1. Field of the Invention
The present invention is directed to blast resistant prefabricated wall units and to the use thereof to construct building structures.
2. Background Art
Blast resistant structures in prior times were generally limited to defense installations where blasts from exploding ammunition dumps, missile lift-off failures, or the threat of enemy action reinstated consideration of such structures. Recently, however, the threat of suicide bombers, car bombs, and the like, have raised the threshold of consciousness relative to the desirability of such structures generally, in particular for desirable terrorist targets such as tall office buildings, government buildings, embassies, and the like, worldwide.
Occupants of buildings subjected to explosive blasts risk the possibility of death or injury not only by the blast itself and primary projectiles set in motion by the blast, but also by “secondary” projectiles which are originally part of the structure walls, and which are detached from the walls and accelerated inwards by the external shock wave. Thus, for example, in the case of prefabricated wall units of layers of sheetrock, masonry board or the like, conventionally fabricated with studs, sole plates, and top plates, a blast easily fragments the exterior and interior boards as the walls bend inward from the blast. The fragments become large projectiles, in many cases exceeding the destructive capacity of projectiles from the blast itself.
In U.S. Pat. No. 6,119,422, a panel construction is disclosed where wall layers such as gypsum board are bonded together with an adhesively bonded web mesh, in order to withstand impacts resulting from high winds such as those caused by tropical storms and hurricanes. However, such panels are unlikely to survive impacts from primary projectiles or the shock waves created by explosive events, and in any case, will still generate secondary projectiles in the case of the latter. No prefabricated walls are disclosed.
U.S. Pat. No. 4,242,406 discloses panels which are designed to be structural, i.e. to bear significant load, comprising a plastic surface finish adhered to a reinforcing layer prepared from an organic casting resin and containing reinforcing fibers, an intermediate bonding layer containing chopped glass fibers, and fiberglass-reinforced gypsum board as the final layer. While the panels are designed to be structural, they are not designed to resist impact. Moreover, prefabricated wall structures are not disclosed.
It would be desirable to provide blast resistant prefabricated wall units which do not fragment into secondary projectiles in the case of a blast. It would be further desirable to provide a building structure which can absorb considerable blast energy.
It has now been surprisingly discovered that blast resistant prefabricated wall units can withstand large explosive blasts without fragmenting, if the exterior and/or interior walls of the prefabricated wall units are comprised of an at least two layer construction, with a matrix resin-impregnated fiber-reinforcing layer bonded between the layers, the reinforcement continuing around top and sole plates.
a and 5b illustrate one embodiment of energy absorbing, deformable brackets useful in constructing buildings employing the blast resistant panels of the present invention.
A typical prefabricated wall unit 1 is shown in
The structural boards or “sheathing” are preferably gypsum board (wall board, plaster board) or masonry board, but may also be, preferably on the interior surface (facing the interior of the prefabricated wall panel), structural board of other types, for example, high, medium or low density particle board, oriented strand board, plywood, or the like. The gypsum board and masonry boards may optionally include reinforcing fibers within their inorganic matrix.
The layer of thermoset matrix resin-impregnated fibrous reinforcement (12) comprises minimally one layer of fiberglass, which may be woven, felted (i.e. needled), unidirectional, or combinations of these. Chopped fibers alone are generally not sufficient for the fibrous reinforcement, although in appropriate embodiments, they may be used in conjunction with other types of reinforcement, particularly felted and woven fiber reinforcement. It is preferred that the fibrous reinforcement comprise a single or a plurality of layers of unidirectional fiberglass (e-glass) reinforcement.
The fibers of the fiber reinforcement are high strength fibers, preferably glass fibers, although carbon (graphite) fibers may also be used, as well as high strength polymeric fibers, including but not limited to aramid fibers, high density polyethylene fibers, and the like. Mixtures of fibers may be used. The number of fiber layers is dependent upon the strength properties of the fibers, their configuration, e.g. unidirectional, woven, felted, or combinations thereof, and the matrix resin. With epoxy resins, from 1 to 10 layers of unidirectional glass fibers are preferred.
Preferred fibrous reinforcement is fiberglass, more preferably E-glass. The fibrous reinforcement is preferably in the form of unidirectional fabric, e.g. fabric comprising unidirectional fibers in the main, with sufficient crossfibers to maintain integrity of the fabric. A minor amount of thermoset or hot melt binder may be applied to prevent significant fraying or fiber release. The reinforcement advantageously has a tensile strength of 100,000 to 300,000 psi, more preferably 150,000 to 250,000 psi, an elongation at break of minimally 1.0%, more preferably 2.0%, and most preferably 3.0%, and a tensile modulus of minimally 5×106 psi, more preferably 10×106 psi, all measured in accordance with ASTM D2433 at 72° F. (25 DC) and 50% relative humidity. Fiber reinforcement with lesser or greater strength and elongation properties may be used as well, and when low performance fibrous reinforcement is employed, greater ultimate strength properties may be achieved through the use of additional layers. A preferred fibrous reinforcement is TYFO® BG, available from Fyfe Co. LLC, having an areal weight of approximately 27.6 oz./yd2. Layups with substantially bidirectional woven fiberglass cloth, and layups employing one or more layers of the latter together with one or more layers of subtantially unidirectional fabric are also preferred.
As shown in
The thermoset matrix resin may be any employed to produce fiber-reinforced articles, for example but not by limitation, unsaturated polyester resins, vinyl ester resins, polyurethane resins, bismaleimide resins, cyanate resins, epoxy resins, etc. Epoxy resins, due to their high strength, ready availability, and relatively low cost, are preferred. It is also possible to employ thermoplastic adhesives, for example, hot melt adhesives, although not preferred due to increased fabrication costs. For example, fibrous reinforcement impregnated with a pressure sensitive or hot melt adhesive may be employed in this less preferred embodiment.
Epoxy resins are the preferred matrix resins. The epoxy resins may be used to pre-impregnate the reinforcing fibers, i.e. in the form of what is commonly called a “prepreg.” However, for ease of construction, it is preferred that the epoxy resin be a liquid epoxy resin which is machine applied or hand applied to the fabric. The substrate may first be coated with epoxy, the fibrous reinforcement applied, and additional resin applied over the reinforcement, and hand worked, i.e. with rollers, brushes, trowels, or the like, to saturate the fibers. Air pockets and bubbles should be worked out by conventional hand saturation techniques, although it is permissible to have a limited number of such pockets so long as the strength of the overall panel is not compromised unduly. For hand saturation techniques, it is preferred that the curable epoxy resin composition have a viscosity in the range of 400 cps to 1500 cps, preferably in the range of 400 to 1000 cps.
A preferred epoxy resin composition is Tyfo® saturant epoxy, prepared by mixing 100 parts epoxy resin with 42 parts of hardener by volume, to produce a curable resin composition having a potlife of 2 to 4 hours at 68° F. (20° C.) and a viscosity in the range of 600-700 cps. This epoxy resin is preferably cured at ambient temperature for 24 hours followed by a post cure at 140° F. (60° C.) for 72 hours, and typically has a tensile strength of 8800 psi (61 MPa), tensile modulus of 406 Kpsi (2.8 GPa), and percent elongation of 8.0%, all as measured by ASTM D-838 Type 1; a flexural strength (ASTM D-780) of 17,900 psi (123.4 MPa) and flexural modulus (ASTM D-790) of 452 Kpsi (3.12 GPa). Tyfo® epoxy is available from FYFE Co. LLC, San Diego, Calif. Epoxy resin compositions with both lesser as well as greater cured physical properties are also suitable, and other useable epoxy resin compositions can easily be formulated by one skilled in the art. Epoxy resins may be formulated, for example, from conventional bisphenol A-based epoxy resins, from tetraglycidyltoluene diamine epoxy resins, from cyclohexene oxide-type epoxy resins, and the like. Reference may be had to the HANDBOOK OF Epoxy RESINS, Lee and Neville, McGraw-Hill, pub., ® 1967. Epoxy resin is preferably applied at a rate of about 0.2 to 2 lbs. epoxy per pound of reinforcement, preferably 0.4 to 1.5 lbs./lb, and most preferably about 0.7 to 0.9 lb/lb. Saturation may take place prior to layup onto the substrate, for example, by employing a TYFO® Saturator, available from FYFE Co. LLC.
Panel 34 consists of interior gypsum board 36, fiber reinforcing layer 37, and exterior gypsum board 38, while panel 35 consists of interior gypsum board 39, fiber reinforcing layer 40, and exterior gypsum board layer 41. Not shown for clarity is thermal insulation which is preferably present, positioned between the vertical studs.
The fiber reinforcing layer 40 of panel 35 is shown wrapped completely around sole plate 31 and top plate 32. Complete wrapping around the respective plates is not necessary, nor does the space between each stud 33 between sole plate 31 or top plate 32 require wrapping, so long as the desired degree of blast resistance is obtained. It would not depart from the spirit of the invention, for example, to incompletely wrap these structural elements, for example, wrapping between alternating pairs of studs or wrapping only partially between succeeding pairs of studs. In most cases, it is only necessary to continue the fibrous reinforcement and adhesive across all or a portion, i.e. preferably greater than 30% of the width of the sole and top plates.
In
While in
Attachment of the prefabricated wall panels in a building structure may be accomplished by conventional methods utilized in the building industry, for example by employing a hollow frame structure on the exterior of the building into which prefabricated panels are mounted and fastened. In
In
The extension 64 may take numerous forms. One such form is shown in
Other configurations for energy absorption can easily be designed by one skilled in the art, and include numerous deformable structures, including slides such as shown in
Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified. While the examples employ steel studs and plates, it is understood that studs and plates of other materials are also suitable.
A prefabricated wall panel is constructed conventionally, including a steel sole plate and steel top plate of 6 inch depth connected by 6 inch deep steel studs. The exterior consists of two layers of ⅝ inch type X gypsum board, as does the interior as well. Standard 6 inch fiberglass insulation is contained between the studs. The prefabricated wall is positioned between reinforced concrete “floor and ceiling” members 75, 76 of a blast chamber 77, and maintained in this position by non-deformable brackets 78 external to the chamber, as shown in
Blast resistant walls are prepared as described in
Two blast tests were constructed, in the first case with the fiber reinforced panel facing the interior of the chamber, while in the second case, the fiber reinforced panel faced the exterior of the chamber. Upon detonating the explosive charge, bending deformation of the wall panel could be observed in a direction away from the chamber. However, the panel substantially regains its original shape. No secondary projectiles are created.
While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.
Number | Name | Date | Kind |
---|---|---|---|
2276076 | Finck | Mar 1942 | A |
3327442 | Hermann | Jun 1967 | A |
3619437 | McDonald, Jr. | Nov 1971 | A |
4242406 | El Bouhnini | Dec 1980 | A |
4471591 | Jamison | Sep 1984 | A |
5192598 | Forte et al. | Mar 1993 | A |
5365716 | Munson | Nov 1994 | A |
5398471 | Spagnolo | Mar 1995 | A |
5890334 | Hughes, Jr. | Apr 1999 | A |
6119422 | Clear | Sep 2000 | A |
6368991 | Horner et al. | Apr 2002 | B1 |
6557313 | Alderman | May 2003 | B1 |
6699575 | Dagher et al. | Mar 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20050144900 A1 | Jul 2005 | US |