades, and an electric razor provided with the blade unit.
In order to achieve the above object, the electric razor, which is one of the present disclosures, is an electric razor comprising a head portion comprising a comb-shaped outer blade and at least one mesh-shaped outer blade, the head portion holding the comb-shaped outer blade and the at least one mesh-shaped outer blade each extending in a first direction so as to be movable in a second direction intersecting the first direction, wherein the electric razor comprises a comb blade urging member that urges the comb-shaped outer blade with respect to the head portion in the second direction, a mesh blade urging member that urges the at least one mesh-shaped outer blade with respect to the head portion in the second direction, and an engaging mechanism that, when the at least one mesh-shaped outer blade is moved toward the head portion against urging force of the mesh blade urging member, moves the comb-shaped outer blade in a state where the at least one mesh-shaped outer blade projects from the comb-shaped outer blade with respect to the head portion.
Furthermore, in order to achieve the above object, another blade unit of the present disclosure is a blade unit configured to be attached to an electric razor, comprising a comb-shaped outer blade and at least one mesh-shaped outer blade, the blade unit comprising a unit base that holds the comb-shaped outer blade extending and the at least one mesh-shaped outer blade each in a first direction so as to be movable in a second direction intersecting the first direction, a comb blade urging member that urges the comb-shaped outer blade with respect to the unit base in the second direction, a mesh blade urging member that urges the at least one mesh-shaped outer blade with respect to the unit base in the second direction; and an engaging mechanism that, when the at least one mesh-shaped outer blade is moved toward the unit base against urging force of the mesh blade urging member, moves the comb-shaped outer blade in a state where the comb-shaped outer blade does not project from the at least one mesh-shaped outer blade with respect to the unit base.
In the present disclosure, while the comb-shaped outer blade exerts a higher scooping effect than the mesh-shaped outer blades for hairs growing in different directions or lying hairs, it is possible to achieve both a high hair scooping effect and suppression of damage to the skin due to the mechanism that prevents the comb-shaped outer blade from projecting more than the mesh-shaped outer blades.
Hereinafter, exemplary embodiments of a comb-shaped outer blade, a blade unit, and an electric razor according to the present disclosure will be described with reference to the drawings. It should be noted that the following exemplary embodiments are intended to give an example for explaining the present disclosure, and are not intended to limit the present disclosure. For example, a shape, a structure, a material, a component, a relative positional relationship, a connection state, a numerical value, a mathematical formula, contents of each stage in a method, an order of each stage, etc. shown in the following exemplary embodiments are examples, and may include contents that are not described below. Furthermore, geometric expressions such as parallel and orthogonal may be used, but these expressions do not indicate mathematical rigor, and include substantially permissible errors and deviations. In addition, expressions such as simultaneous and identical also include a substantially permissible range.
Furthermore, the drawings are schematic views in which emphasis, omission, and ratio adjustment are appropriately performed in order to describe the present disclosure, and may be different from actual shapes, positional relationships, and ratios.
Further, in the following, a plurality of disclosures may be comprehensively described as one exemplary embodiment. In addition, some of the contents described below are described as arbitrary components relating to the present disclosure.
Electric razor 300 is a device for cutting and removing body hair such as a beard using an electric blade, and includes grip portion 310 and head portion 320.
Grip portion 310 is a portion gripped by a user when using electric razor 300. In the case of the present exemplary embodiment, grip portion 310 also functions as a housing for accommodating a control device that controls the drive of a shaving blade, a battery, and the like. Power-supply switch 311 or the like for turning on or off a power supply is provided on an outer surface of grip portion 310.
Head portion 320 is a member to which blade unit 200 provided with a blade for cutting body hair is detachably attached and connected to one end of grip portion 310. In the case of the present exemplary embodiment, head portion 320 is relatively operably connected to grip portion 310. In the present exemplary embodiment, a Y-axis direction is a direction in which an outer blade and a sliding member extend, an X-axis direction is a direction in which the outer blade and the sliding member are arranged in parallel, and a Z-axis direction is a direction in which the outer blade is movable with respect to unit base 230 (see
In the case of the present exemplary embodiment, in a first direction (the Y-axis direction in the drawing) in which the outer blades extend, and a second direction (the Z-axis direction in the drawing) in which the outer blades move with respect to unit base 230, and a third direction (the X-axis direction in the drawing) that intersects the first and second directions, blade unit 200 includes first set 101 and second set 102, each of which is a set of blades in which mesh-shaped outer blades 210 are arranged on both sides of comb-shaped outer blade 100. First set 101 is configured by three outer blades, each having a different function, and along the third direction, first mesh-shaped outer blades 210 suitable for shaving short hair, comb-shaped outer blade 100 suitable for shaving long hair, and second mesh-shaped outer blades 210 suitable for shaving frizzy beards in addition to shaving short hair are arranged in this order. Furthermore, second set 102 also has three outer blades having the same configuration as first set 101. First set 101 and second set 102 are attached to unit base 230 so as to be symmetrical with respect to a plane including the first direction and the second direction, and form six outer blades. With this arrangement, comb-shaped outer blade 100 is disposed next to mesh-shaped outer blades 210 in any of moving directions (X-axis direction in the drawing) of electric razor 300 during shaving, and even when body hair in a narrow area such as under the nose is shaved, comb-shaped outer blade 100 comes into contact with the skin, and it is possible to scoop up and cut relatively long body hair.
Base portion 110 is a rod-shaped portion extending in the first direction (Y-axis direction in the drawing). At both end portions of base portion 110, long end portions 111 having the same bending shape as bent blade portion 140 and longer in the first direction than bent blade portion 140 are provided. In the case of the present exemplary embodiment, base portion 110 is curved in an arc shape such that a central portion projects forward (Z+ side in the drawing) from both ends in a plane extending in the first direction and the second direction which is orthogonal to the first direction (inside the YZ plane in the drawing). Along with this, the plurality of open blade portions 130 and the plurality of bent blade portions 140 are arranged along the curvature of base portion 110. Since comb-shaped outer blade 100 is curved in a convex shape, comb-shaped outer blade 100 can be fitted to a recessed portion such as under a human chin, and shaving efficiency can be improved.
Attaching portion 120 is a plate-shaped portion extending in the first direction and in the second direction which is orthogonal to the first direction. In the case of the present exemplary embodiment, attaching portion 120 includes outer blade engaging claws 121 that engages with outer blade protruding portions 183 of comb blade holding members 180, which will be described later (see
In the case of the present exemplary embodiment, open blade portion 130 extends in the first direction and the third direction (XY plane in the drawing), includes open upper surface portion 131 that is flush with base portion 110, and has a rectangular rod shape as a whole.
A tip of open upper surface portion 131 in the third direction includes open inclined surface portion 132 that approaches attaching portion 120 as a distance from base portion 110 increases. The thickness of the tip of open blade portion 130 (the length in the Z-axis direction in the drawing) reduces at open inclined surface portion 132, so that even body hair extending along the edge of a skin surface can be effectively scooped up.
The corners of open upper surface portion 131 and open side surface portion 133 of open blade portion 130 are loosely connected by R chamfering or the like. Furthermore, open side surface portion 133 and open inclined surface portion 132, and open inclined surface portion 132 and a surface of the tip are also loosely connected by R chamfering or the like. As a result, damage to the skin when comb-shaped outer blade 100 rubs against the skin surface is reduced.
Bent blade portions 140 are arranged side by side with open blade portions 130 in the first direction, and are portions connected to base portion 110 and attaching portion 120. In the case of the present exemplary embodiment, bent blade portions 140 and open blade portions 130 are arranged side by side in parallel alternately. The inventors have obtained knowledge by experiment that, even when bent blade portions 140 and open blade portions 130 are arranged alternately, it is possible to obtain the same body hair scooping effect as when the plurality of open blade portions 130 are arranged between bent blade portions 140. Furthermore, this makes it possible to maintain a high structural strength of comb-shaped outer blade 100.
Bent blade portion 140 includes projecting portion 141 projecting from base portion 110 along the third direction, bent portion 142 bending (i.e., curving) from a tip of projecting portion 141 toward attaching portion 120, and connecting portion 143. Connecting portion 143 is inclined in such a manner that connecting portion 143 approaches base portion 110 in the third direction as a distance from bent portion 142 increases in the second direction and that connecting portion 143 connects bent portion 142 with attaching portion 120. By using bent blade portion 140 having such a shape, an angle formed by projecting portion 141 and connecting portion 143 is an acute angle, so that bent portion 142 arranged at the tip effectively scoops up the lying body hair while reducing damage to the skin, and can guide the body hair between the adjacent blade portions.
In the case of the present exemplary embodiment, as shown by a broken line in
Furthermore, bent blade portion 140 includes bent inclined surface 144 disposed in substantially the same plane as the open inclined surface portion of adjacent open blade portions 130, and the thickness of bent portion 142 in the second direction is reduced to improve the effect of scooping up body hair. Similar to open blade portion 130, bent blade portion 140 has a corner portion between bent upper surface portion 145 and bent side surface portion 146 loosely connected by R chamfering or the like to reduce damage to the skin. The tip of projecting portion 141 of bent blade portion 140 is narrower than base end portion 158 (namely, the length of projecting portion 141 in the first direction is shorter than that of base end portion 158). Base end portion 158 refers to a root portion of open blade portion 130 connected to base portion 110. As a result, the effect of guiding the scooped hair between the adjacent blade portions can be enhanced.
Further, as illustrated in
As a result, damage to the skin of comb-shaped outer blade 100 is suppressed.
First inner blade 170 is disposed inside comb-shaped outer blade 100 (that is, on an opposite side of the skin contact surface), and reciprocates in the first direction while rubbing against comb-shaped outer blade 100, thereby cutting body hair inserted between the adjacent blades of comb-shaped outer blade 100 (that is, between open side surface portion 133 and bent side surface portion 146). In the case of the present exemplary embodiment, first inner blade 170 has a shape in which slits are arranged in the first direction. First inner blade 170 is fixedly attached to first resin joint member 171. In first inner blade 170, a drive connecting portion (not illustrated) extending from head portion 320 is inserted into a recess provided in the center of first joint member 171 to apply reciprocating driving force. First joint member 171 is not specified as resin. The drive connecting portion is not specified as long as it can perform a function of drive transmission such as a metal pin or a molded product, or a round shape or a square shape.
Comb blade holding members 180 are resin members that are fixedly attached to both end portions of comb-shaped outer blade 100 in the first direction. Comb blade holding members 180 integrally include first facing portions 181 facing first inner blade 170 in the second direction. First urging member 182 connected to first joint member 171 is attached to first facing portion 181. First urging member 182 is a coil spring or the like, and allows reciprocating movement of first inner blade 170 while pressing first inner blade 170 against a back surface of comb-shaped outer blade 100 via first joint member 171 on the basis of first facing portion 181.
A method of joining comb-shaped outer blade 100 and comb blade holding members 180 is not particularly limited. In the case of the present exemplary embodiment, comb-shaped outer blade 100 and comb blade holding members 180 are temporarily fixed by engaging outer blade protruding portions 183 of comb blade holding members 180 and outer blade engaging claws 121 of attaching portion 120 with each other. Then, the tips of outer blade protruding portions 183 are melted and expanded to form first melt-expanded portions 174, and comb-shaped outer blade 100 and comb blade holding members 180 are fixed. Furthermore, a material of comb blade holding members 180 is not limited to resin, and a method of fixing comb blade holding members 180 to comb-shaped outer blade 100 may be one of caulking, hook engagement and welding, or a combination thereof.
A method of joining first inner blade 170 and first joint member 171 is not particularly limited. In the case of the present exemplary embodiment, the method of joining first inner blade 170 and first joint member 171 is the same as the method of joining comb-shaped outer blade 100 and comb blade holding members 180. First inner blade 170 made of metal is provided with inner blade engaging claws 172, and is temporarily fixed by hook-engaging to cylindrical inner blade engaging protrusions 173 provided on first joint member 171. Then, the tips of inner blade engaging protrusions 173 are melted and expanded to form second melt-expanded portions 175, and the first inner blade and first joint member 171 are fixed. Although first melt-expanded portions 174 and second melt-expanded portions 175 are simplified and drawn in
Mesh-shaped outer blades 210 is an outer blade for an electric razor attached to electric razor 300, and extends in the first direction along comb-shaped outer blade 100, and is curved in a plane extending in the second direction and the third direction (in the XZ plane in the drawing). In the case of the present exemplary embodiment, similarly to base portion 110 of comb-shaped outer blade 100, mesh-shaped outer blades 210 is curved in an arc shape such that a central portion projects forward (Z+ side in the drawing) from both ends in a plane extending in the first direction and the second direction (inside the YZ plane in the drawing). In addition, since mesh-shaped outer blades 210 is curved in a convex shape, comb-shaped outer blade 100 can be fitted to a recessed part such as under a person's jaw, and the effect that makes it possible to improve the shaving efficiency is the same as that of comb-shaped outer blade 100, and the effect can be further enhanced because of the curves of both comb-shaped outer blade 100 and mesh-shaped outer blades 210.
Mesh-shaped outer blades 210 is a semi-cylindrical outer blade having a plurality of through-holes in a mesh shape, and is used for cutting relatively short body hair. In the case of the present exemplary embodiment, mesh-shaped outer blades 210 is formed by processing a large number of through-holes by pressing on a sheet metal thinner than the sheet metal constituting comb-shaped outer blade 100, and is fixed to resin-made mesh blade fixing member 212 so as to maintain a curved state. Note that, a processing method of mesh-shaped outer blades 210 may be sintering, injection molding, etching processing, or electroforming, and a method of fixing mesh-shaped outer blades 210 and mesh blade fixing member 212 may be a processing method such as welding with two members, or another processing method or fixing method.
Second inner blade 211 is disposed inside mesh-shaped outer blades 210 and reciprocates in the first direction while rubbing against mesh-shaped outer blades 210, so that relatively short body hairs inserted into the through-holes of mesh-shaped outer blades 210 are cut. In the case of the present exemplary embodiment, second inner blade 211 has a shape in which arch-shaped blades each of which is curved in a plane extending in the second direction and the third direction have been arranged in the first direction in such a manner that a slit is interposed between adjacent two arch-shaped blades. Second inner blade 211 is fixedly attached to second joint member 214 made of resin. In second inner blade 211, a drive connecting portion (not illustrated) extending from head portion 320 is inserted into a recess provided in the center of second joint member 214 to apply reciprocating driving force. Note that the drive connecting portion may be a metal pin or a molded product as a material, and a round shape, a square shape, or the like as a shape, and is not particularly limited as long as a drive transmission function can be achieved.
Mesh blade holding members 213 are resin members that are fixedly attached to both end portions of mesh-shaped outer blades 210. Mesh blade holding members 213 integrally include second facing portions 215 facing second inner blade 211 in the second direction. Second urging member 216 connected to second joint member 214 is attached to second facing portion 215. Second urging member 216 is a coil spring or the like, and allows reciprocating movement of second inner blade 211 while pressing second inner blade 211 against a back surface of mesh-shaped outer blades 210 (that is, a reverse side of the skin contact surface) via second joint member 214 on the basis of second facing portion 215. Furthermore, mesh blade holding members 213 are not limited to resin.
Unit base 230 includes second guide portions 234 that guide mesh-shaped outer blades 210 in the second direction via mesh blade holding members 213 of mesh-shaped blade unit 104. In the case of the present exemplary embodiment, first guide portions 233 and second guide portions 234 are provided with grooves penetrating in the first direction and extending in the second direction in a frame portion of unit base 230. First guide portions 233 engage with a pair of first ridge portions 184 provided on comb blade holding members 180, and guide the movement of comb blade unit 103 in the plane formed by the first direction and the second direction. Second guide portions 234 engage with a pair of second ridge portions 217 provided on mesh blade holding members 213, and guide the movement of mesh-shaped blade unit 104 in the plane formed by the first direction and the second direction.
Furthermore, first guide portions 233 include first regulation portions 235 that regulate an amount of projection of comb blade unit 103 with respect to unit base 230, and second guide portions 234 include second regulation portions 236 that regulate an amount of projection of mesh-shaped blade unit 104 with respect to unit base 230. First regulation portions 235 and second regulation portions 236 have fixed side protruding portions 280 (see
As illustrated in
Mesh blade urging members 232 are members that urge mesh-shaped outer blades 210 outward in the second direction (Z+ direction in the drawing) with respect to unit base 230. In the case of the present exemplary embodiment, mesh blade urging members 232 are coil springs or the like, and are disposed between unit base 230 and mesh blade holding members 213 of mesh-shaped blade unit 104 at both end portions of mesh-shaped blade unit 104 in the first direction. In the state where mesh-shaped outer blades 210 are not pressed in the second direction, the urging force of mesh blade urging members 232 maintain a state in which the movement of comb blade unit 103 is regulated by first regulating portions 235 provided on unit base 230, and as illustrated in
First engaging portion 241 is a member capable of regulating the movement of comb-shaped outer blade 100 in a projecting direction (Z+ direction in the drawing) by engaging with second engaging portion 242 in the second direction. The arrangement positions and attitudes of first engaging portions 241 are not particularly limited, but the first engaging portions are provided on the pair of comb blade holding members 180, which are included in comb blade unit 103 so as to project toward mesh-shaped blade unit 104.
Second engaging portions 242 are members capable of transmitting force to comb blade unit 103 by engaging with first engaging portions 241, and moving comb-shaped outer blade 100 toward unit base 230 against comb blade urging members 231 when mesh-shaped blade unit 104 is pressed toward unit base 230 in the second direction. The arrangement positions of second engaging portions 242 are located outside first engaging portions 241 (that is, an upper side in the second direction), and second engaging portions 242 engage with first engaging portions 241 to regulate the movement of comb-shaped outer blade 100 in the second direction such that comb-shaped outer blade 100 does not project from mesh-shaped outer blades 210. Second engaging portions 242 are provided at both end portions of mesh blade holding members 213 included in mesh-shaped blade unit 104 in the first direction so as to project toward comb blade unit 103.
The operation mode of engagement mechanism 240 will be described. In the state where mesh-shaped outer blades 210 and comb outer blade 100 are not pressed (
Next, as illustrated in
Further, as illustrated in
Sliding member 220 is attached to a holding member that holds an outer blade disposed in the vicinity thereof. In the case of the present exemplary embodiment, sliding member 220 is rotatably attached to bearing portion 221 projecting diagonally upward from one of mesh blade holding members 213 disposed in the nearest vicinity toward adjacent mesh-shaped outer blades 210. As a result, sliding member 220 can sink in the second direction together with mesh-shaped outer blades 210, and can maintain the state in which the sliding member slightly projects from mesh-shaped outer blades 210. Note that, although sliding member 220 is attached to bearing portion 221 in the present exemplary embodiment, sliding member 220 can also be attached to unit base 230, for example, but it is preferable that the sliding member is attached to bearing portion 221 as in the present exemplary embodiment because the projecting state of sliding member 220 is more stable.
At least two outer blades are arranged on both sides of sliding member 220. In the case of the present exemplary embodiment, the same number of outer blades are arranged on both sides of sliding member 220, three each. That is, blade unit 200 has an even number of outer blades, and sliding member 220 is arranged in the center thereof. In other words, it is sufficient that two or more outer blades are arranged on both sides of sliding member 220, and the number of outer blades arranged on both sides of sliding member 220 is not particularly limited.
Different types of outer blades are arranged on one side of sliding member 220. In the case of the present exemplary embodiment, one of the outer blades is comb-shaped outer blade 100, and the other is mesh-shaped outer blades 210. Blade unit 200 includes first set 101 and second set 102 in which mesh-shaped outer blades 210 are arranged on both sides of comb-shaped outer blade 100, and sliding member 220 is arranged between first set 101 and second set 102. That is, mesh-shaped outer blades 210 are arranged immediately on both sides of sliding member 220. As a result, sliding member 220 can be arranged in a valley space formed by densely arranged mesh-shaped outer blades 210, and entire blade unit 200 can be made compact. Furthermore, sliding member 220 can prevent the skin from being bitten into the valley space when blade unit 200 is pressed against the skin to reduce damage to the skin.
In electric razor 300 and blade unit 200 directed to the above-described exemplary embodiment, comb-shaped outer blade 100 does not project more than mesh-shaped outer blades 210 by engaging mechanism 240 regardless of the shape of the skin surface and the pressing direction of electric razor 300 against the skin. Therefore, it is possible to suppress the damage to the skin caused by the tip of a blade of comb-shaped outer blade 100 strongly biting into the skin. Further, comb-shaped outer blade 100 can effectively scoop up and cut relatively long body hair that grows along the skin surface on the basis of the shape of comb-shaped outer blade 100, even when comb-shaped outer blade 100 does not project more than mesh-shaped outer blades 210.
Note that the present disclosure is not limited to the above exemplary embodiment. For example, another exemplary embodiment achieved by arbitrarily combining the components described in the present specification or excluding some of the components may be an exemplary embodiment of the present disclosure. Further, the present disclosure also includes modifications obtained by making various modifications to the above-described exemplary embodiment, which are conceivable by those skilled in the art without departing from the spirit of the present disclosure, that is, the meaning indicated by the wording described in the claims.
For example, in the above-described exemplary embodiment, the case of six blades has been described, but blade unit 200 may have any number of blades as long as blade unit 200 includes comb-shaped outer blade 100 and mesh-shaped outer blades 210.
Further, as comb-shaped outer blade 100, the case where open blade portions 130 and bent blade portions 140 are alternately arranged with the slit extending in the third direction interposed therebetween has been described, but the shape of comb-shaped outer blade 100 is not limited thereto.
For example, as illustrated in
Further, as illustrated in
Furthermore, as illustrated in
Further, as illustrated in
Further, as illustrated in
Further, as illustrated in
Further, as illustrated in
Further, the plurality of bent blade portions 140 may be arranged between adjacent open blade portions 130, and the plurality of open blade portions 130 may be arranged between adjacent bent blade portions 140.
Further, comb-shaped outer blade 100 and mesh-shaped outer blades 210 may be not only integrally shaped from sheet metal but also formed by joining a plurality of members by welding or the like. Specifically, for example, base portion 110 and at least one of open blade portions 130 and bent blade portions 140 are integrally formed, and comb-shaped outer blade 100 may be formed by joining long end portion 111 and attaching portion 120, both of which have been separately formed, to base portion 110 and the other of open blade portions 130 and bent blade portions 140 by welding or the like.
Further, although open blade portions 130 and bent blade portions 140 are arranged symmetrically with respect to base portion 110, open blade portions 130 and bent blade portions 140 may be arranged side by side in the third direction.
Further, the width of a tip end portion (that is, the length in the first direction) of open blade portion 130 may be narrower than the width of base end portion 158, similarly to bent blade portion 140.
Further, although the case where blade unit 200 can be attached to and detached from head portion 320 together with unit base 230 has been described, head portion 320 may have a portion having the same function as unit base 230.
Further, although first regulation portions 235 and second regulation portions 236 that regulate the projection amount of comb blade unit 103 and mesh-shaped blade unit 104 with respect to unit base 230 have been described, the structure that regulates the projection amount of comb-shaped outer blade 100 and mesh-shaped outer blades 210 is not limited to this. For example, unit base 230 is provided with a groove extending in the second direction and having both of closed end portions in an extending direction, and either comb blade unit 103 or mesh-shaped blade unit 104 may be provided with a protrusion that is inserted into the groove of the unit base 230 and moves along the groove. In this case, the amount of projection is regulated by the protrusion coming into contact with the end portion of the groove. Further, with respect to the groove and the protrusion, contrary to the above-described structure, unit base 230 may be provided with the protrusion, and comb blade unit 103 and mesh-shaped blade unit 104 may be provided with the groove.
Further, the regulation portions that regulates the projection amount of comb blade unit 103 and mesh-shaped blade unit 104 with respect to unit base 230 are not limited to unit base 230, comb blade unit 103, and mesh-shaped blade unit 104, and regulation portions may be provided at other positions according to the projection amount.
The present disclosure can be applied to an electric razor capable of shaving body hair of animals including humans, such as a so-called electric shaver for shaving a beard.
Number | Date | Country | Kind |
---|---|---|---|
2021-058840 | Mar 2021 | JP | national |