Blast resistant window framework and elements thereof

Information

  • Patent Grant
  • 6216401
  • Patent Number
    6,216,401
  • Date Filed
    Wednesday, March 10, 1999
    25 years ago
  • Date Issued
    Tuesday, April 17, 2001
    23 years ago
Abstract
There is described a profiled sash section for a window sash holding a window pane and intended for being installed in an outer frame of a blast resistant window. The sash section includes a main member enabling inter-engagement between the profiled sash member and the outer frame; a window pane holding member for accommodating and securing an end portion of said window pane in the profiled sash member, and a reinforcing member designed to support the end portion of the window pane and to transmit blast pressure, if incidentally applied to the window pane, to the main member. For at least partially absorbing blast pressure energy applied to the window pane, the sash section is provided with damping means for deforming up to a predetermined limit. Also described is a blast-resistant framework for a casement window, including the window sash assembled from the mentioned profiled sash sections and adapted for rigidly and air-tightly securing the window pane in the holders of the profiled sash members.
Description




FIELD OF THE INVENTION




This invention relates to a blast resistant framework for a window, preferably for a casement window.




BACKGROUND OF THE INVENTION




The casement window referred to in the present description usually comprises a rectangular (sometimes a polygonal, arched or the like) framework consisting of a frame anchored within an opening in a wall and a sash swingably mounted thereon with locking means preventing unintended opening of the sash.




IL Patent 115840 to Arpal Aluminium Ltd. describes an adjustable casement window suitable for use as a blast resistant framework illustrated in

FIGS. 1

to


3


which are indicated as Prior Art. A rectangular framework


2


for a windowpane


4


is mounted within an opening in a wall


6


. The framework comprises an outer frame


8


typically made of steel and anchored within a corresponding rectangular aperture formed in the wall


6


by a portion


11


cast within the wall and by other suitable anchors (not shown), as known per se.




A jamb frame


12


is mounted within the outer frame


8


and consists of an upper frame head


14


, a lower frame sill


16


, a side shutting jamb


18


and a side hinging jamb


20


.




The framework


2


further comprises a window sash


22


, which consists of a profiled top rail


24


, a bottom rail


26


, a shutting stile


28


and a hinging stile


30


. The window sash


22


is pivotally mounted with respect to the jamb frame


12


by means of hinges


32


, secured respectively to the hinging jamb


20


and the hinging stile


30


. The jamb frame


12


and the window sash


22


are typically made of a light metal such as aluminum.




The profiles of the vertical sash members


28


and


30


and the profiles of the horizontal sash members


24


and


26


are respectively formed with inwardly directed pairs of reinforcing flanges


34


and


36


designed to receive the end portion of the window pane


4


. These profiles are also provided with suitable seals


38


and


40


for preventing egress or ingress of air, noxious gases, dust and water. The window sash


22


is lockable within the jamb frame


12


by means of a rotary handle


42


mounted on the shutting stile


28


and activating a locking mechanism as known per se, the constituent parts of which being generally and collectively designated as


44


in FIG.


3


.




Locking mechanisms which are in use in the casement windows usually comprise upright (and sometimes also horizontal) sliding carrier members which are activated by a rotary handle and, in turn, displace a number of associated locking elements to bring them into their locked state. A blast-resistant casement window with such a locking system is described, for example, in IL Patent 103168 to Arpal Aluminium Ltd., and is effective against distortion and/or detachment with blasts corresponding to one atmosphere pressure (1 Bar=14.2 PSI). Experiments have shown that the above-described frameworks may appear to be ineffective against blasts creating pressures higher than those mentioned above. It has been noticed, that the described air-tight frameworks loose their properties due to bending deformations which appear in vertical and horizontal sash members when blast pressure is momentarily applied to the window pane. Such deformations may cause unlocking of some locking elements, consequent weakening of the lock and sometimes result in collapsing of the window pane into the interior of the shelter or room.




SUMMARY OF THE INVENTION




It is therefore an object of the present invention to provide a construction of a sash section for holding a window pane, being capable of effectively withstanding blast pressure if incidentally applied to the windowpane. A second object of the invention is a framework for a window comprising the inventive sash sections.




The above object can be achieved by providing a profiled sash section for a window sash holding a window pane and intended for being installed in an outer frame of a blast resistant window, said sash section comprising:




a main member enabling inter-engagement between the profiled sash member and the outer fame;




a window pane holding member for accommodating and securing an end portion of said window pane in said sash profiled member;




a reinforcing member designed to support the end portion of the window pane and to transmit blast pressure, if incidentally applied to the window pane, to the main member;




said sash section being characterized in that it includes damping means for deforming up to a predetermined limit for at least partially absorbing blast pressure energy applied to the window pane.




In other words, the function of the damping means is to protect the basic structure of the profiled sash section and, consequently, of the window sash from being dangerously deformed by the blast pressure impact.




Preferably, the damping means are profiled, i.e. manufactured in one process with the sash section. However, said damping means may be produced separately (for example by molding) and then incorporated in the sash section.




It should be mentioned, that the inventive sash section may either be constituted by one integral profiled body, or be composed of at least two profiled inter-engaged segments.




The profiled sash section can be selected from a non-exhausting list comprising a hinging stile, a shutting stile, a top rail and a bottom rail. When installing the assembled window sash in the outer frame, said profiled sash sections respectively inter-engage and cooperate with a side hinging jamb, a side shutting jamb, a lower frame sill and an upper frame head.




The main member of the profiled sash section may constitute either a bar-like or tubular body; said main member being adapted for accommodating, at least on one of its surfaces, locking elements, hinges and the like.




Usually, said reinforcing member fills a corner formed between said main member and a plane of the window pane. Preferably, the reinforcing member forms a tubular body being substantially rectangular or trapezoidal in its cross-section.




According to one particular embodiment of the profiled sash member, said reinforcing member is an integral part of said main member which form together a tubular body which may have a cross-section in the form of a rectangle or another polygonal shape.




In accordance with one embodiment of the invention, said damping means comprise at least one damping connector provided between at least one of the following three pairs: the reinforcing member and the window pane holding member, the reinforcing member and the main member, the main member and the window pane holding member.




The damping means in general and the damping connector in particular may constitute a metal piece, bendable if excessive pressure is applied to the window pane. Such a damping connector may either form an integral part of the sash member, or be constituted by a damping insert.




Alternatively, the damping means or the damping connector may be shaped as a metal piece weakened at its particular portion and thus exposed for being deformed and/or broken by the blast pressure energy, thereby partially absorbing thereof.




In a particular case, the damping means may constitute at least one weakened element of said reinforcing member or said main member.




In yet a further embodiment, the damping means may comprise at least one male-female coupling unit in a non-engaged or partially engaged state, wherein elements thereof are connected, for example, to the window pane holding member and the reinforcing member, respectively; the unit being snap-fittingly engageable only when the incidental blast pressure is applied to the window pane.




In accordance with the second aspect of the invention, there is also provided a blast-resistant framework for a window, the framework comprising a window sash assembled from the sash members as defined above; the window sash being adapted for rigidly and air-tightly securing the window pane in the holding members of said sash members.











BRIEF DESCRIPTION OF THE DRAWINGS




In order to understand the invention, one prior art construction is shown in

FIGS. 1

to


3


.





FIG. 1

is a schematic front view of a blast-resistant framework of a casement window.





FIG. 2

is a cross-sectional view of the window framework taken along line II in FIG.


1


.





FIG. 3

is a cross-sectional view of the window framework taken along line III in FIG.


1


.




To see how the invention may be carried out in practice, preferred embodiments will be described, by way of non-limiting examples only, with reference to the accompanying drawings, in which:





FIG. 4

is a cross-section of one embodiment of the profiled sash member according to the invention, being engaged with a corresponding element of an outer window framework.





FIG. 5

is a cross-sectional view of another embodiment of the inventive profiled sash member.





FIG. 6

is a cross-sectional view of a further embodiment of the profiled sash member according to the invention.





FIG. 7

is a cross-sectional view of yet another embodiment of the profiled sash member.











DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS





FIGS. 1

to


3


, which illustrate a prior art construction, have been described above in the frame of the background of the invention.





FIG. 4

illustrates a cross-sectional view of a profiled sash member


10


which constitutes a hinging stile in this particular drawing. The hinging stile


10


is shown in engagement with a side-hinging jamb


12


; they are journalled one to the other via a hinge


14


and locked together by a locking unit generally marked


16


. The side-hinging jamb


12


is secured to a wall


18


in a way, which is irrelevant to the present invention. The construction of the profiled hinging stile


10


is applied to the corresponding shutting stile, top rail and bottom rail of the framework (not shown) mutatis mutandis.




The hinging stile


10


comprises a main member


20


shaped as a tubular body with a generally rectangular cross-section and having a bar-like leg


21


. An outer side of the main member


20


that faces the side-hinging jamb


12


is provided with a locking element


22


. The stile


10


further comprises a window pane holding member


24


in which an end of a window pane


26


is rigidly and tightly secured. The shape of the window pane holding member


24


may differ from that shown in the drawing and be, for example, fork-like to hold the window pane between the fork legs. The rigid connection shown in the drawing includes an adhesive layer


28


and a resilient rubber seal


30


. Owing to the reliable coupling between the window pane


26


and the holding member


24


, blast pressure, if applied to the window pane, is transmitted to the profiled members of the hinged stile


10


(as well as to the other sash members of the framework, which are not shown). The hinging stile


10


also comprises a reinforcing member


32


filling the right angle formed between the main member


20


and the window pane holding member


24


. Additionally, the stile comprises a damping connector


34


in the form of a bendable metal strip fitted between the windowpane holding member


24


and the main member


20


. In the case that blast pressure is applied to the window pane


24


, it will firstly cause bending of the damping connector


34


, and thereby part of the blast pressure energy will be absorbed. As a result thereof, the full blast pressure applied to the window pane


24


will not be directly transferred to the reinforcing member


32


and main member


20


, thus excessive deformation of the window sash and subsequent random unlocking of the locking units


16


will be prevented. Alternatively, or in addition to the bendable strip


43


, the bar-like leg


21


may comprise a similar bendable portion, and/or the reinforcing member


32


per se may be weakened at any portion thereof to cause a similar effect.





FIG. 5

shows another embodiment of a profiled sash member. As before, a hinging stile is illustrated which is marked


40


in this drawing. Again, the construction of the profiled hinging stile.


40


also suits to the other mentioned sash members. The sash member


40


is comprised of two segments, one being an integral tubular member


42


which is a combination of a main member and a reinforcing member. One outer side of the tubular member


42


bears a locking element


44


of a locking unit


46


. The second segment of the profiled sash member


40


is a window pane holding member


48


which is designed to grip the window pane


50


. Two damping connectors


52


are provided between the tubular member


42


and the holding member


44


, each comprising a male-female coupling unit in a semi-engaged state. In this embodiment, male elements of the damping connectors are formed integrally with the window pane holding member


48


, and the female members with the combined tubular member


42


. Each of the damping connectors


52


has an engaging arrangement, which is rather hard to bring into a fully engaged state. Owing to the above, either one or both of the connectors will only be coupled when a considerable pressure such as that of a blast is applied to the window pane. Structure and positioning of the damping connectors may vary; for example, at least an element of the connector may be manufactured integrally with a side wall opposing to that bearing the locking element


44


.





FIG. 6

illustrates a modified version of the embodiment shown in

FIG. 5. A

sash section


60


is assembled from two inter-engaged segments


62


and


64


. The segment


62


is a tubular combined member serving as both a main and a reinforcing member. A damping connector


66


is separately manufactured as a pair of molded male and female elements, which are respectively installed in the members


64


and


62


to be in a non-engaged state.





FIG. 7

represents yet a further embodiment of a profiled sash section


70


which is similar to that shown in

FIG. 6

, though differing in that a damping connector


76


is in the form of a powerful spring-like corrugated piece installed between inter-engaged segments


72


and


74


of the profiled sash section.




It has been shown that window sashes assembled from the sash sections described in the present specification stand blast pressure of about 3 Bars.



Claims
  • 1. A profiled sash section for a window sash holding a window pane and intended for being installed in an outer frame of a blast resistant window, said sash section comprising:a main member enabling inter-engagement between the profiled sash member and the outer frame; a window pane holding member for accommodating and securing an end portion of said window pane in said profiled sash member; a reinforcing member designed to support the end portion of the window pane and to transmit blast pressure, if incidentally applied to the window pane, to the main member; said sash section being characterized in that it includes damping means for deforming up to a predetermined limit for at least partially absorbing blast pressure energy applied to the window pane.
  • 2. The profiled sash section as in claim 1, wherein said damping means are manufactured separately and mounted in said profiled sash section.
  • 3. The profiled sash section according to claim 1, composed of at least two inter-engaged profiled segments.
  • 4. The profiled sash section according to claim 1, selected from a list comprising a hinging stile, a shutting stile, a top rail and a bottom rail.
  • 5. The profiled sash section as in claim 1, wherein the main member is a bar-like body serving to accommodate locking elements, hinges.
  • 6. The profiled sash section according to claim 1, wherein the reinforcing member forms a tubular body.
  • 7. The profiled sash member according to claim 1, wherein said reinforcing member fills a corner formed between said main member and a plane of the window pane.
  • 8. The profiled sash section according to claim 1, wherein said reinforcing member is an integral part of said main member which form together a tubular body.
  • 9. The profiled sash section according to claim 1, wherein said damping means comprise at least one damping connector provided between at least one of the following three pairs: the reinforcing member and the window pane holding member, the reinforcing member and the main member, the main member and the window pane holding member.
  • 10. A blast-resistant framework for a casement window, said framework comprising a window sash assembled from the profiled sash sections according to claim 1; the window sash being adapted for rigidly and air-tightly securing the window pane in the holding members of said profiled sash members.
Priority Claims (1)
Number Date Country Kind
123980 Apr 1998 IL
US Referenced Citations (6)
Number Name Date Kind
4027443 Briggs Jun 1977
4630411 Salzer Dec 1986
4896613 Salzer Jan 1990
5027557 May Jul 1991
5636484 DeBlock Jun 1997
5765325 DeBlock Jun 1998
Foreign Referenced Citations (3)
Number Date Country
2705710 Dec 1994 FR
103168 Sep 1992 IL
115840 Nov 1995 IL