The disclosure relates to assembly of structures, and in particular, to installing blind fasteners to a structure.
Blind fasteners, such as blind bolts or blind rivets, are used in aircraft assembly to mechanically unite various structural components of an aircraft. Unlike nut bolts which require access to both sides of the structure, blind fasteners can be completely installed from only one side of the structure, eliminating the need to access the back side. Previous blind fastener installation tools include a complex mechanical structure that is particularly limited in applications where fastener installation is performed at non-normal angles and/or with a sealant.
Embodiments described herein provide a blind fastener tool with pulling fingers. The blind fastener tool improves blind installations by reducing tooling complexity and increasing tooling control of the fastener. The pulling fingers provide greater visual access to the fastener while in use and increased control in axial translation and radial rotation for installing the fastener at non-normal angles. Additional technical benefits include improved sealant accumulation prevention, robotic integration, and installation reliability.
One embodiment is a tool for installing a blind fastener in a hole. The tool includes a housing having a hollow longitudinal body and an open front end, and stationary fingers fixed in the housing and arranged longitudinally and angularly spaced. Tips of the stationary fingers protrude from the front end of the housing to contact a rim of a sleeve of the blind fastener. The tool also includes pulling fingers disposed in the housing and arranged longitudinally in spaces between the stationary fingers. Ends of the pulling fingers proximate to the front end are configured to radially expand to receive a drive element of the blind fastener, and to radially collapse to grip a collar of the drive element. The pulling fingers are configured to translate inside the housing to pull the drive element away from the sleeve as the stationary fingers contact the rim of the sleeve to form a bulb with the sleeve at a blind side of the hole.
Another embodiment is a tool including a housing configured to contain an internal drive mechanism configured to pull a drive element and a core bolt of a blind fastener to form a bulb with a sleeve of the blind fastener at a blind side of a hole, and to rotate the drive element to tighten the blind fastener in the hole via the bulb. The internal drive mechanism includes stationary fingers in the housing configured to contact a rim of the sleeve of the blind fastener to hold the sleeve in the hole, and pulling fingers in the housing configured to grip the drive element, and to slide laterally in the housing to pull the drive element and the core bolt to form the bulb. The internal drive mechanism further includes a torque sleeve radially inward from the stationary fingers and the pulling fingers, the torque sleeve configured to rotate the drive element to tighten the blind fastener in the hole via the bulb.
Yet another embodiment is a tool for installing a blind fastener. The tool includes an assembly configured to engage a drive portion of the blind fastener, and to pull and rotate the drive portion to form a bulb with a fastener portion of the blind fastener at a blind side of a hole. The assembly includes a housing including a longitudinal body and a hollow cavity, and a torque sleeve extending into the housing longitudinally and including a socket to receive the drive portion of the blind fastener for rotation. The assembly also includes a pull slide disposed longitudinally in the housing and radially outward from the torque sleeve, and configured to slide longitudinally via a drive actuator. The assembly further includes pulling fingers mechanically coupled with the pull slide and configured to engage a collar of the drive portion of the blind fastener, and to pull the collar of the drive portion via sliding of the pull slide, a locking slide disposed longitudinally in the housing and radially outward from the pulling fingers, and configured to slide to radially expand and collapse the pulling fingers to engage the drive portion with the pulling fingers. The assembly also includes stationary fingers disposed in the housing to abut against a rim of the fastener portion of the blind fastener, and configured to counteract a first pulling force on the drive portion via sliding of the pulling fingers to initiate formation of the bulb with the fastener portion of the blind fastener, and to counteract a second pulling force on the drive portion via rotation of the torque sleeve to tighten the fastener portion with bulb for installing the blind fastener in the hole.
Other illustrative embodiments may be described below. The features, functions, and advantages that have been discussed can be achieved independently in various embodiments or may be combined in yet other embodiments further details of which can be seen with reference to the following description and drawings.
Some embodiments of the present disclosure are now described, by way of example only, and with reference to the accompanying drawings. The same reference number represents the same element or the same type of element on all drawings.
The figures and the following description illustrate specific illustrative embodiments of the disclosure. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the disclosure and are included within the scope of the disclosure. Furthermore, any examples described herein are intended to aid in understanding the principles of the disclosure, and are to be construed as being without limitation to such specifically recited examples and conditions. As a result, the disclosure is not limited to the specific embodiments or examples described below, but by the claims and their equivalents.
The blind fastener 100 comprises a drive portion 110 (sometimes referred to as a drive element) and a fastener portion 120. Generally, the drive portion 110 interfaces with an installation tool, and the fastener portion 120 installs into the hole 150. In this example, the drive portion 110 includes a centering section 112, a pull section 114, and a drive section 116. The fastener portion 120 includes a core bolt 122, a shank head 124, and a fastener sleeve 126.
Additionally, upon applying the pulling force 160, the shank head 124 is pulled off the front of the hole 150 and away from a rim 128 of the fastener sleeve 126 which remains flush with the front surface of the hole 150. After initial formation of the bulb 162 via pulling, the drive section 116 is rotated by a rotation force 170 to drive the drive portion 110 and core bolt 122 back into the fastener sleeve 126 and the hole 150. As the shank head 124 seats into the fastener sleeve 126 again, the blind fastener 100 tightens the structures 151-152 together between the shank head 124 and the bulb 162.
Previous blind fastener installation tools include a complex mechanical structure that is susceptible to inefficiencies. These tools are particularly limited in applications where installation is performed at non-normal angles and/or in the presence of sealant. For example, sealant can adhere to, and subsequently jam or plug, the internal drive mechanism of these tools, potentially resulting in costly manufacturing downtime to clean its internal drive mechanism.
To improve blind fastener installations, the blind fastener tool 200 is enhanced with stationary fingers 220 and pulling fingers 230. The stationary fingers 220 are configured to contact a rim of the sleeve of the blind fastener (not shown in
The pulling fingers 230 are further configured to open radially to load/eject the drive element, and to close radially to engage a circular collar (i.e., pulling surface) of the drive element for pulling. Radial movement of the pulling fingers 230 advantageously enables improved grip and support of the drive element when the drive element is seated in the blind fastener tool 200 to perform blind fastener installations at non-normal angles. As described in further detail below, the pulling fingers 230 open and close radially via actuation of a locking slide 240 that translates in the housing 202. The pulling fingers 230 translate axially (e.g., laterally forward and backward in the housing 202) via actuation of a drive actuator 250 proximate to the second open end 206 of the housing 202. A torque sleeve 260 disposed longitudinally through the second open end 206 of the housing 202 is configured to rotate the drive element after pulling to complete fastener installation. The blind fastener tool 200 may also include an ejector rod 270 to eject the drive element after the drive element has separated from the installed portion of the blind fastener.
In this example, the blind fastener 301 includes the drive element 310 having a drive tab 312, a collar 314, and a neck 316, and further includes the fastener portion 320 having a core bolt 322, a shank head 324, and a fastener sleeve 326. One advantage of the blind fastener tool 300 is that it is operable with blind fasteners, such as the blind fastener 301, which are simpler, more cost effective, and more efficient than the blind fastener 100 described above with respect to
As further shown in
The blind fastener tool 200 further includes the torque sleeve 260 with one end extending along the longitudinal axis 340 into the housing 202. The end of the torque sleeve 260 includes a socket cavity 362 to receive the drive tab 312 for rotating the blind fastener 301. Alternatively, in some embodiments, the torque sleeve 260 may include two or more tabs that sandwich the drive tab 312 for rotating the blind fastener 301. The torque sleeve 260 slides/rotates at a position radially inward from the pull slide 330. In other words, the torque sleeve 260 is located radially inward from the stationary fingers 220 and the pull fingers 230 to apply rotational force to the drive tab 312. Initial rotation of the torque sleeve 260 allows engagement with the drive tab 312. In some embodiments, the torque sleeve 260 is spring-loaded to allow insertion of the drive tab 312 prior to alignment. With the drive tab 312 seated in the socket cavity 362, rotation of the torque sleeve 260 completes the formation of the back-side bulb, tightens the core bolt 322 within the fastener sleeve 326, and breaks the drive element 310 cleanly away from the fastener portion 320, thereby installing the blind fastener 301 in a blind side hole.
As earlier described, the stationary fingers 220 abut against a top rim (e.g., rim 128) of the fastener sleeve 126 to hold the fastener sleeve 126 in the hole during the installation sequence and react the pulling forces acting on the drive element 310 of the blind fastener 301. That is, the stationary fingers 220 counteract a first pulling force on the drive element 310 and the core bolt 322 via sliding of the pulling fingers 230, and also counteract a second pulling/torsion force on the drive element 310 and the core bolt 322 via rotation of the torque sleeve 260 to tighten the fastener portion 320 via the formed bulb for installing the blind fastener 301 in the hole.
The housing 202 may also include rim guards 404 disposed around the rim or front of the first open end 204. The rim guards 404 protrude radially inward from the rim and the stationary fingers 220 may radially align inward from the rim guards 404 to form finger notches 406 at the first open end 204. Additionally, the annular arrangement of the rim guards 404, the stationary fingers 220, and the pulling fingers 230 advantageously protect the first open end 204 from sealant while still enabling the blind fastener tool 400 to receive and dispose a drive element.
The stationary fingers 220 in this example comprise four longitudinal members with spaces 422 between the longitudinal members. That is, the stationary fingers 220 may be disposed around an interior of the housing 202 with equal radial spacing. A front end 424 of the stationary fingers 220 includes tapered tips 426 that serve to hold the fastener in the hole during the installation sequence. The exposed rim of the fastener sleeve may be narrow (e.g., as small as 0.020 to 0.030 inches), and the tapered tips 426 are sized to remain on top of the rim to avoid damage to the surrounding structural material.
Furthermore, the pulling fingers 230 in this example also comprise four longitudinal members configured to be arranged in parallel with the stationary fingers 220 and in the spaces 422 of the stationary fingers 220. The pulling fingers 230 may thus also be disposed around the interior of the housing 202 with equal radial spacing, and radially alternating or offset with the pulling fingers 230. In this example having four fingers for each set, the pulling fingers 230 are offset forty-five degrees from the stationary fingers 220. However, it will be appreciated that alternative configurations and numbers of fingers for the pulling fingers 230 and the stationary fingers 220 are possible.
The pulling fingers 230 include slide attachment joints 432 to mechanically couple the pulling fingers 230 and the pull slide 330. The slide attachment joints 432 mate with corresponding attachment points 436 disposed around an exterior of the tubular body of the pull slide 330. In addition to coupling the pulling fingers 230 and the pull slide 330 for lateral movement, this arrangement provides a technical benefit by enabling the pulling fingers 230 to pivot for increased handling control of a drive element. For instance, referring back to
The pulling fingers 230 may thus be configured to open, either via the hinge mechanism 342 or spring action, to accept a drive element. After the drive element is properly seated in the socket cavity 362 of the torque sleeve 260, the pulling fingers 230 are configured to close to engage the circular collar of the drive element. The pulling fingers 230 may thus further include hooked front ends 434 that provide a pulling surface to oppose the back surface of the collar so that the pulling fingers 230 do not slide over the collar during the pulling operation.
The drive actuator 250 and nut 452 fit over a back end 438 of the pull slide 330 extending outside the second open end 206 of the housing 202. The drive actuator 250 is configured to move the pull slide 330 laterally. The drive actuator 250 may include threaded or non-threaded configurations to engage the pull slide 330. In some embodiments, the blind fastener tool 400 is configured to engage with a power tool that receives and rotates the drive actuator 250 to translate the pull slide 330 and the pulling fingers 230. In further embodiments, the blind fastener tool 400 includes a retainer sleeve 416 configured to retain the stationary fingers 220, and to guide the pulling fingers 230. That is, the stationary fingers 220 may be held in place inside the housing 202 by the retainer sleeve 416. Alternatively or additionally, the stationary fingers 220 may be configured to move radially to allow fastener insertion and accommodate fasteners of various radius sizes.
Although specific embodiments are described herein, the scope of the disclosure is not limited to those specific embodiments. The scope of the disclosure is defined by the following claims and any equivalents thereof.
Number | Name | Date | Kind |
---|---|---|---|
3357094 | Mouck | Dec 1967 | A |
3774437 | Young | Nov 1973 | A |
4648259 | Pendleton | Mar 1987 | A |
Entry |
---|
Cherry Aerospace; CherryMax Installation Stages; http://www.cherryaerospace.com/product/animations/cmaxanims; Jan. 15, 2019. |
Didier Friot et al; LISI#OneSide, a Set of Solutions for Efficient Blind Fastener Installation; SAE International; Thursday Nov. 30, 2017. |
Monogram Aerospace; Monogram Aerospace Fasteners; https://webcache.googleusercontent.com; Jan. 15, 2019 (http://www.monogramaerospace.com/files/active/61composi-lok animations 2014). |
Number | Date | Country | |
---|---|---|---|
20200230691 A1 | Jul 2020 | US |