The invention relates to a blade for a fan impeller. In particular, the invention relates to the geometric configuration of the blade in its end area facing a hub. Furthermore, the invention relates to a fan impeller.
In the case of axial fans, the axis of rotation of the impeller runs parallel or axial to the air flow. In the case of radial fans, the axis of rotation of the impeller runs radially to the air flow on the outlet side. An impeller with blades rotates around a hub, thereby transporting a gaseous medium. Particularly during the production and/or installation of the fan wheel module in a device or the like, severe stresses occur that can damage the blades. During the operation of the fan impeller, the flow of the gaseous medium around the fan wheel blades gives rise to forces that have to be dissipated via the fan wheel hub into a shaft to which the fan wheel hub is attached, whereby the fan impeller stresses due to centrifugal forces are problematic.
Solutions to solve this problem are disclosed in the state of the art. For example, it is a known approach to increase the wall thickness of the blades in the area where the blades are connected to the hub. With this approach, however, the mass of the fan wheel is increased, which leads to higher production costs due to the fact that more material is needed. Fan wheels are normally made of plastic, and a greater wall thickness increases the cycle time for the production of the impeller, since, for example, the wall thickness has a quadratic effect on the cooling time of thermoplastic injection molding.
Another known approach for stiffening the blades in this area is to provide a bead in the cross section of the blade. This can also be provided in order to increase the wall thickness. Moreover, U.S. Pat. No. 5,066,196, for instance, proposes providing at least one reinforcing rib on the blade in the area where the blade is connected to the hub. By the same token, U.S. Pat. Appln. 2004/0013526 A1 proposes providing at least two ribs in the appertaining area of a blade of a fan wheel.
These reinforcement options, however, have negative effects on the flow. The efficiency and operating noise are detrimentally affected by the flow separation in the hub area. Moreover, when the axis of rotation is in a vertical position, liquid cannot drain completely, especially when the axial fan impeller is at a standstill. Water accumulations on the blades of fan wheels cause unbalances and icing damage, especially in the winter.
The objective of the invention is to put forward a blade for a fan impeller that has optimized properties in terms of the strength requirements, material use and ease of production, while at least retaining the flow properties, and without incurring technical compromises in terms of noise and efficiency.
According to the invention, this objective is achieved by a blade for a fan impeller having the features of the independent claim 1.
Advantageous refinements of the blade can be gleaned from the subordinate claims 2 to 15.
Another objective of the invention lies in putting forward a fan impeller that has optimized properties in terms of the strength requirements, material consumption and ease of production, while at least retaining the flow properties, and without incurring technical compromises in terms of noise and efficiency.
This additional objective is achieved according to the invention by a fan impeller having the features of the alternative independent claim 16. Advantageous refinements of the fan impeller can be gleaned from the subordinate claims 17 and 18.
A blade according to the invention for a fan impeller has an end area facing a hub, whereby the blade has at least one rib in the end area facing the hub, whereby the rib has an outer contour that simulates a flow profile. In this context, the term flow profile refers to the shape of the blade cross section due to whose specific blade shape and due to the flowing of a gas gives rise to forces that attack the element. This can be, for example, a planar-convex profile with a convex first blade side and a planar second blade side, or else it can be a concave-convex profile with a convex first blade side and a concave second blade side. Here, the blade cross section forms an outer contour, whereby in the area of the ribs, the envelope forms the delineation of the outer contour.
The invention is based on the surprising realization that the ribs do not have a negative effect on the flow along the blades when the outer contour of the ribs simulate a flow profile, even though the turbulence level is increased by the ribs and the blade profile over which the medium flows is interrupted. This effect remains, even when the blade profile over which the medium flows is interrupted multiple times by several ribs on a blade. Nevertheless, the ribs have a reinforcing effect. Consequently, the blade according to the invention has optimized strength properties, while at least retaining flow properties, and without incurring technical compromises in terms of noise and efficiency, whereby the wall thickness of the blade was not increased and thus no negative effects are encountered in terms of the material consumption and ease of production.
In an advantageous embodiment of the blade according to the invention, the ratio of the maximum wall thickness of the blade to the maximum profile thickness of the blade is between 0.1 and 0.9, whereby a ratio of 0.2 to 0.6 is particularly preferred.
Moreover, it has proven to be advantageous if the ratio of the thickness of the rib to the wall thickness of the blade is in the range from 0.1 to 2, especially preferably in the range from 0.5 to 1.5.
In another preferred embodiment of the blade according to the invention, at the shoulder leading to the hub, the rib has an angle relative to the radial direction in the range between −80° and +80°, especially preferably between −45° and +45°.
The further course of the rib can be configured to be rectilinear. As an alternative, however, it can also be configured to be curved counterclockwise to the left of the radial direction or else it can be configured to be curved clockwise to the right of the radial direction.
In another advantageous embodiment of the blade according to the invention, the rib has an end geometry in the area of the outer contour, whereby the end geometry of the rib creates a saw-tooth profile, whereby the end geometry of the rib forms an angle in the range from −45° to +45°, especially preferably from −30° to +30° relative to the outer contour. With such a saw-tooth profile, the flow that separates at the end of the rib does not flow over a protruding edge of the rib.
Moreover, it has proven to be advantageous for the blade to have at least two ribs in the end area facing the hub, whereby the ratio of the gap between two ribs to the thickness of one rib is in the range from 0.2. to 5, preferably in the range from 0.5 to 1.5. Here, all of the ribs of a blade can have the same thickness and, by the same token, the gaps between several or all of the ribs of a blade can have the same dimension. However, the dimensions of the individual ribs and gaps can also differ from each other.
Another advantageous embodiment of the blade according to the invention is characterized in that the rib base at the starting point of the rib in the end area facing the hub is situated higher in the axial direction than the opposite rib base at the end point of the rib. As a result, this rib base at the end point of the rib in the direction of flow is situated lower than the rib base at the starting point of the rib in the end area facing the hub. Consequently, any water that might strike a blade of a stationary fan impeller can drain off, especially if the fan impeller is configured with an essentially vertical orientation of the axis of rotation, as a result of which, even at ambient temperatures below the freezing point, icing is ruled out and therefore, no unbalances and/or icing damage can occur.
A fan impeller according to the invention has at least one blade according to the invention. Here, the fan impeller can be an axial fan impeller, a radial fan impeller or an impeller of a different fan design. In this context, the term fan should not be understood in a limiting manner, but rather, encompasses ventilators, blowers as well as also, for instance, rotors and propellers, so that the invention also extends to blades and fan impellers found in all kinds of areas of application.
Additional advantages, special features and advantageous refinements of the invention can be gleaned from the subordinate claims and from the presentation below of preferred embodiments with reference to the figures. The depicted embodiments are the blade of an axial fan impeller, although this should not be construed in a limiting manner. The elaborations can also be applied to radial fan impellers or other fan impeller designs.
The figures show the following:
Finally,
The embodiments presented here constitute merely examples of the present invention and thus must not be construed in a limiting fashion. Alternative embodiments taken into consideration by the person skilled in the art are equally encompassed by the scope of protection of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2014 226 220 | Dec 2014 | DE | national |
10 2015 200 361 | Jan 2015 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5066196 | Morofushi | Nov 1991 | A |
6280144 | Powers | Aug 2001 | B1 |
20040013526 | Nilson | Jan 2004 | A1 |
Number | Date | Country |
---|---|---|
2008184999 | Aug 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20160177968 A1 | Jun 2016 | US |