The invention is related to a blast furnace for ironmaking production.
In blast furnaces, the conversion of the iron-containing charge (sinter, pellets and iron ore) to cast iron is conventionally carried out by reduction of the iron oxides by a reducing gas (in particular containing CO, H2 and N2), which is formed by combustion of coke at the tuyeres located in the bottom part of the blast furnace where air preheated to a temperature between 1000° C. and 1300° C., called hot blast, is injected.
In blast furnaces, the conversion of the iron-containing charge (sinter, pellets and iron ore) to cast iron, or hot metal, is conventionally carried out by reduction of the iron oxides by a reducing gas (in particular containing CO, H2 and N2), which is formed by combustion of coke at the tuyeres located in the bottom part of the blast furnace where air preheated to a temperature between 1000° C. and 1300° C., called hot blast, is injected.
In order to increase the productivity and reduce the costs, auxiliary fuels are also injected at the tuyeres, such as coal in pulverized form, fuel oil, natural gas or other fuels, combined with oxygen enrichment of the hot blast.
The gas recovered in the upper part of the blast furnace, called top gas, mainly consists of CO, CO2, H2 and N2 in respective proportions of 20-28% v, 17-25% v, 1-5% v and 48-55% v. Despite partial use of this gas as fuel in other plants, such as power plants, blast furnace remains a significant producer of CO2.
In view of the considerable increase in the concentration of CO2 in the atmosphere since the beginning of the last century and the subsequent greenhouse effect, it is essential to reduce emissions of CO2 where it is produced in a large quantity, and therefore in particular at blast furnaces.
For this purpose, during the last 50 years, the consumption of reducing agents in the blast furnace has been reduced by half so that, at present, in blast furnaces of conventional configuration, the consumption of carbon has reached a low limit linked to the laws of thermodynamics.
One known way of additionally reducing CO2 emissions is to reintroduce top gases that are purified of CO2 and that are rich in CO into the blast furnace, said blast furnaces are known as TGRBF (Top-Gas Recycling Blast Furnaces). The use of CO-rich gas as a reducing agent thus makes it possible to reduce the coke consumption and therefore the CO2 emissions. This injection may be done at two levels, at the classical tuyere level, in replacement of hot blast and in the reduction zone of the blast furnace, for example in the lower part of the stack ok the blast furnace.
The 1st level of injection, at the tuyere level, is already existing in operational blast furnaces. The injection device may have to be adapted to take into account the changes in the composition of gas to be injected but the blast furnace structure does not need to be modified. It is not the case at the second injection level in the stack. Indeed, there is currently no injection at that level and there is so a need to modify the blast furnace to allow the insertion of the injection device at that level. This modification must have a reduced impact to not impact the durability of the components of the blast furnace.
There is so a need for a blast furnace provided with a second level of gas injection. There is moreover a need a blast furnace provided with a second level of gas injection which does not have a decreased lifetime, or which requires more regular maintenance and stoppage than standard blast furnaces with a single level of injection
The present invention provides a blast furnace comprising an external wall, an internal wall in contact with matters charged into the blast furnace and comprising several rows of staves 3 having a parallelepipedal shape, an injection device for injecting the reducing gas through an injection outlet, wherein at least one row of staves comprises staves with a hole drilled in a least one of the corners of the parallelepipedal stave wherein the injection device may be partly inserted in.
The blast furnace of the invention may also comprise the following optional characteristics considered separately or according to all possible technical combinations:
Other characteristics and advantages of the invention will emerge clearly from the description of it that is given below by way of an indication and which is in no way restrictive, with reference to the appended figures in which:
Elements in the figures are for illustration only and may not have been drawn to scale.
The injection is performed through several injection outlets 4 around the circumference of the furnace, as illustrated in
In a first embodiment, as illustrated in
In a second embodiment, as illustrated in
In both embodiments, illustrations are done with bottom corners but same principle could be applied to the top corners. In a preferred embodiment, each stave is provided with at least one hole 34 so that there are as many injection devices 4 as staves and the gas is homogenously distributed around the circumference of the blast furnace.
As previously explained the staves are covering the internal wall of the blast furnace, the injection device which must be inserted into the furnace to inject the reducing gas must thus go through them. With the blast furnace according to the invention, durability of the staves is not impaired and thus no additional maintenance is required compared to classical blast furnaces. Indeed, due the thermal constraints they are subjected too, the staves may easily be deformed along the vertical axis and any weak points may be highly detrimental to the lifetime of the stave. If a stave is deteriorated it does no longer fulfil its mission of protection of the shell of the blast furnace which can, in its turn be deteriorated.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/058569 | 9/15/2020 | WO |