The present disclosure relates to rivets, and more specifically to tacking rivets that temporarily fasten workpieces together.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Tacking rivets are used to temporarily fasten adjacent workpieces together for positioning purposes. The tacking rivets are inserted into only some of the apertures of the workpieces to properly align all the apertures of the workpieces before permanent rivets are inserted to permanently fasten the workpieces. After the permanent rivets are inserted into the remaining apertures, the tacking rivets are removed, for example, by drilling through the tacking rivets. More permanent rivets are then inserted into the apertures previously occupied by the tacking rivets to further fasten the workpieces.
The typical tacking rivet engages the workpieces by radially expanding a body of the tacking rivet to result in an interference fit between the body of the tacking rivets and the aperture surfaces. This interference fit may damage the aperture surfaces, making it difficult to insert the permanent rivet later due to the changed size of the apertures. Moreover, it is also difficult to remove the typical tacking rivets without damaging the aperture surfaces of the workpieces. Further, the typical tacking rivets of a specific length may be suitable for workpieces of a specific thickness. Therefore, different sizes of the typical tacking rivets are needed for workpieces of different thicknesses, thereby increasing inventory costs.
In one form, a tacking fastener is provided for securing at least two workpieces together to form a temporary assembly. The tacking fastener includes a stem and an elongated sleeve. The stem defines a proximal end portion, a central portion, and a distal end portion. The stem includes a head disposed at the proximal end portion, a tapered portion extending between the proximal end portion and the central portion, a break notch extending around a circumference of the proximal end portion between the head and the tapered portion, and a plurality of ridges and grooves disposed along the distal end portion. The elongated sleeve is disposed around the stem between the head and the plurality of ridges and grooves. The elongated sleeve is configured to form a tacking rivet upon installation of the tacking fastener. The elongated sleeve is plastically deformed during installation to form a plurality of bulbs, thereby being capable of securing workpieces of varying grip length. The stem and the tacking rivet remain within the workpieces after the workpieces are secured together.
In another form, a structural assembly includes at least two workpieces and a tacking fastener that secures the two workpieces together. The tacking fastener includes a stem and an elongated sleeve. The stem defines a proximal end portion, a central portion, and a distal end portion. The stem includes a head disposed at the proximal end portion. The elongated sleeve is disposed around the stem between the head and the plurality of ridges and grooves. The elongated sleeve is configured to form a tacking rivet upon installation of the tacking fastener. The elongated sleeve is plastically deformed during installation to form a plurality of bulbs, thereby being capable of securing workpieces of varying grip length. The stem and the tacking rivet remain within the workpieces after the workpieces are secured together.
In still another form, a method of installing a tacking fastener to secure at least two workpieces together is provided. The method includes inserting a stem and sleeve through aligned apertures of the workpieces; placing a flange of the sleeve against a distal surface of a first workpiece; pulling the stem distally away from the distal surface of the first workpiece such that a head of the stem plastically deforms the sleeve against a proximal surface of a second workpiece to form a tacking rivet. The elongated sleeve is plastically deformed during installation to form a plurality of bulbs, thereby being capable of securing workpieces of varying grip length. The stem and the tacking rivet remain within the workpieces after the workpieces are secured together.
In still another form, a tacking fastener is provided for securing at least two workpieces together to form a temporary assembly. The tacking fastener includes a stem and an elongated sleeve. The stem defines a proximal end portion, a central portion, and a distal end portion. The stem includes a head disposed at the proximal end portion. The elongated sleeve is disposed around the stem proximate the head. The elongated sleeve is configured to form a tacking rivet upon installation of the tacking fastener. The elongated sleeve is plastically deformed during installation to form a plurality of bulbs, thereby being capable of securing workpieces of varying grip length. The stem and the tacking rivet remain within the workpieces after the workpieces are secured together.
In still another form, a mandrel for use in installing a tacking fastener for securing at least two workpieces together to form a temporary assembly is provided. The mandrel defines a proximal end portion, a central portion, and a distal end portion. The mandrel includes a head disposed at the proximal end portion, a tapered portion extending between the proximal end portion and the central portion, a break notch extending around a circumference of the proximal end portion between the head and the tapered portion, and a plurality of ridges and grooves disposed along the distal end portion. The elongated sleeve disposed around the mandrel is plastically deformed during installation to form a plurality of bulbs, thereby being capable of securing workpieces of varying grip length.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
In order that the invention may be well understood, there will now be described an embodiment thereof, given by way of example, reference being made to the accompanying drawing, in which:
Corresponding reference numerals indicate corresponding parts throughout the several views of the drawings.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.
Referring to
In the present disclosure, “a proximal end,” “a proximal end portion” or “a proximal surface” is used to indicate an end, portion or surface of a component that is located closer to the head 20 of the stem 12. Arrow A indicates a proximal direction, which is a direction parallel to the longitudinal axis of the tacking rivet assembly 10 and pointing toward the head 20 of the stem 12. “A distal end,” “a distal end portion” or “a distal surface” is used to indicate an end, portion or surface of a component that is located away from the head 20 and thus is closer to the ridges 22 and grooves 24 of the stem 12. Arrow B indicates a distal direction, which is a direction parallel to the longitudinal axis of the tacking rivet assembly 10 and pointing away from the head 20.
Referring to
The stem 12 further includes a central portion 34 disposed between the proximal end portion 16 and the distal end portion 18. The central portion 34 has an outside diameter smaller than the outside diameter of the proximal end portion 16. A tapered portion 36 is formed between the proximal end portion 16 and the central portion 34. The proximal end portion 16 defines a break notch 38 extending around a circumference of the proximal end portion 16 and disposed between the head 20 and the tapered portion 36.
The plurality of ridges 22 and grooves 24 are disposed along the distal end portion 18 to allow for gripping by a tool (not shown) when the tacking rivet assembly 10 is installed to and removed from the first and second workpieces 26 and 28. The elongated sleeve 14 is disposed around the stem 12 and between the head 20 and the plurality of ridges 30 and grooves 32.
Referring to
Referring to
Referring to
Referring back to
Alternatively, the apertures 30 and 32 may have a diameter that is greater than the outside diameter of the head 20. Therefore, the sleeve 14, together with the stem 12, may be inserted into the apertures 30 and 32 of the workpieces 26 and 28 as a unit from the side of the first workpiece 26. In this case, the sleeve 14 may be loosely disposed in the apertures 30 and 32 with a significant gap between the aperture surfaces and the sleeve 14. As will become clear in the following description, a secure connection between the sleeve 14 and the workpieces 26 and 28 does not depend on the contact between the sleeve 14 and the aperture surfaces that define the apertures 30 and 32. Therefore, the gap does not affect the secured connection between the sleeve 14 and the workpieces 26 and 28.
As shown in
As shown in
The number of bulbs 60 formed during installation depends on the length of the tubular body 50 of the sleeve 14 that protrudes outside the second workpiece 28. Therefore, for a given length of the elongated sleeve 14, the number of bulbs 60 that would be formed during installation also depends on the thickness of the workpieces 26 and 28. Therefore, the tacking rivet assembly 10 that has a particular length of the sleeve 14 can be used to fasten workpieces of varying thickness. Any number of bulbs 60, including one, can be formed to secure the elongated sleeve 14 to the workpieces 26 and 28. The length of the hollow portion 50 of the sleeve 14 that extends from the second workpiece 28 should have a sufficient length to allow for sufficient plastic deformation to form at least one bulb 60 against the proximal surface 59 of the second workpiece 28. The number of bulbs 60 may be five.
The axial ridges 54 on the outer surface 56 of the tubular body 50 of the elongated sleeve 14 are designed to be plastically deformed to facilitate formation of bulbs 60. While the ridges 54 are shown to extend axially along the entire length of the hollow body 50, it is understood that the ridges 54 may extend only a portion of the length of the hollow body 50 without departing from the scope of the present disclosure. The length of the ridges 54 may depend on the thickness of the workpieces 26 and 28 and may be configured to provide varying grip length. The grip length varies between about 0.100″ and about 0.800″. Any number of the ridges 54 may be formed without departing from the scope of the present disclosure.
As previously described, the head 20 has a flange 42 defining a slant surface 43, which defines an acute angle θ relative to the side wall 44 of the proximal end portion 16. The slant surface 43 helps maintain the contact between the proximal end 19 of the elongated sleeve 14 and the head 20 during the pulling process of the stem 12 despite that the head 20 protrudes slightly and laterally from the sidewalls 44 of the stem 12.
To remove the temporary rivet formed by the plastic deformed sleeve 14 and the stem 12 from the workpieces 26 and 28, the head 20 of the stem 12 may be drilled through such that the stem 12 may be removed from the assembly first. The break notch 38 formed at the proximal portion 16 of the stem 12 facilitates the break-away of the stem 12 and removal of the stem 12. After the stem 12 is removed, the sleeve 14 can then be removed.
The tacking rivet assembly 10 of the present disclosure has the advantage of easy installation and removal without damaging the aperture surfaces. The workpieces 26 and 28 are fastened by clamping the workpieces 26 and 28 between the plastically deformed bulbs 60 and the flange 23. The bulbs 60 are disposed against the proximal surface 59 of the second workpiece 28. The flange 23 is disposed against the distal surface 57 of the first workpiece 26. No or only light expansion of the sleeve 14 occurs inside the apertures 30 and 32. Therefore, the removal of the tacking rivet assembly 10 would not damage the aperture surfaces to adversely affect the later installation of permanent rivets.
Moreover, with the tacking rivet assembly 10 of the present disclosure, the workpieces are fastened by clamping, rather than frictional engagement between the sleeve 14 and the aperture surfaces the sleeve 14. The assembly tolerance between the tacking rivet assembly 10 and aperture surfaces becomes less important, thereby reducing manufacturing costs. Further, since the fastening of the tacking rivet assembly 10 to the workpieces is not achieved by an interference fit, the apertures 30 and 32 and the sleeve 14 do not have to have the same shape. For example, the apertures 30 and 32 may have a circular shape, whereas the hollow body 50 of the sleeve 14 may have a cross section defining a shape other than a circular shape.
Furthermore, with the tacking rivet assembly 10 of the present disclosure, the sleeve 14 is plastically deformed to form a number of bulbs 60 to clamp the workpieces, and the length of the sleeve 14 is reduced after plastic deformation. The required length of the sleeve 14 does not highly depend on the thickness of the workpieces to be clamped. Therefore, the tacking rivet assembly 10 of a particular length can be used to fasten workpieces of varying thicknesses.
The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the substance of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.
This application claims the benefit of U.S. Provisional Patent Application No. 61/794,876, filed on Mar. 15, 2013. The disclosure of the above application is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2030165 | Huck | Feb 1936 | A |
2030166 | Huck | Feb 1936 | A |
2030168 | Miller | Feb 1936 | A |
2767877 | Newsom | Oct 1956 | A |
2803984 | Swenson | Aug 1957 | A |
3236143 | Wing | Feb 1966 | A |
3285121 | Siebol | Nov 1966 | A |
3515419 | Baugh | Jun 1970 | A |
4285265 | Rieper | Aug 1981 | A |
4580936 | Francis et al. | Apr 1986 | A |
4642010 | Bradley et al. | Feb 1987 | A |
4784551 | Kendall | Nov 1988 | A |
4958971 | Lacey et al. | Sep 1990 | A |
6004086 | Gand et al. | Dec 1999 | A |
6186717 | Cosenza | Feb 2001 | B1 |
6406237 | Wojciechowski et al. | Jun 2002 | B1 |
6499926 | Keener | Dec 2002 | B2 |
6746192 | Eshraghi | Jun 2004 | B2 |
6761520 | Dise | Jul 2004 | B1 |
7303366 | Smith | Dec 2007 | B2 |
7980800 | Kleinman et al. | Jul 2011 | B2 |
20030082025 | Luhm | May 2003 | A1 |
20030123949 | Eshraghi | Jul 2003 | A1 |
20050260056 | Denham | Nov 2005 | A1 |
20070243035 | Pratt | Oct 2007 | A1 |
Number | Date | Country |
---|---|---|
0497455 | Aug 1992 | EP |
0691479 | Jun 1995 | EP |
1607639 | Dec 2005 | EP |
402813 | Dec 1933 | GB |
Entry |
---|
International Search Report and Written Opinion of the International Searching Authority for International Patent Application No. PCT/US2014/030200 mailed on Jul. 16, 2014. |
Number | Date | Country | |
---|---|---|---|
20140271039 A1 | Sep 2014 | US |
Number | Date | Country | |
---|---|---|---|
61794876 | Mar 2013 | US |