The present invention relates to a damper for mitigating blast waves in a duct.
It is known that ignition of a flammable mixture in a duct can create a blast wave which propagates along the duct. This is a particular issue in oil or gas production platforms, where such flammable mixtures may arise. If such a blast wave propagates into a region where there are people, this can cause significant injury, such as burst eardrums or damaged lungs. The provision of louvres to inhibit such blast waves is known, but louvres cannot shut sufficiently quickly to prevent passage of the pressure wave.
According to the present invention there is provided a blast protection damper comprising a section of duct, with a multiplicity of substantially rigid elements each extending across the duct, the elements all extending parallel to each other and being arranged in an array consisting of a multiplicity of lines of said elements, each such line extending across the duct, the elements in one line being staggered relative to the elements in an adjacent line, and the gaps between successive elements within a line being no wider than the widths of the elements.
The damper is particularly suitable for ducts through which, in normal operation, there is a forced gas flow. For example this may be a flow of air for cooling or for ventilation, and typically the flow velocity in normal operation is in the range between 1 and 5 m/s. The damper of the invention is to be distinguished from sound attenuators, as the elements in the blast damper are rigid and are not of a sound-absorbing or attenuating material. Such rigid materials may be characterized as those for which the characteristic acoustic impedance (the product of sound velocity and density) is greater than 10×106 kg m−2 s−1, and more preferably greater than 30×106 kg m−2 s−1. They may for example be tubes of steel or titanium or a titanium alloy.
Preferably the lines are straight lines, and within each line the elements are equally spaced. For example the lines may be columns extending between the bottom and the top of the duct. Preferably there are at least eight such lines of elements in the array, more preferably at least ten such lines, but preferably no more than fifteen. It will be appreciated that the more lines of elements are provided, the greater the pressure drop during normal use of the duct, so there is a disadvantage in providing excessive numbers of lines of elements. On the other hand, the more lines of elements are provided, the more effective the damper is at mitigating blast waves. The optimum number of lines appears to be about ten.
Preferably the elements are of cylindrical shape, and the elements are preferably tubular, as this reduces weight while providing adequate strength. In a preferred embodiment the elements are tubes of diameter about 60 mm, and are arranged at centre-to-centre spacings of no more than 120 mm, for example 100 mm so that the elements of a single column occupy about 60% of the projected area.
Preferably the blast protection damper also includes a louvre which is arranged to shut if the pressure in the duct exceeds a threshold. This may for example incorporate a mechanical latch arranged to hold the louvre blades in an open position, but the louvre blades being oriented such that the flowing gases within the duct urge the blades towards the closed position. If the pressure in the duct exceeds a threshold indicative of the presence of a blast wave, then the mechanical latch releases the blades, which move into the closed position under the combined effect of gravity and the gas pressure.
The invention will now be further and more particularly described, by way of example only, and with reference to the accompanying drawings, in which:
Referring to
The tubes 18 are arranged in vertical columns, within each column the tubes 18 being spaced apart centre-to-centre (y) at 100 mm, and the longitudinal distance (x) between the centres of successive columns also being 100 mm. There are twelve tubes 18 in the first column, so that the gaps between adjacent tubes are about 40 mm, and similarly there are gaps of about 20 mm between the top and bottom tubes 18 and the top and bottom walls of the duct 14. The arrangement of the tubes in the other odd-numbered columns is identical to that in the first column. The even-numbered columns each have eleven tubes 18, and the tubes 18 are staggered relative to those in the odd-numbered columns, so that the centres of the tubes 18 are exactly midway in height between those of the tubes in the odd-numbered columns.
At the downstream end of the array of tubes 18 is a louvre mechanism 20, consisting of eight louvre blades 22 (shown in broken lines in
In normal operation the damper 10 imposes a comparatively small pressure drop on the normal gas flow along the duct 12. In the event of a blast wave, the wave is scattered by the tubes 18 and dissipated, to a large extent. For example in the event of a blast wave with a pressure increase up to one atmosphere (100 kPa), for a blast duration of 200 msec, the damper 10 restricts the over pressure to about 15.3 kPa at a location 2 m downstream of the damper 10. The pressure increase can be further limited by providing a plenum of a larger cross-sectional area than the duct 12 downstream of the damper 10.
It will be appreciated that the embodiment described above is given by way of example only. There may be some situations in which the louvre mechanism 20 can be omitted, depending on what magnitude of blast waves is expected.
It will also be appreciated that a damper of the invention can be sized to suit a particular duct. For example, for use with a smaller duct there may be a similar damper with the same number of columns of tubes, but all the dimensions being correspondingly smaller. Alternatively the tubes might be of the same size and spacing as described above, but the numbers of tubes in each column being reduced in accordance with the size of the duct. In either case the preferred number of columns is between eight and twelve, more preferably ten, if the damper is to be suitable for blast waves with a pressure increase of 100 kPa. If the damper is for use in situations in which the blast wave pressure will not exceed say 50 kPa, then the number of columns could be reduced; while if the damper is to contend with blast waves pressure up to say 150 kPa, then the number of columns would preferably be increased.
| Number | Date | Country | Kind |
|---|---|---|---|
| 0611213.0 | Jun 2006 | GB | national |
| Filing Document | Filing Date | Country | Kind | 371c Date |
|---|---|---|---|---|
| PCT/GB2007/050317 | 6/5/2007 | WO | 00 | 2/10/2009 |