The present invention generally relates to a method and device for the accumulation and harnessing of energy produced by detonation of an explosive material that creates a high energy blast wave. The energy is subsequently employed to do work or converted into potential energy for later use. More particularly, the present invention relates to portable equipment that requires high levels of energy to operate. Further, the present invention relates to a method used for portable equipment for purification and separation of fluids, and desalination of water by a reverse osmosis process and a device driven by pressure generated from a compact and powerful source using energy created from an explosion and that also allows energy recovery.
The main obstacle in developing and constructing lightweight portable equipment that requires high energy to operate is the limitation of incorporating a small compact and high efficient energy source. Batteries are one source that may be used to provide an energy source for portable equipment. The state of the art of batteries has greatly advanced in the development of compact and high efficiency batteries. However, a battery capable of producing enough power to generate 80 bars of pressure or 1,160 psi typically necessary for performing filtration tasks is not portable and is mobile only when loaded onto a truck. One of the many examples of portable equipment that requires high-energy power sources are fluid purification devices such as water purification and desalination equipment. It is well known from the existing art that the purification and filtration of fluids by reverse osmosis requires the use of high pressures usually by means of a high-pressure pump. There are many successfully designed units for desalination coupled with high-pressure pumps. Some of these prior art devices claim to be portable; however these systems require special transportation units.
To avoid using a heavy source of energy and pump, other hand-driven devices have been proposed. Most of these hand-operated devices are designed to optimize the energy spent during the filtration process. Thus, many of these devices include designs that are made with valves arranged within a system for allowing filtered water to recuperate part of the energy spent. Various hand-driven mechanisms are used for movement of the pump's plunger necessary for the filtration process.
Anderson, U.S. Pat. No. 6,383,384, suggests a crank driven shaft with moving thread. The system works when the water to be filtered comprises only a comparably very low salinity level, such as on the surface of lakes or rivers or well water. At higher levels of salinity, the required pressure necessary to perform the filtration process prohibits rotation of the crank. Thus, the Anderson device is impractical for use with water including high salinity levels. Other hand-held reverse osmosis apparatuses require powerful cranking efforts to provide the requisite energy for effectuating the water purification process.
Miers, U.S. Pat. No. 5,531,887, discloses a manually operated reverse osmosis desalination system using semi-permeable membranes to selectively purify an aqueous fed solution. A reciprocating piston or diaphragm pump provides the pressure to drive the solution through the membrane thereby continuously flush the membrane surface. Another example of the application of reverse osmosis technology known in the art is disclosed by Tempest, U.S. Pat. No. 5,741,416, wherein a booster pump is used to enable the removal of salt and finely divided particles from an aqueous solution.
Keefer, U.S. Pat. No. 4,288,326, discloses another development of a reverse osmosis system. Keffer's apparatus for desalination uses a combination of pump action and a low speed rotary shaft that selectively permeates purified water from a pressurized feed solution through a semi-permeable membrane. The piston means of Keefer includes a spring-loading means to afford double acting and reciprocating piston action.
Herrington et al, U.S. Patent Publication No. 2004/0173528 A1, discloses another development of the filtration process. In Herrington the device includes a leverage driven mechanism that moves a plunger into water, displacing part of it, and providing the necessary operating pressure for filtration. The pump works with seawater but has a very low productivity due to the amount of energy required for operation.
Some of the existing art aims to purify and/or filtrate water including high salinity water through the use of various hand-driven pumps. Despite of energy saving designs all of the prior art fails to provide the requisite amount of power needed to filtrate a required amount of water within a reasonable time period to effectively operate as a hand-held survival water filtration and desalinization unit. The present application and invention aims to solve this problem.
Historically, guns have utilized powder charges to generate powerful forces to propel bullets through a barrel and downrange to great distances. Recently the fastening technology for buildings widely uses the power of combustion of gunpowder in a .22 caliber through .27 caliber to drive pins into concrete, rock and other hard surfaces. The art of nailing and striking uses combustion of propane, butane, natural gas, other gas mixtures or small charges of gunpowder.
Ohtsu et al., U.S. Pat. No. 4,773,58, and Thieleke et al., U.S. Pat. Nos. 6,443,118 and 4,665,868, are designated for use as fasteners or nailers in the construction industry. Nakazato et al., U.S. Pat. No. 4,075,850, is designed as striking tool. Common in the above designs is the use of gas combustion to create a concentrated power impulse in a very small space to drive a fastener. The use of gunpowder leads to even smaller volumes in which the power impulse is generated. Haytayan, U.S. Pat. No. 4,821,938, and Gassner et al., U.S. Pat. Nos. 4,741,467 and 6,059,162, use gunpowder charges for fasteners and/or nailers.
All of the above noted art has application in striking/nailing tools due to the generically inherited properties of explosion-based mechanisms to direct extremely high power impulses lasting only milliseconds over a small surface area to disturb the material structure by inserting a nail or making hole into which a fastener may be inserted. In all above cited literature there is no art providing the use of impulse of combustion or gunpowder for rotation, slow moving mechanisms or alike. Moreover, none of the cited prior art includes an energy accumulator that may be utilized to produce a filtered fluid. Notwithstanding these and related developments in the art, there appears to be no apparatus which provides an efficient means for creating, storing, and utilizing energy to provide a driving force prerequisite for sustaining a reverse osmosis apparatus. Likewise, none of the art includes a methodology for water purification purposes as well as for other apparatus requiring portable high energy source. Such an apparatus may include pumps for micro-filtration but is not limited to pumps for high pressure liquid chromatography (HPLC) and pumps for pressure generators for gas chromatography (GC).
The device is preferably an energy accumulator that comprises a detonation chamber having a piston arranged therein. The piston forms part of the detonation chamber such that when an explosive charge is detonated within the detonation chamber, the piston is forced away from the remaining parts of the detonation chamber. Displacement of the piston compresses a spring or other mechanical energy accumulating device. Simultaneously, the piston may be used to draw in a fluid-to-be-filtered into the device. Potential energy from the mechanical energy accumulating device may then be released to create a unidirectional, high-pressure force that is applied to the fluid-to-be-filtered and forcing it through a filter media.
The main goal of the present invention is to transfer and/or convert the potential energy accumulated from a detonation or blast that is stored in the accumulator means to mechanical energy such as a high-pressure driving force and/or electrical energy and/or thermal energy.
Another goal of the present invention is to provide a methodology to build small yet very effective portable and hand-held fluid purifier and/or desalination devices. Yet another goal of the present invention is to build a portable desalinization device based on a blast produced by a charge of gunpowder or blast created by detonation of gas air mixture.
Another goal of the present invention is to transform saline water into clean drinking water through the use of the chemical energy that is created in a controlled explosion.
In agreement with the set forth objectives, the present invention is based on a methodology comprising several steps for realizing a method and device for filtering fluids and/or performing water purification and/or desalinization of fluids. The following are a listing of the steps to be performed during the filtration process. It should be noted that these are the optimal steps for performing the preferred embodiment of the invention. Some of these steps may be performed in different sequential manners or with less than those of the preferred embodiment of the invention without deviating the scope of the invention.
First, power is created from a controlled detonation, explosion or blast driven by a gas combustion step or ignition of gunpowder step. This step creates a substantial amount of energy for an extremely short time period. Second, the energy created from the detonation is accumulated to create a stored potential energy power in an appropriate means such as a loaded spring, compressed air or other gas. Third, the process of accumulating or storing the potential energy includes cocking the accumulated energy by a mechanical locking mechanism for later release.
Fourth, the accumulated energy is released in a slower mode than that of the energy accumulation step that created energy by the controlled explosion to develop a necessary pressure to actuate an appropriate mechanism to convert the high level potential energy to dynamic energy that exerts pressure via a piston of a high-pressure pump, and/or to convert the high level potential electric energy and/or thermal energy. In a case of producing dynamic energy, a piston of a high-pressure pump pushes water through a flow restrictor allowing a relatively slow flow of water and/or fluids to gradually increase the pressure over a reverse osmosis membrane. In the case of electrical and thermal energies, state of the art and available mechanisms convert the accumulated energy to desired states for performing work.
In a case of the blast actuated fluids and/or water purifier and/or desalinator, allowing the rejected fluid and/or water having increased impurity and/or salinity to feed back the high-pressure pump acting on the back of the high-pressure plunger to further create pressure. Synchronizing the activation of all valves keeps needed working pressure throughout all cycles of the process to further conserve energy and to assist the process of pressurizing and subsequently purifying and/or filtrating the feed fluid and/or saline water. In order to charge the reverse osmosis unit with pressure without sufficient deviations, a special low space reducing valve-buffer is used.
In the preferred embodiments, the present invention utilizes two main sources of energy. The first source of energy is a loaded charge of gunpowder which is detonated via a firing pin or the like. The second is a combustive gaseous mixture that is ignited via a spark plug or other electronic igniter. The combustive gaseous mixture may comprise an aerosol dispersed fuel. Either embodiment may comprise, one or more of the two main energy accumulating devices. The first energy accumulating device is based on a spring loading and the second is based on compressing air or other gas by a system that includes a cylinder piston or system utilizing a liquid plunger with or without a phase separation. The phase separation may be recognized with or without direct contact between the liquid used and the compressed gas.
A combination of either of the two approaches depends on the particular goals and additional development of those arts, aiming for small space, light construction, low cost, place of use, intended use with one supply, etc. The combination of a gunpowder blast and energy accumulator comprising a crest-to-crest spring or telescopic spring can be used for purifying mainly high concentrated solutions. The combination of gas-combustion blast with a gas or an air spring is suitable in general for medium to high concentrations. A combination of gas-combustion blast with an air spring designed directly over the saline solution is more appropriate for surface waters. This type of device can be very productive in filtering a fluid over a short time frame and results in light construction with high desalination capacity.
The present invention suggests the use of a modular approach, which is distinguishing all the parts by their main function, but some modules can be combined in one, and all of them can be integrated into a single body.
The present invention utilizes a state of the art reverse osmosis membrane and valves acting in a manner to conserve the energy used in the process. The use of harnessing the energy produced by a powerful blast to charge the energy accumulator and then to use and/or convert this stored energy, for example to purify fluids and/or water by reverse osmosis, allows the building of a very compact and portable device that requires high energy to operate. These devices include desalinating devices, known as desalinators, which are extremely important as part of the survival equipment in the sea and expected regions with high salinity of the surface waters.
The power generated from a blast can be stored into the energy accumulating means and then released to actuate a portable apparatus requiring high-energy consumption. Such an apparatus can be, for example portable HPLC's and portable GC's. Both of them require high-pressure fluid sources. A high-pressure pump for a HPLC requires pressure of 30 to over 200 bars at a comparably low flow rate of 1 to 5 cc/min. consumption to operate. This pressure and flow rate can be obtained by a powder actuated and energy accumulating mechanism. A flow equalization and/or other means allows work to be performed at a moderately fluctuating flow when interrupted by a blast. Flow equalization is another objective of the present invention.
According to the objectives set forth hereinafter, the blast energy accumulator and conversion device of the present invention comprises the following parts. It should be noted that the parts may be combined into single units that perform the same functions as set forth above to practice the invention. Moreover, it may be recognized that these parts may be substituted for others or the invention may be modified to delete certain elements listed below without deviating from the scope of the invention. The parts include a blast actuating or detonation chamber that receives an explosive charge of combustible gas or charge of gun-powder to generate a controlled explosion, detonation or blast. A power accumulating means is configured with a moving part such as a piston that is forced away from the detonation chamber to load a fast acting spring. The spring may be provided in various forms and of different types including, but not limited to, metal, plastic, and gas. A catch or cocking mechanism retains the spring in a loaded state. A releasing mechanism is actuated to release the potential energy stored in the loaded spring. The releasing mechanism can be combined with the catch or cocking mechanism. An energy consumer and/or converter; in case of fluids and or water purifier, a high pressurizing pump for driving the fluid through a means of purification or an analytical means. All of the above elements can be defined as a blast of energy accumulating means. The blast of energy accumulating means can be used further for driving an energy source in different high energy requiring consumers, requiring some other more specific means.
In the case of fluids and/or water purifier, a flow restrictor is included and allows a gradual increase of the pressure in a reverse osmosis chamber. The reverse osmosis chamber comprises a reverse osmosis membrane separating the chamber into two spaces; one chamber includes saline water and the other contains desalinated water. Otherwise the device may comprise a micro-filtration chamber with particulates pre-filter and a fine micro-filter separating the chamber in two spaces. One space includes rejected fluid having a higher amount of contaminates that when it first entered the device and filtrated fluid. A plurality of pressure actuated valves allows the reject saline water or other fluid to assist the plunger into the high-pressure pump, and to assist valve actuation. All of the elements needed to provide high pressure at moderate fluctuation of the fluid flow to drive fluid through a chromatographic means. These elements may include an injector, a column, and a detector. Means to equilibrate the flow fluctuation and/or provide methodology and means for chromatographic process in a field condition may be included.
A main objective of the present invention is to transfer and accumulate short powerful blast impulses generated by combustion or gunpowder explosions into an appropriate energy accumulating or storage means.
Another objective of the present invention is to transfer and/or convert potential energy accumulated from the blast in the accumulator or storage means to mechanical energy to create a high-pressure driving force and/or electrical energy and/or thermal energy.
Another objective of the present invention is to provide a methodology to build a small, yet very effective portable, hand-held fluid purifier and/or desalination device. To that end, another objective of the present invention is to build portable desalinator based on gunpowder load blast or gas-combustion blast.
Another objective of the present invention is to transfer potential energy from the accumulating or storage means to a driving force that creates a high pressure necessary for effectively achieving reverse osmosis on a scale of production that supports the survival of a user.
Another objective of the present invention is to provide a reverse osmosis apparatus for use without hand-actuated power provided by the operator.
Yet another objective of the present invention is to build an energy accumulator that can be connected to different energy consumers such as high-pressure pumps for HPLC or pressure generators for GC carrier gas.
Yet another objective of the present invention is to provide a methodology for effective portable chromatographic units working properly even in a fluctuating flow. A consecutive objective of the present invention is to set up a methodology and an appropriate device allowing work with moderately fluctuating flow.
The above and further objects, details and advantages of the invention will become apparent from the following detailed description, when read in conjunction with the accompanying drawings.
The present invention is illustrated by the following schematics and drawings using an example a fluids and/or water purifier.
Now referring to
Crest-to-crest springs used in this design are known to have much better performance working as compressed springs when compared to cylindrical wire type spiral springs. Their ratio working length to compressed length when compared to wire cylindrical springs is far superior to a wire type cylindrical spring. The same is true for their ratio-accumulated power/weight.
Another embodiment of the present invention is depicted in
Yet another embodiment of the present invention is explained in
As set forth in the objectives, a powder actuated pump may be used for alternative purposes other than desalination. The embodiment shown in
It is in the spirit of present invention that the blast actuation and energy accumulation can have many different applications.
Further, it is in the spirit of present invention that the blast actuation and energy accumulation can have many other different applications, such as high-pressure pump in portable a High Performance Liquid Chromatography (HPLC) unit depicted in
In
It should be well understand by one skilled in the art that depicted embodiments have the same main parts an energy blast power source, an energy accumulator, a locking cocking/releasing means, a high pressure pump, an energy restricting element and a power consuming element (energy consuming element). They can be integrated within a main body with different functional portions and interconnected between themselves mechanically and/or fluidly.
One skilled in the art should understand that the main parts could be interconnected in different combinations still achieving the same final effect of transforming the peak energy of the explosion blast to more a convenient form of energy for further use, e.g. potential energy of a loaded spring by the accumulating energy of explosive power blast.
It should be understand that the main goal of present invention is not limited to the directly targeted portable and hand held devices and can be used in much larger proportionally units. It is in the spirit of the present invention to use the blast of energy of any energy impulse-generating source, to accumulate this energy and gradually to release it in the process of energy driven mechanical power consumer.
The present invention relates to U.S. Provisional Patent Ser. No. 60/834,023 filed on Jul. 31, 2006 and claims priority therefrom. The subject matter of this application did not receive federal research and development funding.
Number | Date | Country | |
---|---|---|---|
60834023 | Jul 2006 | US |