The present invention relates to a blast resistant vehicle hull.
Modern combat theaters require new operational doctrines to counter unsymmetrical and unpredictable threats. Vehicles, such as tanks, personnel carriers, trucks, and the like, operating in such theaters must be light, agile, and maneuverable while protecting personnel in the vehicles from the deleterious effects of explosive blasts. Mines and improvised explosive devices pose significant threats to vehicles, and particularly to light vehicles, in today's combat theaters. The explosive characteristics of mines and improvised explosive devices vary widely, ranging from relatively small devices to large, wired bombs and artillery shells.
Conventional vehicles that have been designed to mitigate the effects of such explosive devices are large and heavy, often weighing more than 5400 kg (6 tons). Such vehicles have limited tactical utility and transportability because of their extreme weight.
Some vehicles are known to have elements, such as blast attenuators, that absorb and/or redistribute a blast impulse to reduce the likelihood that the blast will cause penetration of the vehicle or launch the vehicle into the air. If the blast wave and/or associated spall or shrapnel penetrate the vehicle, or if the vehicle is launched to a significant distance into the air, the occupants of the vehicle may be injured or the vehicle's ability to operate may be impaired.
One way of at least partially protecting a vehicle and the like from the destructive effects of explosive blasts is to provide armor on the exterior of the vehicle. Such armor typically is made from thick steel plate, which increases the weight of the vehicle substantially. The armor must be sufficiently strong to prevent the blast wave resulting from the explosive blast from penetrating or rupturing the armor.
Another way of protecting vehicles and the like from the destructive effects of explosive blasts is to add crushable elements to the vehicle. Typical crushable elements used in blast attenuators include, for example, honeycomb, foam, and/or corrugated panels that absorb the explosive blast wave. While such crushable elements are effective in absorbing blast loads, they are volumetrically inefficient. Crushable elements having large volumes are required to dissipate the energy of the explosive blast.
While protecting the vehicle or structure and its occupants and equipment is generally of primary importance, other factors may play a role in the design of blast attenuators for the vehicle. For example, it is not desirable for the vehicle's overall size to increase greatly as a result of adding blast attenuators or other such blast protection devices to the vehicle. It is logistically important for existing transportation equipment (e.g., trucks, trailers, aircraft, and the like) to be capable of transporting the vehicle. If the size of the vehicle is increased over previous vehicles, the existing transportation equipment may not be capable of transporting the vehicle, or the existing transportation equipment may be limited to carrying fewer vehicles per load. Additionally, it is desirable to maximize the internal volume of the vehicle to allow adequate space to house the crew and crew gear. Accordingly, blast attenuators having lower volumes generally result in vehicle designs having larger internal volumes. The overall size of the vehicle is also a factor in combat situations. Generally, smaller targets (i.e., smaller vehicles) are more difficult to hit with artillery, such as rockets, mortars, missiles, and the like. Thus, it is desirable for the vehicle's overall size to be smaller, rather than larger, to reduce the likelihood of an artillery hit or explosive impact.
There are many vehicles that are configured to withstand explosive blasts that are well known in the art; however, considerable room for improvement remains.
The novel features believed characteristic of the invention are set forth in the appended claims. However, the invention itself, as well as a preferred mode of use, and further objectives and advantages thereof, will best be understood by reference to the following detailed description when read in conjunction with the accompanying drawings, in which the leftmost significant digit(s) in the reference numerals denote(s) the first figure in which the respective reference numerals appear, wherein:
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and are herein described in detail. It should be understood, however, that the description herein of specific embodiments is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Illustrative embodiments of the invention are described below. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
The present invention represents a vehicle hull for a ground-travelling vehicle that includes an enclosure and a blast channel extending between and through a lower, outer surface of the enclosure and a surface of the enclosure other than the lower, outer surface of the enclosure. For example, in one embodiment, the blast channel comprises a funnel, a nozzle, and a transit tube extending between and in fluid communication with the funnel and the nozzle. The funnel extends through the lower, outer surface of the enclosure. The nozzle extends through the surface of the enclosure other than the lower, outer surface of the enclosure. At least a portion of a pressure wave produced by an explosion beneath the vehicle is vented through the vehicle via the blast channel to reduce the upward force of the explosion upon the vehicle. Accelerating gases emitted from some nozzle configurations provide a downward force to resist vehicle lifting and upward movement. In one embodiment, the blast channel extends between and through the lower, outer surface of the enclosure and an upper, outer surface of the enclosure. In such an embodiment, the nozzle extends through the upper, outer surface of the enclosure. In another embodiment, the blast channel extends between the lower, outer surface of the enclosure and a side, outer surface of the enclosure. In such an embodiment, the nozzle extends through the side, outer surface of the enclosure. Preferably, the funnel defines an opening larger than the inner, cross-sectional dimension of the transit tube. The nozzle may define an opening larger, smaller, or substantially equivalent to the inner, cross-sectional dimension of the transit tube, depending upon the desired downward-force characteristics. For example, nozzles may incorporate “throat features” to accelerate explosive gases as they are emitted from such nozzles.
In the illustrated embodiment, outlet nozzle 113 extends through upper, outer surface 109 of enclosure 103, although the present invention contemplates other configurations, such as the configuration of
Still referring to
Upon an explosion occurring beneath blast resistant vehicle hull 401, represented by a graphic 431, at least a portion of a pressure wave produced by explosion 431 is vented through enclosure 403 via blast channels 405, 407, and 409, as indicated by arrows 505, 507, and 509, respectively. In blast channels 405 and 409, openings 501 and 503 of nozzles 421 and 427, respectively, act as constrictions or throat features that accelerate the velocity of the gases resulting from explosion 431. Once the gases exit openings 501 and 503, the gases expand rapidly to produce reaction forces to resist vehicle lifting and rolling movement.
A blast channel nozzle may also incorporate one or more constrictions or throat features spaced away from the outlet opening of the nozzle.
It should be noted that blast channels contemplated by the present invention, such as blast channels 105, 405, 407, and 409, may be made from any material suitable for venting a pressure wave produced by an explosion beneath a blast resistant vehicle hull of the present invention. Such blast channels may be made using any suitable method.
The present invention provides significant advantages, including: (1) providing a vehicle hull that can better withstand blasts from mines and improvised explosive devices; (2) providing a vehicle hull that is less likely to be launched high into the air due to blasts from mines and improvised explosive devices; and (3) providing a vehicle hull that is lighter weight than conventional blast resistant vehicle hulls.
The particular embodiments disclosed above are illustrative only, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. Furthermore, no limitations are intended to the details of construction or design herein shown, other than as described in the claims below. It is therefore evident that the particular embodiments disclosed above may be altered or modified and all such variations are considered within the scope and spirit of the invention. Accordingly, the protection sought herein is as set forth in the claims below. It is apparent that an invention with significant advantages has been described and illustrated. Although the present invention is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/022421 | 1/28/2010 | WO | 00 | 8/9/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/123606 | 10/28/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4460128 | Lazarre | Jul 1984 | A |
5472378 | Skoff | Dec 1995 | A |
5663520 | Ladika et al. | Sep 1997 | A |
6813986 | Tafoya et al. | Nov 2004 | B1 |
7540227 | McCants, Jr. | Jun 2009 | B2 |
20050282064 | Kim et al. | Dec 2005 | A1 |
20060042115 | Karr et al. | Mar 2006 | A1 |
20060272491 | Joynt | Dec 2006 | A1 |
20070068373 | McCantas, Jr. | Mar 2007 | A1 |
20080173167 | Mills et al. | Jul 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
20120297966 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
61148290 | Jan 2009 | US |