The present invention relates to a blank for a spacer for an insulating window unit, a spacer for an insulating window unit, an insulating window unit and a method for manufacturing a spacer.
A variety of spacers for insulating window units are known, for example, from U.S. Pat. No. 5,313,761, U.S. Pat. No. 5,675,944, U.S. Pat. No. 6,038,825, U.S. Pat. No. 6,068,720 and U.S. Pat. No. 6,339,909. For example, one type of spacer is a spacer made of a metal sheet, which is U-shaped in cross-section (see FIG. 6, 7 of U.S. Pat. No. 6,068,720 or FIG. 10 of U.S. Pat. No. 5,675,944) or which is bent into a shape that opens to one side in cross-section.
Also known are shapes, which are closed in cross-section, made of co-extruded profiles made of metal and synthetic material (see U.S. Pat. No. 6,339,909, e.g., FIG. 2, which patent also shows in FIG. 11 a profile that is open on one side in cross-section).
It is an object of the invention to provide options for improving a spacer for an insulating window unit, which spacer is produced by bending a metal sheet.
This object is solved by coating the blank (the metal sheet) with a synthetic material, preferably a polypropylene.
The blank is then bent, after further preparatory working if necessary, into a spacer.
The use of the synthetic material (preferably polypropylene) coated sheet metal as a blank offers diverse advantages for the manufactured spacer, or in relation to the insulating window unit manufactured with the manufactured spacer. On the one hand, the use of the metal sheet provides, similar to the uncoated metal sheet, a good diffusion barrier that prevents, in combination with additional sealings, the gas filled between the two glass panes of the insulating window unit from being contaminated or leaking out by diffusion. The coating with the polypropylene enables an improved connection of the space with an adhesive and/or a sealing material of the additional sealings, which is/are used in the edge area of the insulating window unit, and in certain cases rust protection. Moreover, the use of the blank, which is preferably cold (i.e. at room temperature) bendable, enables the raw material to be supplied as a rolled material for the production of the insulating window unit and to be bent on-site into the shape of the spacer. When the known spacer with the composite metal-synthetic material structure is used, the spacer must be produced as a rod material (usually 6 m in length), which leads to substantial loss through waste when the rod material is cut to the necessary length during the production of the insulating window unit. By using the rolled material in combination with the cross-section produced by bending, a spacer with a composite metal-synthetic material structure can be provided without the necessity of using the rod material, and the consequently resulting cut waste. The reason is that the spacer made of rolled material can be bent into the necessary shape in a relatively simple way during the production of the insulating window unit.
In the selection of the synthetic material, preferably polypropylene, polyethylene terephtalate, polyamide or polycarbonate, which can contain the usual fillers, additives, dyes, UV-protection agents, etc., attention should be paid that no noticeable escape of gases and/or moisture from the synthetic material (fogging) results, that a good connection is provided with the adhesive (e.g., butyl-adhesive) that will be used during the production of the insulating glass unit, and that a good connection to the metal sheet can be provided. The thermal conductivity λ of the synthetic material should be less than 0.3 W/mK.
Preferred materials for the synthetic material are, e.g., polypropylene Novolen 1040K or MCU 208U (obtainable from Borealis A/S, Denmark) or BA110CF (obtainable from Borealis A/S, Denmark) or ADSTIF HA 840K (obtainable from Basell Polyolefins Company N.V.).
Steel or stainless steel can be used as the sheet, if necessary, each being coated, e.g., with tin or zinc. Such a coating with tin or zinc can have a thickness in the range, e.g., of 0.2 to 0.5 μm. For example, such a sheet is tin plate, which is a steel- or iron sheet having a surface coating of tin, and suitable stainless steel varieties are, e.g., 4301 or 4310 according to the German steel classification. The thermal conductivity λ of the sheet should be less than 50 W/mK.
To produce a good adhesion between the metal sheet and the synthetic material coating, preferably polypropylene, an adhesive agent can be used, such as e.g., an adhesive agent based on maleic anhydride, such as e.g., Admer™ from Mitsui Chemical Europe. This adhesive agent can be either applied to the metal sheet as a separate layer, e.g. with a thickness of 50 μm (preferably 20-100 μm), or the adhesive agent can be mixed in the synthetic material.
The blank, its materials and their connection are selected such that the connection of the metal sheet and the synthetic material is maintained even during plastic deformation at room temperature (cold bending) with a bent edge curvature radius R1 in the range of 0.2 to 2 mm, preferably about 1 mm (0.039 inches), and no cracks occur in the synthetic material coating.
Examples for a blank and a spacer bent from the blank will be explained in more detail with reference to the figures.
As can be easily recognized in
As can be easily recognized in
The blank 10 extends in the length direction perpendicular to the paper plane of the Figure and comprises, if necessary at suitable locations along its length direction, cut-outs, holes or other features that are necessary for the production of the spacer. The core 12 preferably has a thickness in the range of 0.05 to 2 mm, more preferably between 0.1 to 0.3 mm.
The preferred cross-sectional shape of a spacer 20 manufactured from the blank 10, which spacer 20 is perpendicular in its length direction to the paper plane in
A spacer 20 is thus given, which is provided by bending (preferably cold bending) a blank 10 into an essentially hollow, rectangular shape in cross-section, which rectangular shape is open on one side, e.g., U-shaped or with a cut-out in a side of the rectangular, which blank 10 made of a metal sheet 12, preferably a steel sheet, and more preferably a sheet made of stainless steel, is formed with an attached coating 14 of synthetic material, preferably polypropylene. The layer strength of the synthetic material is selected so that the coating is not damaged during bending (cold bending), preferably in the range of a layer thickness of 0.02 to 0.2 mm, and more preferably of 0.9 to 1.1 mm. As shown in
Methods for making a spacer 20 according to the present teachings preferably include bending (preferably cold bending, e.g., between 0-40° C., more preferably between 10-30° C.) a blank 10 into an essentially hollow, rectangular shape in cross-section, which rectangular shape is open on one side, e.g., U-shaped or with a cut-out in a side of the rectangular. The blank 10 is preferably constructed according to one of the examples noted above and/or one of the claims noted below. Optionally, a drying or desiccating material 36 may be introduced into the bent spacer 20.
Methods for manufacturing an insulating window unit 30 may include disposing a spacer 20, e.g., preferably manufactured according to one of the examples noted above, between two window panes 32, so as to fix or set the separation distance of the windows 32 of the insulating glass unit 30. Either before, after or at the same time, an adhesive and/or a sealing compound 34 is disposed between the respective sides of the spacer 20 and the respective window panes 32 in order to adhere the spacer 20 to the respective window panes 32. A further adhesive or sealing compound 36 may be introduced thereafter into the outwardly facing space between the window panes 32 in order to further seal the inner space, which preferably contains an inert, insulating gas such as argon.
Each of the various features and teachings disclosed above may be utilized separately or in conjunction with other features and teachings to provide improved blacks for spacers, spacers and insulating window units and methods for designing, manufacturing and using the same. Representative examples of the present invention, which examples utilize many of these additional features and teachings both separately and in combination, were described above in detail with reference to the attached drawings. This detailed description is merely intended to teach a person of skill in the art further details for practicing preferred aspects of the present teachings and is not intended to limit the scope of the invention. Therefore, combinations of features and steps disclosed in the detailed description may not be necessary to practice the invention in the broadest sense, and are instead taught merely to particularly describe representative examples of the present teachings.
Moreover, the various features of the representative examples and the dependent claims may be combined in ways that are not specifically and explicitly enumerated in order to provide additional useful embodiments of the present teachings. In addition, it is expressly noted that all features disclosed in the description and/or the claims are intended to be disclosed separately and independently from each other for the purpose of original disclosure, as well as for the purpose of restricting the claimed subject matter independent of the compositions of the features in the embodiments and/or the claims. It is also expressly noted that all value ranges or indications of groups of entities disclose every possible intermediate value or intermediate entity for the purpose of original disclosure, as well as for the purpose of restricting the claimed subject matter.
The contents of U.S. Pat. Nos. 5,313,761, 5,675,944, 6,038,825, 6,068,720 and 6,339,909, US Patent Publication No. 2005-0100691 and U.S. patent application Ser. No. 11/038,765 provide additional useful teachings that may be combined with the present teachings to achieve additional embodiments of the present teachings, and these patent publications are hereby incorporated by reference as if fully set forth herein.
This application claims priority to U.S. provisional application no. 60/598,704, filed 4 Aug. 2004, the contents of which are incorporated herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2005/008362 | 8/2/2005 | WO | 00 | 2/2/2007 |
Number | Date | Country | |
---|---|---|---|
60598704 | Aug 2004 | US |