Military vehicles are exposed to many threat levels depending on mission deployment. High forces caused by blasts from mines or other ordinance result in high occupant accelerations thereby increasing the risk of harm to the occupants.
Blast energy absorption system dimensioned to be integrated into the structure of a vehicle, and in particular multiple, removable, interchangeable, and configurable components adaptable to configure the vehicle for varying mission threats are disclosed.
One embodiment of a blast energy absorption system comprises: at least first and second floor structures, wherein each floor structure is dimensioned for integration in a longitudinal-horizontal plane of a vehicle; and a housing disposed between the at least first and second floor structures, wherein the housing comprises at least first and second vertical members, wherein a body portion of the first vertical member is connected to a first side of the first floor structure, and wherein a body portion of the second vertical member is connected to a first side of the second floor structure; and wherein each of the floor structures and the housing is configured to absorb blast energy by dampening blast loads along at least one of horizontal-longitudinal plane, longitudinal-vertical plane, and horizontal-vertical plane.
In one embodiment, the system includes an understructure disposed underneath the at least first and second floor structures and the housing, wherein a first side of the understructure is connected to a second side of the first floor structure, wherein a second side of the understructure is connected to a second side of the second floor structure, wherein a first body portion of the understructure is connected to one end of the first vertical member, and wherein a second body portion of the understructure is connected to one end of the second vertical member; and wherein the first floor structure, the first vertical member, and the understructure are configured to form a first compartment, wherein the second floor structure, the second vertical member, and the understructure are configured to form a second compartment, wherein the housing and the understructure are configured to form a third compartment, and wherein each of the compartments is configured to absorb blast energy by dampening blast loads along a portion of at least one of the at least first and second floor structures, the at least first and second vertical members, the housing, and the understructure.
In one embodiment, the system includes at least one cross beam member horizontally arranged on top of the understructure, wherein the at least one cross beam member is housed within the third compartment, and wherein the at least one cross beam member is configured to absorb blast energy by dampening blast loads along a horizontal direction.
In one embodiment, the system includes at least one of longitudinal and vertical blast energy absorbing members housed within the third compartment, wherein the at least one of longitudinal and vertical blast energy absorbing members is configured to absorb blast energy by dampening blast loads along at least one of longitudinal and vertical directions.
In one embodiment, the system includes at least one adjustable energy absorbing container disposed within each of the first and the second compartments, wherein the at least one adjustable energy absorbing container is configured to absorb blast energy by dampening blast loads along at least one of horizontal, longitudinal, and vertical directions.
In one embodiment, the system includes at least one of interior and exterior support structures housed within each of the first and second compartments, wherein the at least one of interior and exterior support structures is configured to absorb blast energy by dampening blast loads along at least one of the at least one of interior and exterior support structures.
In one embodiment, the system includes at least one crush element disposed within the at least one adjustable energy absorbing container, wherein the at least one crush element is configured to absorb blast energy by dampening blast loads along the at least one of horizontal-longitudinal plane, longitudinal-vertical plane, and horizontal-vertical plane.
One embodiment of a blast energy absorption system comprises at least first and second floor structures, wherein each floor structure is dimensioned for integration in a longitudinal-horizontal plane of a vehicle; a housing disposed between the at least first and second floor structures, wherein the housing comprises at least first and second vertical members, and wherein a body portion of the first vertical member is connected to a first side of the first floor structure, and wherein a body portion of the second vertical member is connected to a first side of the second floor structure; and an understructure disposed underneath the at least first and second floor structures and the housing, wherein a first side of the understructure is connected to a second side of the first floor structure, wherein a second side of the understructure is connected to a second side of the second floor structure, wherein a first body portion of the understructure is connected to one end of the first vertical member, and wherein a second body portion of the understructure is connected to one end of the second vertical member; and wherein the first floor structure, the first vertical member, and the understructure are configured to form a first compartment, wherein the second floor structure, the second vertical member, and the understructure are configured to form a second compartment, wherein the housing and the understructure are configured to form a third compartment, and wherein each of the compartments is configured to absorb blast energy by dampening blast loads along a portion of at least one of the at least first and second floor structures, the at least first and second vertical members, the housing, and the understructure.
In one embodiment, the system includes at least one cross beam member horizontally arranged on top of the understructure, wherein the at least one cross beam member is housed within the third compartment, and wherein the at least one cross beam member is configured to absorb blast energy by dampening blast loads along a horizontal direction.
In one embodiment, the system includes at least one adjustable energy absorbing container disposed within each of the first and the second compartments, wherein the at least one adjustable energy absorbing container is configured to absorb blast energy by dampening blast loads along at least one of horizontal, longitudinal, and vertical directions.
In one embodiment, the system includes at least one of longitudinal and vertical blast energy absorbing members housed within the third compartment, wherein the at least one of longitudinal and vertical blast energy absorbing members is configured to absorb blast energy by dampening blast loads along the at least one of longitudinal and vertical directions.
In one embodiment, the system includes at least one adjustable energy absorbing container disposed within each of the first and the second compartments, wherein the at least one adjustable energy absorbing container is configured to absorb blast energy by dampening blast loads along the at least one of horizontal, longitudinal, and vertical directions.
In one embodiment, the system includes at least one of interior and exterior support structures housed within each of the first and second compartments, wherein the at least one of interior and exterior support structures is configured to absorb blast energy by dampening blast loads along at least one of the at least one of interior and exterior support structures.
In one embodiment, the system includes at least one crush element disposed within the at least one adjustable energy absorbing container, wherein the at least one crush element is configured to absorb blast energy by dampening blast loads along at least one of horizontal-longitudinal plane, longitudinal-vertical plane, and horizontal-vertical plane.
One embodiment of a blast energy absorption system comprises: at least first and second floor structures, wherein each floor structure is dimensioned for integration in a longitudinal-horizontal plane of a vehicle; a housing disposed between the at least first and second floor structures, wherein the housing comprises at least first and second vertical members, and wherein a body portion of the first vertical member is connected to a first side of the first floor structure, and wherein a body portion of the second vertical member is connected to a first side of the second floor structure; an understructure disposed underneath the at least first and second floor structures and the housing, wherein a first side of the understructure is connected to a second side of the first floor structure, wherein a second side of the understructure is connected to a second side of the second floor structure, wherein a first body portion of the understructure is connected to one end of the first vertical member, and wherein a second body portion of the understructure is connected to one end of the second vertical member; and wherein the first floor structure, the first vertical member, and the understructure are configured to form a first compartment, wherein the second floor structure, the second vertical member, and the understructure are configured to form a second compartment, wherein the housing and the understructure are configured to form a third compartment, and wherein each of the compartments is configured to absorb blast energy by dampening blast loads along a portion of at least one of the at least first and second floor structures, the at least first and second vertical members, the housing, and the understructure; and at least one cross beam member horizontally arranged on top of the understructure, wherein the at least one cross beam member is housed within the third compartment, and wherein the at least one cross beam member is configured to absorb blast energy by dampening blast loads along a horizontal direction.
In one embodiment, the system includes at least one of longitudinal and vertical blast energy absorbing members housed within the third compartment, wherein the at least one of longitudinal and vertical blast energy absorbing members is configured to absorb blast energy by dampening blast loads along at least one of longitudinal and vertical directions.
In one embodiment, the system includes at least one adjustable energy absorbing container disposed within each of the first and the second compartments, wherein the at least one adjustable energy absorbing container is configured to absorb blast energy by dampening blast loads along at least one of horizontal, longitudinal, and vertical directions.
In one embodiment, the system includes at least one of interior and exterior support structures housed within each of the first and second compartments, wherein the at least one of interior and exterior support structures is configured to absorb blast energy by dampening blast loads along at least one of the at least one of interior and exterior support structures.
In one embodiment, the system includes at least one crush element disposed within the at least one adjustable energy absorbing container, wherein the at least one crush element is configured to absorb blast energy by dampening blast loads along at least one of horizontal-longitudinal plane, longitudinal-vertical plane, and horizontal-vertical plane.
Other variations, embodiments and features of the present disclosure will become evident from the following detailed description, drawings and claims.
It will be appreciated by those of ordinary skill in the art that the disclosure can be embodied in other specific forms without departing from the spirit or essential character thereof. The presently disclosed embodiments are therefore considered in all respects to be illustrative and not restrictive.
Returning now to
As used herein, “blast load” and the like means a blast event external to a vehicle. In some embodiments, blast load includes any forces external to a vehicle including the likes of bullets, bombs, explosives, grenades, missiles, artillery fires, among others. In other embodiments, each of the components of the blast energy absorption system 2 is capable of dissipating blast energy from the blast loads along at least one direction and/or one plane.
In one embodiment, at least one longitudinal blast energy absorbing member 50A may be disposed within the housing 6 to supplement the blast energy absorbing capability of the housing 6. In one example, the longitudinal blast energy absorbing member 50A is disposed within the housing 6 along a substantially longitudinal (x) direction. For example, the longitudinal blast energy absorbing member 50A may dampen blast loads along a portion of at least one of horizontal-longitudinal (y-x) or vertical-longitudinal (z-x) planes. In some instances, the longitudinal blast energy absorbing member 50A may dampen blast loads along a substantially longitudinal (x) direction.
In one embodiment, at least one vertical blast energy absorbing member 50B may be disposed within the housing 6 to supplement the blast energy absorbing capability of the housing 6. In one instance, the vertical blast energy absorbing member 50B is disposed within the housing 6 along a substantially vertical (z) direction. For example, the vertical blast energy absorbing member 50B may dampen blast loads along a portion of at least one of longitudinal-vertical (x-z) or horizontal-vertical (y-z) planes. In some instances, the vertical blast energy absorbing member 50B may dampen blast loads along a substantially vertical (z) direction.
In one embodiment, at least one cross member 8 may be disposed within the housing 6 to supplement the blast energy absorbing capability of the housing 6. In one instance, the cross member 8 is disposed within the housing 6 along a substantially horizontal (y) direction. For example, the cross member 8 may dampen blast loads along a portion of at least one of longitudinal-horizontal (x-y) or vertical-horizontal (z-y) planes. In some instances, the cross member 8 may dampen blast loads along a substantially horizontal (y) direction.
In one embodiment, the blast energy absorption system 2 includes an understructure 10 disposed underneath the floor structures 4 and the housing 6. In some instances, the understructure 10 may be integrated into an undercarriage of a vehicle 100. In other instances, the understructure 10 may be disposed about an exterior portion of a vehicle 100.
In one embodiment, the bottom plate 12 may be connected to two cover plates 14 on opposing sides of the bottom plate 12. In one example, one end of a cover plate 14 may be connected to an end of the floor structure 4 via through holes 68 sized to receive threaded bolts 70 for engaging with through holes 72 of the floor structure 4 (best shown in
In one embodiment of the overlapping arrangement 20, an end of the bottom plate 12 may include a lip 24 having a cutout 26 with a depth D being approximately the thickness T of the cover plate 14. In this instance, the cutout 26 may have a length L sufficient such that gap G is less than length L during operational mission conditions. In some instances, the cover plate 14 may be completely received within the cutout 26 without any gap G and with the depth D being approximately the thickness T. In some embodiments, additional fasteners may be utilized (e.g., nuts, bolts) to ensure that the bottom plate 12 and the cover plate 14 are securely fastened to each other. In other embodiments, there need not be any overlapping arrangement 20 and the cover plate 14 may be secured to the bottom plate 12 via fasteners (e.g., nuts, bolts) or the plates 14, 12 may be an integrated unit (e.g., welding, single aluminum sheet formed by bending).
In one embodiment, the bottom plate 12 of the blast energy absorption system 2 can be a sandwiched structure having outer skins 16A, 16B and a core 18 (best shown in
In one embodiment, the portion of the bottom plate 12, while coupled to a portion of the cover plate 14, may also be connected to a portion of the vertical member 46 via through holes 64 sized to receive a threaded bolt 62 for engaging with through holes 66 of the housing 6.
In one embodiment, the floor structure 4, the vertical member 46, and the understructure 10 are capable of forming a side compartment 91. In another embodiment, the housing 6 and the understructure 10 are capable of forming a central compartment 93. In these embodiments, the compartments 91, 93 are capable of absorbing blast energy by dampening blast loads along a portion of at least one of the floor structures 4, the vertical members 46, the housing 6 and the understructure 10. In some instances, at least one longitudinal blast energy absorbing member 50A, 50B may be housed within the central compartment 93, along with at least one cross member 8.
In some embodiments, at least one of the floor structures 4, the housing 6, the understructure 10, the longitudinal blast energy absorbing members 50A, the vertical blast energy absorbing members 50B, and the cross members 8, is capable of providing load transfer in at least one of longitudinal (x) direction, horizontal (y) direction or vertical (z) direction to dampen blast loads. In other embodiments, at least one of the floor structures 4, the housing 6, the understructure 10, the longitudinal blast energy absorbing members 50A, the vertical blast energy absorbing members 50B, and the cross members 8, is capable of providing load transfer in at least one of horizontal-longitudinal (y-x) plane, longitudinal-vertical (x-z) plane, or horizontal-vertical (y-z) plane for dampening blast loads.
In some embodiments, at least one of the compartments 91, 93 is capable of providing load transfer in at least one of longitudinal (x) direction, horizontal (y) direction or vertical (z) direction to dampen blast loads. In other embodiments, at least one of the compartments 91, 93 is capable of providing load transfer in at least one of horizontal-longitudinal (y-x) plane, longitudinal-vertical (x-z) plane, or horizontal-vertical (y-z) plane for dampening blast loads.
Although the understructure 10 has been described as having multiple members (e.g., bottom plate 12 and two cover plates 14), in one embodiment, the understructure 10 may be provided as an integrated, singular member (e.g., welding separate components, bending an aluminum sheet or plate).
Continuing with
In one embodiment, the cross beam member 8 may be coupled to the housing 6 via a cross beam member attachment member 52. For example, one end 54 of the cross beam member attachment member 52 may include through holes 56 while an adjacent end of the cross beam member 8 may include corresponding through holes 58. In these instances, the through holes 56, 58 may be similarly sized and threaded. Accordingly, each of the through holes 56, 58 may be capable of receiving a bolt 60 for securely attaching the cross beam member 8 to a portion of the housing 6. An opposite end of the cross beam member attachment member 52 may be fastened to the vertical member 46 in a similar fashion. In other embodiments, the opposite end of the cross beam member attachment member 52 may be permanently fastened to a portion of the vertical member 46 via welding, among other bonding techniques. In one embodiment, the number of cross beam members 8 attached to the housing 6 at any given time may depend on the mission threat.
Continuing with
For example, in one embodiment, a blast energy absorption system 2 includes at least two floor structures 4, the housing 6 and the understructure 10 for high mission threats levels. In one embodiment, a blast energy absorption system 2 includes at least two floor structures 4, the housing 6, the understructure 10 and at least one cross beam members 8 for higher mission threats. In one embodiment, a blast energy absorption system 2 includes at least two floor structures 4, the housing 6, the understructure 10, exterior support structure 28 and interior support structure 30 for higher mission threats. Additional details about the exterior support structure 28 and the interior support structure 30 will become more apparent in subsequent figures and discussion. In one embodiment, a blast energy absorption system 2 includes at least two floor structures 4, the housing 6, the understructure 10, at least one cross beam members 8, exterior support structure 28 and interior support structure 30 for higher mission threats. In one embodiment, a blast energy absorption system 2 includes at least two floor structures 4, the housing 6, the understructure 10, at least one cross beam members 8, exterior support structure 28, interior support structure 30 and one or more crush elements 32 for yet a higher mission threats. Additional details about the one or more crush elements 32 will become more apparent in subsequent figures and discussion.
Returning now to
In one embodiment, the adjustable energy absorbing container 9 may be connected to a portion of the floor structure 4 via one or more bolts 74. For example, an upper portion of the exterior support structure 28 of the adjustable energy absorbing container 9 may include through holes 78 while an adjacent portion of the floor structure 4 may include corresponding through holes 76. In some instances, the through holes 78, 76 may be similarly sized and threaded. In other instances, the through holes 76 may be counter-sunk and the through holes 78 may be threaded to correspond. Accordingly, each of the through holes 78, 76 may be capable of receiving a bolt 74 for securely attaching the adjustable energy absorbing container 9 to a portion of the floor structure 4.
In one embodiment, the adjustable energy absorbing containers 9, having three-dimensional box-like structures, may be disposed within each of the side compartments 91. In some embodiments, the adjustable energy absorbing containers 9 are capable of providing load transfer in at least one of longitudinal (x) direction, horizontal (y) direction or vertical (z) direction to dampen blast loads. In other embodiments, the adjustable energy absorbing containers 9 are capable of providing load transfer in at least one of horizontal-longitudinal (y-x) plane, longitudinal-vertical (x-z) plane, or horizontal-vertical (y-z) plane for dampening blast loads.
As can be understood from the above embodiments, any combination of cross beam members 8, adjustable crush containers 9 (e.g., exterior support structure 28, interior support structure 30, and crush elements 32), and the understructure 10, may be removed to reduce the weight of the vehicle and still maintain the required blast integrity to assure the safety of the occupants. In some embodiments, each component is designed to plastically deform (e.g., buckle, bend) to absorb energy from a bomb or mine blast and not to fragment into small pieces that become projectiles. In one embodiment, the energy that is not dissipated by these components may be dissipated by the floor structures 4 and/or the housing 6 with minimal or reduced plastic deformation.
Returning now to
In some embodiments, the casing 80 may include a series of handles 82, 84 to facilitate the handling and installation of the casing 80 onto a vehicle 100 (best shown in
In one embodiment, the casing 80 includes a top surface 96 that opens for the installation and removal of the crush elements 32 as best illustrated in
In one embodiment, the top surface 96 may be movably attached or connected to a back surface 158 along a back edge 162 or at least one side 88 along a side edge 164 as best illustrated in
In one embodiment, the top surface 96 may be attached to the back surface 158 and the sides 88 via hinges (not shown). In another embodiment, the top surface 96 can include a rotatable latch 160 having an extension 166 that contacts an inner leading edge 89 of a lower surface 168 for temporarily securing the top surface 96 to the lower surface 168. For instance, the rotatable latch 160 is capable of securing the top surface 96 to the leading edge 86 and the inner leading edge 89. In some instances, the leading edge 86 of the lower surface 168 may be integrated with a bottom side 152 of the adjustable energy absorbing container 9. In one instance, a clockwise rotation of the latch 160 would release the top surface 96 from the lower surface 168. In another instance, a counter-clockwise rotation would secure the top surface 96 to the lower surface 168. In other instances, different angles of rotation and/or amount of rotation may be made to secure and/or release the top surface 96 from the lower surface 168.
In one embodiment, recessed hand grips 90 may be located on a bottom side 152 of the adjustable energy absorbing container 9 as best illustrated in
In one embodiment, the casing 80 may be coupled to the floor structure 4 via engaging members 92 and cooperating engagement features 94 as best illustrated in
In one embodiment, the coefficient of friction between engaging member mating surface 95A and the cooperating engagement feature mating surface 95B may be low enough to facilitate ease of sliding the dovetail joint 92 in and out of the dovetail slot 94. In another embodiment, the reduced coefficient of friction may minimize or mitigate binding of the adjustable energy absorbing container 9 to the floor structure 4 during removal and/or installation. In some embodiments, the engagement features are capable of enabling installation of the adjustable energy absorbing containers 9 from the exterior of the vehicle 100 without the need to enter the occupant compartment.
In operation, now turning to
Once the adjustable energy absorbing containers 9 are installed onto the vehicle 100, retention devices may be actuated. Retention devices can be any suitable mechanical, electrical, electromechanical, or magnetic devices capable of holding the adjustable energy absorbing container 9 in place when longitudinal, horizontal or vertical loads are induced onto the vehicle 100 due to events such as hard cornering or serpentine maneuvers to avoid enemy assault. Retention devices may also be helpful during the installation process to hold the adjustable energy absorbing container 9 in place during the installation of other components of the blast energy absorption system 2 (e.g., cover plates 14). In this instance, the cover plates 14 may further strengthen and secure the adjustable energy absorbing container 9. In some embodiments, retention devices may also facilitate the installation process by holding the adjustable energy absorbing container 9 steady on un-level surfaces or while the vehicle 100 is in motion.
One type of retention device is shown in
In one embodiment, the casing 80 can include horizontally-oriented cooperating retention devices 106 extending through horizontal retention devices 108 of the housing 6 as best illustrated in FIGS. 4B and 9A-9C. The cooperating retention devices 106 and the horizontal retention devices 108 may be installed in the casing 80 as shown. In other embodiments, the horizontal retention devices 108 may be installed on the longitudinal or vertical blast energy absorbing members 50A, 50B within the housing 6.
In one embodiment, a retractable pin mechanism 190 may be used for horizontally retaining the adjustable energy absorbing container 9 as best illustrated in
In operation, when the handle 82 is rotated downward (
Another engagement feature according to the present disclosure includes vertical retention devices such as a hook latch 172 and a locking block 174 as best illustrated in
In one embodiment, the hook latch 172 can also include a release arm 188 to release the hook latch 172 from the locking block 174. By asserting a spring counter force F1, F2 onto the release arm 188, the hook latch 172 rotates counter-clockwise (or clockwise) until the head 180 horizontally clears the top surface 182 of the locking block 174, thereby removing the vertical restraint allowing the adjustable energy absorbing container 9 to freely move downward. Actuation of the release arm 188 can be manual by applying a downward force F1 or a horizontal Force F2. For example, the manual actuation can be carried out by a linkage mechanism (not shown) or a person's thumb (not shown). In other embodiments, the actuation of the release arm 188 may also be carried out by electronic circuits (not shown).
In operation, the adjustable energy absorbing containers 9 may be horizontally installed (y-direction) onto a vehicle 100 as discussed above (
In one embodiment, each of the exterior support structure 28, the interior support structure 30, and the crush element 32, may be disposed within each of the side compartments 91. In some embodiments, at least one crush element 32 may be housed or disposed within the adjustable energy absorbing container 9, which can be housed within the side compartment 91. In one embodiment, at least one crush element 32 may be housed or disposed within the interior support structure 30.
In some embodiments, each of the exterior support structure 28, the interior support structure 30, and the crush element 32, is capable of providing load transfer in at least one of longitudinal (x) direction, horizontal (y) direction or vertical (z) direction to dampen blast loads. In other embodiments, each of the exterior support structure 28, the interior support structure 30, and the crush element 32, is capable of providing load transfer in at least one of horizontal-longitudinal (y-x) plane, longitudinal-vertical (x-z) plane, or horizontal-vertical (y-z) plane for dampening blast loads.
In one embodiment, the exterior support structure 28 is configured to absorb blast load or blast energy by dampening blast loads along the exterior support structure 28. In one embodiment, the interior support structure 30 is configured to absorb blast load or blast energy by dampening blast loads along the interior support structure 30. In one embodiment, the crush element 32 is configured to absorb blast load or blast energy by dampening blast loads along the crush element 32. In other words, each of the exterior support structure 28, the interior support structure 30, and the crush element 32, is capable of collapsing on itself to absorb or resist the blast energy from the blast loads thereby minimizing physical harm to the occupants within the vehicle.
In one embodiment, the crush element 32 may be circular in shape with an outer diameter greater than the diameter of the hole 34. In this embodiment, the contact surface area of the crush element in relation to the hole 34 may be determined by the perimeter of the hole 34. Other possible shapes are oval, oblong, elliptical, or any other shapes with two or more contact points. In these examples, the use of a polygon-shaped crush element 32 reduces the contact surface area to two or more contact points with less contact surface area than the perimeter of a hole 34. The sides of a polygon may determine the number of contact points between the crush element 32 and the hole 34. Another factor in determining the force to insert and remove a polygon-shaped crush element 32 is the interference fit between the diameter of the hole 34 and an outer diameter 204 of the polygon-shaped crush element 34. Any polygon is acceptable including but not limited to a plane (2 points of contact), triangle (3 points of contact), quadrilateral (4 points of contact), pentagon (5 points of contact), hexagon (6 points of contact), and up to n number of sides (n points of contact).
In operation, the blast energy absorption system 2 may deform to absorb the blast energy. For example, the understructure 10 and cross beam members 8 (if any) may bend and buckle inward. In another example, the interior support structure 30 may buckle. In some instances, the crush elements 32 (if any) may be crushed. In other instances, the exterior support structure 28 may bend and buckle inward. In some embodiments, longitudinal energy absorbing members 50 (if any) may buckle. In one embodiment, the floor structure 4 and the housing 6 may dampen the remaining energy with little or no plastic deformation.
In one embodiment, all the components described above may be integrated into the chassis and/or frame of the vehicle 100 as shown in
Though dovetails/dovetail slots and hooks/latches are illustrated, any acceptable devices are contemplated with the scope of the disclosure and not intended to limit the disclosure to any one configuration.
While there has been described herein the principles of the disclosure, it is to be understood to those skilled in the art that this description is made only by way of example and not as a limitation to the scope of the disclosure. Accordingly, it is intended to cover all modifications of the disclosure which fall within the true spirit and scope of the disclosure. And although the disclosure has been described in detail with reference to several embodiments, additional variations and modifications exist within the scope and spirit of the disclosure as described and defined in the following claims.
This application claims priority to U.S. Provisional Application Ser. No. 61/108,167, filed Oct. 24, 2008, which is hereby incorporated herein by reference in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
61108167 | Oct 2008 | US |