Blends of polyesters and ABS copolymers

Information

  • Patent Grant
  • 8198371
  • Patent Number
    8,198,371
  • Date Filed
    Monday, February 23, 2009
    16 years ago
  • Date Issued
    Tuesday, June 12, 2012
    13 years ago
Abstract
Polymer blends comprising polyesters made from terephthalic acid; 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 1,4-cyclohexanedimethanol, and copolymers made from acrylonitrile, butadiene, and styrene (ABS) monomers. These blends have a combination of toughness, heat resistance, high modulus, and good flowability—making them particularly useful in films, fibers, engineering molding plastics, and packaging.
Description
FIELD OF THE INVENTION

The present invention generally relates to polymer blends comprising polyesters made from terephthalic acid; 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 1,4-cyclohexanedimethanol; and copolymers made from acrylonitrile, butadiene, and styrene (ABS). The blends are characterized by a unique combination of properties such as heat resistance, toughness, high modulus, and good flowability. The blends can be formed into, for example, molded articles, films, and fibers.


BACKGROUND OF THE INVENTION

Molding plastics, films, and fibers can be produced from a variety of plastic materials by a variety of processes such as extrusion blow molding, stretch blow molding, etc. These plastic materials may comprise mixtures of structurally different polymers or copolymers, which are referred to as polymer blends.


Polymer blending technology generally rests on the premise of property additivity. Typically, blending with a higher modulus polymer to increase stiffness will reduce the toughness and flowability of a given polymer.


In the present invention, however, it has been surprisingly discovered that adding a higher modulus ABS copolymer to a certain polyester results in a blend with not only a higher modulus than the original polyester, but also with better flowability and excellent toughness. In some cases, the blends even have greater toughness—particularly, low temperature toughness—than either of the component polymers.


SUMMARY OF THE INVENTION

The present invention generally relates to polymer blend compositions prepared by blending polyesters made from terephthalic acid; 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 1,4-cyclohexanedimethanol, with copolymers made from acrylonitrile, butadiene, and styrene (ABS) monomers. These polymer blends have a combination of toughness, heat resistance, high modulus, and good flowability making them particularly useful in films, fibers, packaging, and engineering molding plastics.


In one embodiment, the invention provides a polymer blend comprising:


(a) 5 to 95 weight percent of a polyester comprising:

    • (i) a dicarboxylic acid portion comprising residues of terephthalic acid, isophthalic acid, or both; and
    • (ii) a glycol portion comprising 5 to 100 mole percent of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCB) residues and 0 to 95 mole percent of 1,4-cyclohexanedimethanol (CHDM) residues; and


(b) 5 to 95 weight percent of a copolymer comprising acrylonitrile, butadiene, and styrene (ABS) monomers.


In another embodiment, the invention provides a polymer blend comprising:


(a) 60 to 95 weight percent of a polyester comprising:

    • (i) a dicarboxylic acid portion comprising 90 to 100 mole percent of residues of terephthalic acid, isophthalic acid, or both; and
    • (ii) a glycol portion comprising 5 to 50 mole percent of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 50 to 95 mole percent of 1,4-cyclohexanedimethanol residues; and


(b) 5 to 40 weight percent of a copolymer comprising 20 to 40 weight percent of acrylonitrile monomers, 20 to 40 weight percent of butadiene monomers, and 40 to 60 weight percent of styrene monomers.







DETAILED DESCRIPTION OF THE INVENTION

Surprisingly, it has been discovered that blends of (a) a copolyester comprising terephthalic acid; 2,2,4,4-tetramethyl-1,3-cyclobutanediol; and 1,4-cyclohexanedimethanol residues, with (b) a copolymer comprising acrylonitrile, butadiene, and styrene (ABS) monomers can have a combination of toughness, heat resistance, high modulus, and good flowability.


According to the present invention, there is provided a polymer blend comprising:


(a) 5 to 95 weight percent of a polyester comprising:

    • (i) a dicarboxylic acid portion comprising residues of terephthalic acid, isophthalic acid, or both; and
    • (ii) a glycol portion comprising 5 to 100 mole percent of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCB) residues and 0 to 95 mole percent of 1,4-cyclohexanedimethanol (CHDM) residues; and


(b) 5 to 95 weight percent of a copolymer comprising acrylonitrile, butadiene, and styrene (ABS) monomers.


In one embodiment, the blend comprises 60 to 95 weight percent of the polyester and 5 to 40 weight percent of the ABS compolymer. In another embodiment, the blend comprises about 70 to 90 weight percent of the polyester and about 10 to 30 weight percent of the ABS copolymer.


The polyesters used in the present invention typically can be prepared from dicarboxylic acids and diols, which react in substantially equal proportions and are incorporated into the polyester polymer as their corresponding residues. The polyesters of the present invention, therefore, can contain substantially equal molar proportions of acid residues (100 mole %) and diol residues (100 mole %) such that the total moles of repeating units is equal to 100 mole %. The mole percentages provided herein, therefore, may be based on the total moles of acid residues, the total moles of diol residues, or the total moles of repeating units. For example, a polyester containing 30 mole % of isophthalic acid residues, based on the total acid residues, means that there are 30 moles of isophthalic acid residues for every 100 moles of acid residues. In another example, a polyester containing 30 mole % of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues, based on the total diol residues, means that there are 30 moles of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues for every 100 moles of diol residues.


The term “polyester,” as used herein, is intended to include “copolyesters.”


The term “residue,” as used herein, means any organic structure incorporated into a polymer through a polycondensation and/or an esterification reaction from the corresponding monomer. Thus, for example, the dicarboxylic acid residues may be derived from a dicarboxylic acid monomer or its associated acid halides, esters, salts, anhydrides, or mixtures thereof. Therefore, reference to a dicarboxylic acid is intended to include the dicarboxylic acid itself and any derivative of the dicarboxylic acid, including its associated isomers, acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, and mixtures thereof, useful in a reaction with a diol to make a polyester. Examples of esters of the dicarboxylic acids useful in this invention include the dimethyl, diproplyl, diisopropyl, dibutyl, diphenyl, etc.


For example, the term “terephthalic acid” is intended to include terephthalic acid itself as well as any derivative of terephthalic acid, including its associated isomers, acid halides, esters, half-esters, salts, half-salts, anhydrides, mixed anhydrides, and mixtures thereof, useful in a reaction with a diol to make a polyester.


In one embodiment, terephthalic acid may be used as the diacid starting material for the polyester component. In another embodiment, isophthalic acid may be used as the diacid starting material. In another embodiment, mixtures of terephthalic acid and isophthalic acid may be used as the diacid starting material.


The dicarboxylic acid portion of the polyester may be substituted with up to 20 mol %, but preferably less than 10 mol %, of other aromatic dicarboxylic acids. Examples of suitable other aromatic dicarboxylic acids include 4,4′-biphenyidicarboxylic acid; 1,5-, 2,6-, and 2,7-naphthalenedicarboxylic acid; 4,4′-oxydibenzoic acid; and trans-4,4′-stilbenedicarboxylic acid. In addition, the dicarboxylic acid portion of the polyester may be substituted with aliphatic or cycloaliphatic dicarboxylic acids containing 6 to 12 carbon atoms such as succinic, glutaric, adipic, sebacic, suberic, azelaic, decanedicarboxylic, and dodecanedicarboxylic acids.


The TMCB may be cis, trans, or a mixture of the two. The CHDM may be cis, trans, or a mixture of the two.


The glycol portion of the polyester may contain up to 10 mol %, but preferably less than 5 mol %, of another glycol containing 2 to 16 carbon atoms. Examples of suitable other glycols include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and p-xylene glycol. The polyester may also be modified with polyethylene glycols or polytetramethylene glycols.


In one embodiment, the dicarboxylic acid portion of the polyester comprises 100 mole percent of terephthalic acid residues, and the glycol portion of the polyester comprises 5 to 70 mole percent of TMCB residues and 30 to 95 mole percent of CHDM residues. In another embodiment, the dicarboxylic acid portion of the polyester comprises 100 mole percent of terephthalic acid residues, and the glycol portion of the polyester comprises 5 to 50 mole percent of TMCB residues and 50 to 95 mole percent of CHDM residues.


In one embodiment, the polyester component of the polymer blend has a glass transition temperature (Tg) ranging from 90 to 140° C. The Tg may be determined, for example, by using a TA Instruments differential scanning calorimeter (DSC) instrument at a scan rate of 20° C./min.


In another embodiment, the polyester component of the polymer blend has a glass transition temperature ranging from 100 to 130° C.


In one embodiment, the inherent viscosity of the polyester component ranges from 0.4 to 0.9 dL/g as determined in 60/40 (wt/wt) phenol/tetrachloroethane at a concentration of 0.5 g/100 ml at 25° C.


In another embodiment, the inherent viscosity of the polyester ranges from 0.5 to 0.8 dL/g.


The polyester component of the polymer blend may be prepared by methods known in the art.


The ABS copolymers used in the present invention can be prepared by methods known in the art. For example, it may be made by polymerizing styrene and acrylonitrile in the presence of polybutadiene. The monomers are incorporated into the ABS copolymer as their corresponding residues.


In one embodiment, the ABS component of the polymer blend comprises:


15 to 40 mole % of acrylonitrile monomers;


6 to 40 mole % of butadiene monomers; and


40 to 80 mole % of styrene monomers.


In another embodiment, the ABS component of the polymer blend comprises:


20 to 40 mole % of acrylonitrile monomers;


20 to 40 mole % of butadiene monomers; and


40 to 60 mole % of styrene monomers.


Unless the context indicates otherwise, as used herein, the term “acrylonitrile” is intended to include acrylonitrile itself and any derivative of acrylonitrile that can be used in the preparation of ABS copolymers, such as methacrylonitrile, as well as the corresponding residues thereof, and mixtures thereof. Unless the context indicates otherwise, as used herein, the term “butadiene” is intended to include butadiene itself and any other diene that can be used in the preparation of ABS copolymers, such as ethylene-propylene diene monomer (EPDM), the corresponding residues thereof, and mixtures thereof. The term also includes saturated acrylate elastomer. The butadiene of the ABS copolymer typically exists as a separate phase with a particle size in the range from 0.1 to 5 microns. The butadiene phase may have a bimodal size distribution.


Unless the context indicates otherwise, as used herein, the term “styrene” is intended to include styrene itself and any derivative of styrene that can be used in the preparation of ABS copolymers, such as alpha methylstyrene, as well as the corresponding residues thereof, and mixtures thereof.


The ABS copolymer may be modified by addition of another copolymer such as styrene-maleic anhydride copolymers, methyl methacrylate alpha-methylstryrene copolymers, styrene-maleic anhydride-methyl methacrylate copolymers, and acrylic acid copolymers.


The polymer blend may comprise 0.01 to 25 weight percent of at least one additive chosen from colorants, dyes, mold release agents, flame retardants, plasticizers, nucleating agents, UV light stabilizers, thermal stabilizers, fillers, impact modifiers, processing aids, and reinforcing materials such as glass fibers.


The polymer blends of the present invention can be made by conventional mixing methods known in the art, such as melt blending or solution blending. Suitable methods include, but are not limited to, the steps of mixing the polyester and the ABS copolymer components in powder or granular form in an extruder, extruding the mixture into strands, chopping the strands into pellets, and molding the pellets into the desired article(s).


In one embodiment, the polymer blend according to the invention comprises:


(a) 60 to 95 weight percent of a polyester comprising:

    • (i) a dicarboxylic acid portion comprising 90 to 100 mole percent of residues of terephthalic acid, isophthalic acid, or both; and
    • (ii) a glycol portion comprising 5 to 50 mole percent of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 50 to 95 mole percent of 1,4-cyclohexanedimethanol residues; and


(b) 5 to 40 weight percent of a copolymer comprising 20 to 40 weight percent of acrylonitrile monomers, 20 to 40 weight percent of butadiene monomers, and 40 to 60 weight percent of styrene monomers.


In another embodiment, the polymer blend comprises about 70 to 90 weight percent of the polyester and about 10 to 30 weight percent of the ABS copolymer.


Another aspect of the present invention relates to articles of manufacture comprising the polymer blends of the invention. Such articles of manufacture can be chosen from films, sheets, fibers, and molded articles.


In one embodiment, the polymer blends of the invention are useful as housing of consumer electronics. Consumer electronics include electronic equipment intended for everyday use. Consumer electronics are most often used in entertainment, communications, and office productivity. Some products classed as consumer electronics include, but are not limited to, personal computers, telephones, MP3 players, audio equipment, televisions, calculators, GPS automotive navigation systems, and playback and recording of video media such as DVDs, CDs, VHS's or camcorders.


In another embodiment, the blends of the invention are useful for and/or in medical equipment housings.


This invention can be further illustrated by the following working examples, although it should be understood that these examples are included merely for purposes of illustration and are not intended to limit the scope of the invention.


EXAMPLES

Measurement Methods


The inherent viscosity of the polyesters was determined in a 60/40 (wt/wt) phenol/tetrachloroethane mixture at a concentration of 0.5 g/100 ml at 25° C.


The glass transition temperature (Tg) was determined using a TA Instruments DSC instrument at a scan rate of 20° C./min.


The glycol content and the cis/trans ratio of the polyesters were determined by proton nuclear magnetic resonance (NMR) spectroscopy. All NMR spectra were recorded on a JEOL Eclipse Plus 600 MHz nuclear magnetic resonance spectrometer using either chloroform-trifluoroacetic acid (70-30 volume/volume) for polymers or, for oligomeric samples, 60/40 (wt/wt) phenol/tetrachloroethane with deuterated chloroform added for lock. Peak assignments for 2,2,4,4-tetramethyl-1,3-cyclobutanediol resonances were made by comparison to model mono- and dibenzoate esters of 2,2,4,4-tetramethyl-1,3-cyclobutanediol. These model compounds closely approximate the resonance positions found in the polymers and oligomers.


The melt viscosity was measured using a Rheometrics Dynamic Analyzer (RDA II). The melt viscosity was measured as a function of shear rate, at frequencies ranging from 1 to 400 rad/sec, at the temperatures reported.


Unless otherwise specified, heat deflection temperature was determined at 264 psi according to ASTM D648. Flexural modulus and flexural strength were determined according to ASTM D790. Tensile properties were determined according to ASTM D638. Flatwise impact strength was determined according to ASTM D3763.


Blending Method


Unless otherwise specified, polymer blends were prepared in a 18-mm Leistritz twin-screw extruder. The polymers were premixed by tumble blending and fed into the extruder. The extruded strand was pelletized. The pellets were then injection molded into parts on a Toyo 90 injection molding machine. The extruder was run at 350 rpms at a feed rate to give a machine torque between 80-100%.


Example 1

Polymer blends were prepared with varying concentrations of copolyester and ABS copolymer.


The copolyester component of the blends contained 100 mole % of terephthalic acid residues, 46.0 mole % of TMCB residues (46.1 mole % cis isomer), and 54 mole % of CHDM residues. The inherent viscosity of the copolyester was measured to be 0.59 dL/g.


The ABS copolymer component of the blends contained 26.2 mole % of acrylonitrile, 29.7 mole % butadiene, and 44.1 mole % styrene.


The copolyester was dried at 90° C. and the ABS copolyester was dried at 80° C. before making the polymer blends according to the method described above. Processing temperatures used during extrusion and molding were in the range of 260 to 290° C.


The compositions and properties of the blends are shown in Table 1.











TABLE 1









Blend















A
B
C
D
E
F
G


















Copolyester (wt %)
100
90
80
70
50
30
0


ABS Copolymer (wt %)
0
10
20
30
50
70
100


Heat Deflection Temp.
99
96
94
92
87
85
79


at 264 psi (° C.)


Tensile Strength (MPa)
46
46
44
44
42
41
38


Tensile Break Elongation (%)
83
76
84
92
36
15
5


Flexural Modulus (MPa)
1617
1684
1730
1779
1813
1821
1800


Flexural Strength (MPa)
69
68
68
70
62
60
55


Flatwise Impact Strength


at −40° C.


Energy at Max Load (J)
39.7
44.1
44.8
25.9
24.9
12.6
9.4


Total Energy (J)
41.3
44.8
45.2
26.2
26.1
12.7
9.6


DSC Tg (second cycle) (° C.)
126
124
112
111
110
109
108





124
124
122
120


Viscosity at 260° C. and
14,760
13,880
13,140
12,210
9804
7821
5999


158 rad/sec (Poise)









The two Tg values for some blends in Table 1 suggest that those blends have two phases. It is likely that blend B also has two phases, but the Tg for the 10% ABS phase is too weak to be detected by DSC. Addition of the ABS causes an increase in modulus over the entire range of blend compositions. At the same time, the melt viscosity continuously decreases. The blends also have good low temperature flatwise impact strengths, which, in some cases, are even higher than that of the pure copolyester.


Example 2

Polymer blends were prepared with varying concentrations of copolyester and ABS copolymer.


The same copolyester of Example 1 was used.


The ABS copolymer component of the blends contained 29.7 mole % of acrylonitrile, 23.3 mole % of butadiene, and 46.9 mole % of styrene.


The copolyester was dried at 90° C. and the ABS copolymer was dried at 80° C. before preparing the polymer blends according to the method described above. Processing temperatures used during extruding and molding were in the range of 260 to 290° C. The compositions and properties of the blends are shown in Table 2.











TABLE 2









Blend













A
B
C
D
E
















Copolyester (wt %)
100
85
70
50
0


ABS Copolymer (wt %)
0
15
30
50
100


Heat Deflection Temp.
100
96
92
88
81


at 264 psi (° C.)


Tensile Strength (MPa)
47
47
47
46
45


Tensile Break Elongation (%)
63
88
60
26
9


Flexural Modulus (MPa)
1655
1829
1934
2048
2267


Flexural Strength (MPa)
70
74
72
71
66


Flatwise Impact Strength


at −40° C.


Energy at Max Load (J)
39.7
53.1
39.2
7.3
5.6


Total Energy (J)
41.3
54.5
40.8
7.4
5.7


DSC Tg (second cycle) (° C.)
127
113
112
111
108




126
124
122


Viscosity at 260° C. and
14,950
14,840
12,240
8721
4562


158 rad/sec (Poise)









Two Tg values were reported in Table 2 for blends having two phases.


Similar to Example 1, addition of the ABS causes an increase in the modulus and decrease in melt viscosity over the entire range of blend compositions. In at least one case, the low temperature flatwise impact strength of the blend is higher than that of the pure copolyester.


Example 3

Polymer blends were prepared with varying concentrations of copolyester and ABS copolymer.


The copolyester component of the blends contained 100 mole % of terephthalic acid residues, 23.5 mole % of TMCB residues (54.4 mole % cis isomer), and 76.5 mole % of CHDM residues. The inherent viscosity of the copolyester was measured to be 0.67 dL/g.


The same ABS copolymer of Example 1 was used.


The copolyester was dried at 90° C. and the ABS copolymer was dried at 80° C. before making the blends according to the method described above. Processing temperatures used during extruding and molding were in the range of 260 to 270° C.


The compositions and properties of the blends are shown in Table 3.











TABLE 3









Blend














A
B
C
D
E
F

















Copolyester (wt %)
100
90
80
70
50
0


ABS Copolymer (wt %)
0
10
20
30
50
100


Heat Deflection Temp.
83
84
82
79
80
82


at 264 psi (° C.)


Tensile Strength (MPa)
43
43
43
42
41
38


Tensile Break Elongation (%)
161
159
144
147
42
6


Flexural Modulus (MPa)
1500
1547
1610
1638
1685
1733


Flexural Strength (MPa)
63
63
61
60
60
54


Flatwise Impact Strength


at −40° C.


Energy at Max Load (J)
44
61
53
56
45
9


Total Energy (J)
47
68
64
63
48
10


DSC Tg (second cycle) (° C.)
109
108
108
108
107
109


Viscosity at 260° C. and
5871
6040
5689
5456
4672
3368


400 rad/sec (Poise)









In this example, addition of the ABS again causes a continuous increase in modulus. In this case, all of the blend compositions have a higher low temperature flatwise impact strength than the pure copolyester. With the exception of the composition with 10% ABS, all of the blends also have a lower melt viscosity than the pure copolyester.


Comparative Example 1

Polymer blends were prepared with varying concentrations of copolyester and ABS copolymer.


The copolyester used in the blends contained 100 mole % of terephthalic acid residues, 80 mole % of CHDM residues, and 20 mole % of ethylene glycol (EG) residues. The inherent viscosity of the copolyester was 0.75 dL/g.


The same ABS copolymer of Example 1 was used.


The copolyester was dried at 70° C. and the ABS copolymer was dried at 80° C. before preparing the blends according to the method described above. Processing temperatures used during extruding and molding were in the range of 260 to 270° C.


The compositions and properties of the blends are shown in Table 4.











TABLE 4









Blend














A
B
C
D
E
F

















Copolyester (wt %)
100
90
80
70
50
0


ABS Copolymer (wt %)
0
10
20
30
50
100


Heat Deflection Temp.
65
66
66
65
69
79


at 264 psi (° C.)


Tensile Strength (MPa)
42
42
41.6
41.5
41
38


Tensile Break Elongation (%)
272
238
208
183
36
5


Flexural Modulus (MPa)
1700
1586
1618
1700
1670
1800


Flexural Strength (MPa)
57
58
58
57
57
55


Flatwise Impact Strength


at −40° C.


Energy at Max Load (J)
53
51
51
47
46
9.4


Total Energy (J)
65
72
70
66
64
9.6


DSC Tg (second cycle) (° C.)
89
89
88
88
86
108




111
111
112
110


Viscosity at 260° C. and 158 rad/sec
5591
6218
6279
5891
6018
NT


(Poise)





NT = Not Tested






Two Tg values were reported in Table 4 for blends having two phases. Contrary to the blends of Examples 1-3, the flexural modulus of the blends in Table 4 were all less than or equal to the flexural modulus of the neat copolyester. In addition, the melt viscosities of the blends were higher than those of the neat copolyester.


Comparative Example 2

Polymer blends were prepared with varying concentrations of copolyester and ABS copolymer.


The copolyester used in the blends contained 100 mole % of terephthalic acid residues, 62 mole % of CHDM residues, and 38 mole % of EG residues. The inherent viscosity of the copolyester was 0.73 dL/g.


The same ABS copolymer of Example 1 was used.


The copolyester was dried at 70° C. and the ABS copolymer was dried at 80° C. before preparing the blends according the method described above. Processing temperatures used during extruding and molding were in the range of 260 to 270° C. The compositions and properties of the blends are shown in Table 5.











TABLE 5









Blend














A
B
C
D
E
F

















Copolyester (wt %)
100
90
80
70
50
0


ABS Copolymer (wt %)
0
10
20
30
50
100


Heat Deflection Temp.
64
65
66
65
69
79


at 264 psi (° C.)


Tensile Strength (MPa)
45
44
44
43
42
38


Tensile Break Elongation
292
347
306
276
46
5


(%)


Flexural Modulus (MPa)
1702
1722
1763
1755
1777
1800


Flexural Strength (MPa)
61
61
61
60
60
55


Flatwise Impact Strength


at −40° C.


Energy at Max Load (J)
50
45
45
44
37
9.4


Total Energy (J)
73
68
66
63
53
9.6


DSC Tg (second cycle)
86
86
84
84
81
108


(° C.)


110
110
109









Two Tg values were reported in Table 5 for blends having two phases.


Contrary to the blends of Examples 1-3, the flatwise impact strength measured by both total energy and energy at max load of the polymer blends of this comparative example were all less than those of the neat copolyester.


Comparative Example 3

Polymer blends were prepared with varying concentrations of copolyester and copolymer.


The copolyester used in the blends contained 100 mole % of terephthalic acid residues, 24.8 mole % of TMCB residues (54.6 mole % cis isomer), and 75.2 mole % of CHDM residues. The inherent viscosity was measured to be 0.72 dL/g.


A copolymer of styrene and acrylonitrile (SAN) was used in place of the ABS copolymer. This copolymer contained 37.5 mole % of acrylonitrile and 62.5 mole % of styrene.


The copolyester was dried at 90° C. and the SAN copolymer was dried at 80° C. before preparing the blends according to the method described above. Processing temperatures used during extruding and molding were in the range of 240 to 270° C. The compositions and properties of the blends are shown in Table 6.











TABLE 6









Blend















A
B
C
D
E
F
G


















Copolyester (wt %)
100
90
80
70
50
25
0


ABS Copolymer (wt %)
0
10
20
30
50
75
100


Heat Deflection Temp.
82
82
81
82
80
84
83


at 264 psi (° C.)


Tensile Strength (MPa)
44
48
52
57
67
71
71


Tensile Break Elongation (%)
138
129
106
46
14
3
3


Flexural Modulus (MPa)
1532
1713
1965
2189
2589
3069
3710


Flexural Strength (MPa)
63
70
76
84
95
109
106


Flatwise Impact Strength


at −40° C.


Energy at Max Load (J)
50.52
46.0
15.1
22.6
NT
1.2
1.5


Total Energy (J)
56.46
52.0
15.4
22.7
NT
1.9
2.1


DSC Tg (second cycle) (° C.)
110
110
109
109
109
107
107





NT = Not Tested






Contrary to the blends of Examples 1-3, the flatwise impact strength measured by both total energy and energy at max load of the blends of this comparative example were all less than those of the neat copolyester.


It can be seen from a comparison of the data in the above examples that polymer blends according to the present invention offer a definite advantage over other polymer blends with regard to impact strength, glass transition temperature, modulus, melt viscosity, and/or toughness.


The invention has been described in detail with particular reference to preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.

Claims
  • 1. A polymer blend comprising: (a) 70 to 90 weight percent of a polyester comprising: (i) a dicarboxylic acid portion comprising residues of terephthalic acid, isophthalic acid, or both; and(ii) a glycol portion comprising 5 to 70 mole percent of 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCB) residues and 30 to 95 mole percent of 1,4-cyclohexanedimethanol (CHDM) residues; and(b) 10 to 30 weight percent of a copolymer comprising acrylonitrile, butadiene, and styrene (ABS) monomers,wherein the blend has a flexural modulus from about 5 to about 20% greater than the flexural modulus of the polyester, andwherein the blend has a melt viscosity from about 5 to about 20% less than the melt viscosity of the polyester.
  • 2. The polymer blend according to claim 1, wherein the dicarboxylic acid portion of the polyester comprises 100 mole percent of terephthalic acid residues.
  • 3. The polymer blend according to claim 2, wherein the glycol component of the polyester comprises 5 to 50 mole percent of TMCB residues and 50 to 95 mole percent of CHDM residues.
  • 4. The polymer blend according to claim 1, wherein the ABS copolymer comprises 15 to 40 mole percent of acrylonitrile monomers, 6 to 40 mole percent of butadiene monomers, and 40 to 80 mole percent of styrene monomers.
  • 5. The polymer blend according to claim 4, wherein the ABS copolymer comprises 20 to 40 mole percent of acrylonitrile monomers, 20 to 40 mole percent of butadiene monomers, and 40 to 60 mole percent of styrene monomers.
  • 6. The polymer blend according to claim 1, wherein the dicarboxylic acid portion of the polyester comprises up to 20 mole percent of residues of another aromatic dicarboxylic acid, an aliphatic dicarboxylic acid, a cycloaliphatic dicarboxylic acid, or mixtures thereof.
  • 7. The polymer blend according to claim 1, wherein the glycol portion of the polyester comprises up to 10 mole percent of residues of another glycol containing 2 to 16 carbon atoms.
  • 8. The polymer blend according to claim 1, which further comprises 0.01 to 25 weight percent of one or more additives selected from colorants, dyes, mold release agents, flame retardants, plasticizers, nucleating agents, light stabilizers, thermal stabilizers, fillers, impact modifiers, and reinforcing materials.
  • 9. A polymer blend comprising: (a) 60 to 95 weight percent of a polyester comprising: (i) a dicarboxylic acid portion comprising 90 to 100 mole percent of residues of terephthalic acid, isophthalic acid, or both; and(ii) a glycol portion comprising 5 to 70 mole percent of 2,2,4,4-tetramethyl-1,3-cyclobutanediol residues and 30 to 95 mole percent of 1,4-cyclohexanedimethanol residues; and(b) 5 to 40 weight percent of a copolymer comprising 20 to 40 mole percent of acrylonitrile monomers, 20 to 40 mole percent of butadiene monomers, and 40 to 60 mole percent of styrene monomers,wherein the blend has a flexural modulus from about 5 to about 20% greater than the flexural modulus of the polyester, andwherein the blend has a melt viscosity from about 5 to about 20% less than the melt viscosity of the polyester.
  • 10. The polymer blend according to claim 9, which comprises about 70 to 90 weight percent of the polyester and about 10 to 30 weight percent of the ABS copolymer.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of the filing date of U.S. Provisional Patent Application No. 61/076,239, filed on Jun. 27, 2008; the entire content of which is hereby incorporated by reference.

US Referenced Citations (294)
Number Name Date Kind
1602699 Nightingale Oct 1926 A
2160841 Dreyfus Jun 1939 A
2202046 Dreyfus et al. May 1940 A
2278537 Dreyfus et al. Apr 1942 A
2720507 Caldwell Oct 1955 A
2806064 McKlveen Sep 1957 A
2901466 Kibler Aug 1959 A
2936324 Hasek et al. May 1960 A
3000906 Hasek et al. Sep 1961 A
3030335 Goldberg Apr 1962 A
3062852 Martin et al. Nov 1962 A
3075952 Coover et al. Jan 1963 A
3091600 Caldwell et al. May 1963 A
3169121 Goldberg et al. Feb 1965 A
3190928 Elam et al. Jun 1965 A
3201474 Hasek et al. Aug 1965 A
3207814 Goldberg et al. Sep 1965 A
3218372 Okamura et al. Nov 1965 A
3227764 Martin et al. Jan 1966 A
3236899 Clark Feb 1966 A
3249652 Quisenberry May 1966 A
3259469 Painter et al. Jul 1966 A
3287390 Poos et al. Nov 1966 A
3288854 Martin Nov 1966 A
3312741 Martin Apr 1967 A
3313777 Elam et al. Apr 1967 A
3317466 Caldwell et al. May 1967 A
3329722 Rylander Jul 1967 A
3360547 Wilson et al. Dec 1967 A
3366689 Maeda et al. Jan 1968 A
3386935 Jackson et al. Jun 1968 A
3403181 Painter et al. Sep 1968 A
T858012 Caldwell et al. Jan 1969 I4
3484339 Caldwell Dec 1969 A
3502620 Caldwell Mar 1970 A
T873016 Gilkey et al. Apr 1970 I4
3541059 Schaper Nov 1970 A
3546177 Kibler et al. Dec 1970 A
3629202 Gilkey et al. Dec 1971 A
RE27682 Schnell et al. Jun 1973 E
3772405 Hamb Nov 1973 A
3799953 Freitag et al. Mar 1974 A
3907754 Tershansy et al. Sep 1975 A
3915913 Jackson, Jr. et al. Oct 1975 A
3962189 Russin et al. Jun 1976 A
4001184 Scott Jan 1977 A
4010145 Russin et al. Mar 1977 A
4046933 Stefanik Sep 1977 A
4056504 Grundmeier et al. Nov 1977 A
4084889 Vischer, Jr. Apr 1978 A
4125572 Scott Nov 1978 A
4156069 Prevorsek et al. May 1979 A
4160383 Rauschenberger Jul 1979 A
4185009 Idel et al. Jan 1980 A
4188314 Fox et al. Feb 1980 A
4194038 Baker et al. Mar 1980 A
4263364 Seymour et al. Apr 1981 A
4356299 Cholod et al. Oct 1982 A
4367186 Adelmann et al. Jan 1983 A
4379802 Weaver et al. Apr 1983 A
4384106 Go et al. May 1983 A
4391954 Scott Jul 1983 A
4424140 Weinberg et al. Jan 1984 A
4426512 Barbee et al. Jan 1984 A
4427614 Barham et al. Jan 1984 A
4430484 Quinn Feb 1984 A
4431793 Rosenquist Feb 1984 A
4452933 McCready Jun 1984 A
4465820 Miller et al. Aug 1984 A
4469861 Mark et al. Sep 1984 A
4480086 O'Neill Oct 1984 A
4525504 Morris et al. Jun 1985 A
4578295 Jabarin Mar 1986 A
4578437 Light et al. Mar 1986 A
4642959 Swiech, Jr. et al. Feb 1987 A
4738880 Asada et al. Apr 1988 A
4749773 Weaver et al. Jun 1988 A
4786692 Allen et al. Nov 1988 A
4816308 Shimizu et al. Mar 1989 A
4826903 Weaver et al. May 1989 A
4845188 Weaver et al. Jul 1989 A
4880592 Martini et al. Nov 1989 A
4882412 Weaver et al. Nov 1989 A
4892922 Weaver et al. Jan 1990 A
4892923 Weaver et al. Jan 1990 A
4937134 Schrenk et al. Jun 1990 A
4939186 Nelson et al. Jul 1990 A
4976057 Bianchi Dec 1990 A
4981898 Bassett Jan 1991 A
4985342 Muramoto et al. Jan 1991 A
5017679 Chang et al. May 1991 A
5017680 Sublett May 1991 A
5034252 Nilsson et al. Jul 1991 A
5104450 Sand et al. Apr 1992 A
5118760 Blakely et al. Jun 1992 A
5118847 Jackson et al. Jun 1992 A
5142088 Phelps et al. Aug 1992 A
5169994 Sumner, Jr. et al. Dec 1992 A
5183863 Nakamura et al. Feb 1993 A
5191038 Krabbenhoft et al. Mar 1993 A
5207967 Small et al. May 1993 A
5219510 Machell et al. Jun 1993 A
5224958 Warunek et al. Jul 1993 A
5239020 Morris Aug 1993 A
5256761 Blount, Jr. Oct 1993 A
5258556 Sumner, Jr. et al. Nov 1993 A
5268219 Harada et al. Dec 1993 A
5288715 Machell et al. Feb 1994 A
5288764 Rotter et al. Feb 1994 A
5292783 Buchanan et al. Mar 1994 A
5310611 Okabe et al. May 1994 A
5310787 Kutsuwa et al. May 1994 A
5326584 Kamel et al. Jul 1994 A
5331034 Pfahler et al. Jul 1994 A
5333073 Suzuki Jul 1994 A
5354791 Gallucci Oct 1994 A
5372864 Weaver et al. Dec 1994 A
5372879 Handa et al. Dec 1994 A
5378796 George et al. Jan 1995 A
5382292 Conroy et al. Jan 1995 A
5384377 Weaver et al. Jan 1995 A
5475144 Watson et al. Dec 1995 A
5480926 Fagerburg et al. Jan 1996 A
5486562 Borman et al. Jan 1996 A
5489665 Yamato et al. Feb 1996 A
5494992 Kanno et al. Feb 1996 A
5498668 Scott Mar 1996 A
5498688 Oshino et al. Mar 1996 A
5506014 Minnick Apr 1996 A
5523382 Beavers et al. Jun 1996 A
5534609 Lewis et al. Jul 1996 A
5552512 Sublett Sep 1996 A
5591530 Warner et al. Jan 1997 A
5633340 Hoffman et al. May 1997 A
5650453 Eckberg et al. Jul 1997 A
5654347 Khemani et al. Aug 1997 A
5656715 Dickerson et al. Aug 1997 A
5668243 Yau et al. Sep 1997 A
5681918 Adams et al. Oct 1997 A
5688874 Hoffman Nov 1997 A
5696176 Khemani et al. Dec 1997 A
5705575 Kelsey Jan 1998 A
5783307 Fagerburg et al. Jul 1998 A
5804617 Hoffman et al. Sep 1998 A
5814679 Eckberg et al. Sep 1998 A
5859116 Shih Jan 1999 A
5863622 Jester Jan 1999 A
5902631 Wang et al. May 1999 A
5907026 Factor et al. May 1999 A
5942585 Scott et al. Aug 1999 A
5955565 Morris et al. Sep 1999 A
5958539 Eckart et al. Sep 1999 A
5958581 Khanarian et al. Sep 1999 A
5959066 Charbonneau et al. Sep 1999 A
5962625 Yau Oct 1999 A
5977347 Shuto et al. Nov 1999 A
5989663 Morris et al. Nov 1999 A
6001910 Blumenthal et al. Dec 1999 A
6005059 Scott et al. Dec 1999 A
6011124 Scott et al. Jan 2000 A
6012597 Nishihara et al. Jan 2000 A
6022603 Umeda et al. Feb 2000 A
6025061 Khanarian et al. Feb 2000 A
6030671 Yang et al. Feb 2000 A
6037424 Scott et al. Mar 2000 A
6043322 Scott et al. Mar 2000 A
6044996 Carew et al. Apr 2000 A
6063464 Charbonneau et al. May 2000 A
6063465 Charbonneau et al. May 2000 A
6063495 Charbonneau et al. May 2000 A
6084019 Matayabas, Jr. et al. Jul 2000 A
6096854 Morris et al. Aug 2000 A
6114575 McMahon et al. Sep 2000 A
6120477 Campbell et al. Sep 2000 A
6120889 Turner et al. Sep 2000 A
6126992 Khanarian et al. Oct 2000 A
6127492 Nagashima et al. Oct 2000 A
6146228 Mougin et al. Nov 2000 A
6150494 Wang et al. Nov 2000 A
6183848 Turner et al. Feb 2001 B1
6191209 Andrews et al. Feb 2001 B1
6211309 McIntosh et al. Apr 2001 B1
6221556 Gallucci et al. Apr 2001 B1
6225436 Eiffler et al. May 2001 B1
6232504 Barteau et al. May 2001 B1
6239910 Digert May 2001 B1
6255523 Panandiker et al. Jul 2001 B1
6287656 Turner et al. Sep 2001 B1
6307006 Konig et al. Oct 2001 B1
6309718 Sprayberry Oct 2001 B1
6320042 Michihata et al. Nov 2001 B1
6323291 Mason et al. Nov 2001 B1
6323304 Lemmon et al. Nov 2001 B1
6342304 Buchanan et al. Jan 2002 B1
6352783 Fagerburg Mar 2002 B1
6354986 Hlavinka et al. Mar 2002 B1
6359070 Khanarian et al. Mar 2002 B1
6406792 Briquet et al. Jun 2002 B1
6437083 Brack et al. Aug 2002 B1
6448334 Verhoogt et al. Sep 2002 B1
6458468 Moskala et al. Oct 2002 B1
6504002 Karlik et al. Jan 2003 B1
6559272 Jeon et al. May 2003 B1
6573328 Kropp et al. Jun 2003 B2
6599994 Shelby et al. Jul 2003 B2
6639067 Brinegar et al. Oct 2003 B1
6656577 Adelman et al. Dec 2003 B1
6669980 Hansen Dec 2003 B2
6723768 Adams et al. Apr 2004 B2
6733716 Belcher May 2004 B2
6740377 Pecorini et al. May 2004 B2
6773653 Miller et al. Aug 2004 B2
6818293 Keep et al. Nov 2004 B1
6818730 Brandenburg et al. Nov 2004 B2
6846440 Flynn et al. Jan 2005 B2
6846508 Colas et al. Jan 2005 B1
6896966 Crawford et al. May 2005 B2
6908650 Odorisio et al. Jun 2005 B2
6914120 Germroth et al. Jul 2005 B2
7037576 Willham et al. May 2006 B2
7048978 Tanaka et al. May 2006 B2
7053143 Mori et al. May 2006 B2
7122661 Fleche et al. Oct 2006 B2
7169880 Shelby et al. Jan 2007 B2
7297755 Shelby et al. Nov 2007 B2
7354628 Steube Apr 2008 B2
7375154 Stafford et al. May 2008 B2
7427430 Rhee et al. Sep 2008 B2
7468409 Pearson et al. Dec 2008 B2
7482397 Pearson et al. Jan 2009 B2
20010029324 Walker et al. Oct 2001 A1
20010031805 Buhler Oct 2001 A1
20010034419 Kanayama et al. Oct 2001 A1
20010044003 Gallucci et al. Nov 2001 A1
20020055586 Dalgewicz, III et al. May 2002 A1
20020128357 Goossens et al. Sep 2002 A1
20020132963 Quillen Sep 2002 A1
20020137856 Andrews et al. Sep 2002 A1
20020188092 Moskala et al. Dec 2002 A1
20020198297 Odorisio et al. Dec 2002 A1
20030032737 Andrews et al. Feb 2003 A1
20030060546 Moskala et al. Mar 2003 A1
20030075516 Rothman et al. Apr 2003 A1
20030077546 Donovan et al. Apr 2003 A1
20030135015 Fujimaki et al. Jul 2003 A1
20030139497 Odorisio et al. Jul 2003 A1
20030149177 Andrews et al. Aug 2003 A1
20030169514 Bourdelais et al. Sep 2003 A1
20030187151 Adams et al. Oct 2003 A1
20030195295 Mahood et al. Oct 2003 A1
20030221716 Olson Dec 2003 A1
20030229181 Hariharan et al. Dec 2003 A1
20040022526 Kuno et al. Feb 2004 A1
20040063864 Adams et al. Apr 2004 A1
20040101687 Crawford et al. May 2004 A1
20040106707 Su et al. Jun 2004 A1
20040106767 Simon et al. Jun 2004 A1
20040108623 Deeter et al. Jun 2004 A1
20040138381 Blasius et al. Jul 2004 A1
20040145700 Miniutti et al. Jul 2004 A1
20040164279 Stevenson et al. Aug 2004 A1
20040202822 Bourdelais et al. Oct 2004 A1
20040214984 Keep et al. Oct 2004 A1
20050008885 Blakely et al. Jan 2005 A1
20050072060 Moncho et al. Apr 2005 A1
20050075466 Oguro et al. Apr 2005 A1
20050096453 Flynn et al. May 2005 A1
20050101759 Odorisio et al. May 2005 A1
20050113556 Strand et al. May 2005 A1
20050119359 Shelby et al. Jun 2005 A1
20050124779 Shelby et al. Jun 2005 A1
20050181155 Share et al. Aug 2005 A1
20050209435 Hirokane et al. Sep 2005 A1
20060004151 Shaikh et al. Jan 2006 A1
20060036012 Hayes et al. Feb 2006 A1
20060094858 Turner et al. May 2006 A1
20060111481 Pearson et al. May 2006 A1
20060111519 Strand et al. May 2006 A1
20060135668 Hayes Jun 2006 A1
20060146228 Sogo et al. Jul 2006 A1
20060151907 Kashiwabara et al. Jul 2006 A1
20060180560 Robinson Aug 2006 A1
20060197246 Hale et al. Sep 2006 A1
20060199904 Hale et al. Sep 2006 A1
20060199919 Hale et al. Sep 2006 A1
20060228507 Hale et al. Oct 2006 A1
20060234073 Hale et al. Oct 2006 A1
20060235167 Hale et al. Oct 2006 A1
20060247388 Hale et al. Nov 2006 A1
20060270773 Hale et al. Nov 2006 A1
20060270806 Hale Nov 2006 A1
20060286332 Crawford et al. Dec 2006 A1
20070049667 Kim et al. Mar 2007 A1
20070071930 Shelby et al. Mar 2007 A1
Foreign Referenced Citations (64)
Number Date Country
615850 Apr 1962 BE
2035149 Aug 1991 CA
197 27 709 Jun 1997 DE
0 039 838 Nov 1981 EP
0 273 144 May 1987 EP
0 282 277 Sep 1988 EP
0 372 846 Jun 1990 EP
0 544 008 Jun 1993 EP
0 595 413 May 1994 EP
0 698 631 Feb 1996 EP
0 714 764 Jun 1996 EP
0 902 052 Mar 1999 EP
0 930 531 Jul 1999 EP
1 035 167 Sep 2000 EP
1 066 825 Jan 2001 EP
1 674 496 Jun 2006 EP
1432471 Feb 1966 FR
1434658 Feb 1966 FR
962913 Jul 1964 GB
1041651 Sep 1966 GB
1044015 Sep 1966 GB
1047043 Nov 1966 GB
1090241 Nov 1967 GB
1130558 Oct 1968 GB
1278284 Jun 1972 GB
1364732 Aug 1974 GB
2216919 Oct 1989 GB
5688440 Dec 1979 JP
03207743 Sep 1991 JP
65-01040 Feb 1994 JP
959371 Apr 1997 JP
2001-066701 Aug 1999 JP
11222516 Aug 1999 JP
2000-352620 Dec 2000 JP
2001-098086 Apr 2001 JP
2001-214049 Aug 2001 JP
2003292593 Oct 2003 JP
2004-058565 Feb 2004 JP
2004-066624 Mar 2004 JP
2004-067973 Mar 2004 JP
2004-244497 Sep 2004 JP
2004-292558 Oct 2004 JP
2005-254757 Sep 2005 JP
2007-069914 Mar 2007 JP
2007-253491 Oct 2007 JP
2003-054611 Jul 2003 KR
WO 97-01118 Jan 1997 WO
WO 01-06981 Feb 2001 WO
WO 01-85824 Nov 2001 WO
WO 02-055570 Jul 2002 WO
WO 02-059207 Aug 2002 WO
2004009146 Jan 2004 WO
WO 2004-039860 May 2004 WO
WO 2004-104077 Dec 2004 WO
WO 2004-106988 Dec 2004 WO
WO 2005-007735 Jan 2005 WO
WO 2005-026241 Mar 2005 WO
WO 2006-025827 Mar 2006 WO
WO 2006-127755 Nov 2006 WO
WO 2006-127831 Nov 2006 WO
WO 2007-053434 May 2007 WO
WO 2007-053548 May 2007 WO
WO 2007-053549 May 2007 WO
WO 2007-053550 May 2007 WO
Related Publications (1)
Number Date Country
20090326141 A1 Dec 2009 US
Provisional Applications (1)
Number Date Country
61076239 Jun 2008 US