The present invention relates to a blind spot assist device, and in particular, to a device which causes an occupant to visually recognize an image of a region which is blocked by a pillar of a vehicle and forms a blind spot.
As a conventional blind spot assist device, there is the one that is disclosed in Patent Literature 1. The blind spot assist device described in Patent Literature 1 is provided with: a first mirror to visualize a front side of a vehicle; and a second mirror to reflect light incident to the first mirror to a driver side, and is characterized in that a blind spot of a front pillar with respect to the driver is visualized through the first and second mirrors.
Patent Literature 1: Japanese Unexamined Patent Application Publication No. 2006-231998
As described above, in a device to cause an occupant to visually recognize an image of a blind spot by a reflector unit which is composed of a pair of mirrors, there is a need to dispose the reflector unit in a region including a height of an eye line of the driver. However, if the reflector unit is fixed at a height which is adjusted to the eye line of one driver, the height of the fixed reflector unit is not adaptive to an eye line of another driver, and there may be a case in which the image of the blind spot cannot be appropriately visually recognized.
The present invention has been made in view of the circumstance described above, and it is an object of the present invention to provide a blind spot assist device which is capable of easily adjusting a height of a reflector unit to cause a driver to visually recognize an image of a region which is blocked by a pillar of a vehicle and constitutes a blind spot.
To achieve the above object, in a blind spot assist device according to the present invention, the blind spot assist device to visually recognize an image of a region to be a blind spot is blocked by a pillar of a vehicle, the device comprising: a reflector unit having a first mirror to reflect a part of incident light and transmit a remaining part and a second mirror opposing to the first mirror and reflecting light from the first mirror toward the first mirror; a slide unit to make the reflector unit slidable along a direction in which the pillar extends; and a lock unit to immobilize the reflector unit with respect to the pillar in a lock state, wherein the reflector unit causes the occupant to visually recognize the image in the vehicle by the light having transmitted the first mirror, of the light representative of the image incident between the first mirror and the second mirror, and wherein the lock state of the lock unit is released, the reflector unit is slid along the direction, and the lock unit is thereafter established in the lock state, and a position in the direction of the reflector unit is thereby adjustable.
According to the present invention, it is possible to easily adjust a height of a reflector unit to cause a driver to visually recognize an image of a region to be a blind spot which is blocked by a pillar of a vehicle.
A blind spot assist device according to an embodiment of the present invention will be described with reference to the drawings.
A blind spot assist device 100 according to a first embodiment of the present invention, as shown in
It is to be noted that, at end parts of the front glass 4, light shading units 4R, 4L are formed by way of printing or the like. Although a slight blind spot is produced by the light shading unit 4R that is proximal to the right side pillar 6R, according to the blind spot assist device 100, it becomes possible to visually recognize an image of the thus produced blind spot as well. However, in the following description, in order to ensure a clear understanding of explanation, it is presupposed that the blind spot produced by the light shading unit 4R is included in the blind spot produced by the pillar 6R, and the blind spot produced by the pillar 6R will be mainly described.
In addition, the pillar 6R at which the blind spot assist device 100 is to be installed is approximately in a plate shape (a substantially rectangular cylinder shape or a substantial parallelepiped shape). Thus, in order to ensure a clear understanding of functions of each member, hereinafter, a description will be given by appropriately employing the XYZ plane on which the axis along a direction in which the pillar 6R extends is defined as the Y-axis; the axis along a normal line direction of a face oriented into the vehicle 1 of the pillar 6R (a face approximately oriented to the user 2) is defined as the Z-axis; and the axis orthogonal to the Z-axis and the Y-axis is defined as the X-axis (refer to
In addition, the direction indicated by the arrow representative of each of the X. Y, and X axes is defined as a positive direction of each axis. In this case, as is obvious from
The blind spot assist device 100, as shown in
(Reflector Unit 30)
The reflector unit 30 causes the user 2 to visually recognize, by way of reflection, an image of an object M in a blind spot region D (refer to
The pair of mirrors 10 oppose to each other, and are composed of a first mirror 11 and a second mirror 12 which are disposed in parallel to each other. As shown in
The mirror 11 is a semi-transmissive plane mirror to reflect a part of the incident light and then transmit the remaining part. The first mirror 11 is disposed at the user 2 side more significantly than the second mirror 12. The first mirror 11 forms a reflectivity adjustment layer by vapor-depositing a metal such as aluminum on a surface of a transmissive substrate made of a resin such as polyethylene terephthalate, polycarbonate, polyethylene, or acryl. The reflectivity adjustment layer is formed while the thickness and material are adjusted so that the reflectivity and transmissivity with respect to the incident light respectively have their desired values. In the embodiment, a light quantity ratio of the transmission light and reflection light in the first mirror 11 is set to 1:9 in transmission light to reflection light. It is to be noted that the first mirror 11 may be formed by coating an electrolytic multilayered layer on a surface of the transmissive substrate.
The second mirror 12, for example, is a planar aluminum vapor-deposition mirror which is obtained by vapor-depositing a metal such as aluminum to form a reflection layer on a surface of a transmissive substrate which is similar to the one described above. The second mirror 12 is disposed so that a plane thereof (the face on which the reflection layer has been formed) is parallel to a plane of the first mirror 11 (the face on which the reflectivity adjustment layer has been formed). The second mirror 12 reflects the incident light to the first mirror 11.
It is to be noted that there is no need to dispose the first mirror 11 and the second mirror 12 so as to be completely parallel to each other as long as these mirrors oppose to each other. Also, the transmissive member is sandwiched between the first mirror 11 and the second mirror 12, and a pair of mirrors 10 may be thereby composed of a solid structure.
In addition, the reflectivity adjustment layer (the semi-transmissive reflection layer) is formed on one face of the transmissive member in which a pair of opposite planes to each other have been provided; and a reflection layer is formed on the other face, thereby making it possible to constitute the pair of mirrors 10 as well. Namely, the first mirror 11 and the second mirror 12 do not need to be independent of each other.
The casing 20 is made of a predetermined resin, and holds the first mirror 11 and the second mirror 12 in a state in which the functions described above can be realized. Specifically, the casing 20 forms a substantially boxy shape, and is formed to have: a first aperture 21 opening towards the blind spot region D; a second aperture 22 opposing to the first aperture 21 in the approximate X-direction; and a third aperture 23 opening to the user 2 side (towards in the approximate +Z-direction). The first mirror 11 is mounted to the casing 20 so as to close the third aperture 23. Also, inside of the casing 20 that closes the first aperture 21 and the second aperture 22, the second mirror 12 opposing to the first mirror 11 in the approximate Z-direction is arranged. In addition, in the second aperture 22, a member to prevent entry of dust or the like into the casing 20 (not shown. for example, a transmissive plate material) is provided. The light representative of the object M that exists in the blind spot region D passes through the first aperture 21 of the casing 20, is incident to the pair of mirrors 10, and repeats reflection therebetween.
Here, action of the reflector unit 30 will be described with reference to
As shown in
As shown in
Incidentally, of the blind spot region F, a slight region on the rear face side of the front pillar 6R (the portion indicated by hatching in
Here, action of the reflector unit 30 will be more specifically described with reference to
As described previously, the light quantity ratio of the transmission light to the reflection light in the first mirror 11 is set to 1:9 in reflection light to transmission light. Therefore, as shown in
The light L thus repeats reflection between the pair of mirrors 10; and therefore, in a case where the light L has been incident to the first mirror 11 n-times, the light L1 to Ln indicative of the image of the object M is emitted from the pair of mirrors 11. That is, from the pair of mirrors 10, images indicative of n objects M are emitted along the transverse direction of the eyes of the user 2. Therefore, the user 2 can visually recognize the image of the object M in a wide range of the transverse direction.
It is to be noted that the light quantity ratio between the transmission light and the reflection light in the first mirror 11 may be appropriately determined in view of lowering of the luminance of the light L exerted by an increased number of reflections and the luminance at the beginning of the incidence of the light L, and the light quantity ratio between the transmission light and the reflection light is not limited to 1:9.
By such an action, in order to appropriately visually recognize the image of the blind spot region D by the reflector unit 30, there is a need to dispose the reflector unit 30 at a height according to a viewpoint of the user 2. In the embodiment, adjustment of this height is easily made possible by a slide unit 40 and a lock unit 50 which will be described later.
(Slide unit 40)
The slide unit 40 has: a slide plate 41 which is mounted on a rear face side of the casing 20; and a guiderail 42 which is mounted on the pillar 6R side. Each of the slide plate 41 and the guiderail 42 is made of a metal material, for example.
Specifically, the slide plate 41, as shown in
The guiderail 42 is immobilized with respect to a pillar main body 6a which constitutes the pillar 6R (refer to
The pillar 6R, as shown in
The slide plate 41 is slidable inside of the guide groove 42a, and the reflector unit 30 is thereby slidable along the guiderail 42.
As shown in
The cover member 25 is fixed to a part of the casing 20 of the reflector unit 30, for example, and is slidable together with the reflector unit 30. The cover member 25 is formed to be larger in size than the aperture 6c of the pillar cover 6b, and in particular, is formed to be sufficiently larger than a width in the Y-direction of the aperture 6c so that a part thereof overlaps the pillar cover 6b. In this manner, even if the reflector unit 30 is slid for the sake of height adjustment, it is possible to prevent exposure of the pillar main body 6c leading to impairment of the appearance of inside of the vehicle 1. In addition, the cover member 25 is surface-finished with a material similar to that for the pillar cover 6b, and is formed in a similar color. In this manner, the impairment of the appearance of the inside of the vehicle 1 can be prevented. Incidentally, from the viewpoint of the appearance, it is preferable to form the casing 20 of the reflector unit 30 with a similar color tone thereto.
(Lock Unit 50)
The lock unit 50 has: an engagingly locking unit 51 to engagingly lock the reflector unit 30 with the pillar 6R (the pillar main body 6a); an elastic member 52; and an engaging unit 53 to engage with the engagingly locking unit 51.
The engagingly locking unit 51 is formed of a resin or the like, and as shown in
The operating unit 51a, although not shown, is exposed to the outside from the aperture 6c of the pillar cover 6b (protrudes toward the +X-direction), and can be operated to be pressed by fingers or the like of the user 2.
In a state in which the operating unit 51a is not operated, the engagingly locking unit 51 is kept to engage with the engaging unit 53 by a resilient force of the elastic member 52 which will be described later. This state is a lock state in which the reflector unit 30 cannot be slid along the pillar 6R (height adjustment of the reflector unit 30 cannot be made).
On the other hand, in a state in which the user 2 presses the operating unit 51a in the −X-direction, the engagingly locking unit 51 moves in a direction opposing to the resilient force of the elastic member 52. In this manner, an unlock state in which the engagingly locked situation by the engagingly locking unit 51 has been released is established. During the unlock state, it becomes possible to slide the reflector unit 30 along the pillar 6R. A detailed description will be given later.
A tip end of the shaft unit 51c, as shown in
The elastic member 52 is a coil spring made of a metal, for example, and is provided at the shaft unit 51c (as shown in
The engaging unit 53 is formed of a resin or the like, and as shown in
Hereinafter, a description will be given with respect to how the height of the reflector unit 30 is adjusted in the blind spot assist device 100 made of the above constituent elements.
In the lock state of the lock unit 50, owing to the biasing force in the +X-direction of the elastic member 52, the comb unit 51b of the engagingly locking unit 51 meshes with the comb unit 53a of the engaging unit 53 that is immobilized with respect to the pillar 6R, whereby the engagingly locking unit 51 engages with the engaging unit 53, and the reflector unit 30 is positioned at a certain height.
If the user 2 presses the operating unit 51a toward the pillar 6R (against the resilient force of the elastic member 52), the engagingly locking unit 51 moves in the −X-direction, and the comb unit 51b of the engagingly locking unit 51 is released from the comb unit 53a of the engaging unit 53. In this manner, the unlock state in which the engagingly locked situation by the engagingly locking unit 51 has been released is established.
The user 2 slides the reflector unit 30 along the Y-direction and then positions the reflector unit at a desired height while the operating unit 51a is thus pressed (while the unlock state is kept as it is). As described previously, the slide plate 41 is slidable inside of the guide groove 42a, and the reflector unit 30 is thereby slidable along the guiderail 42.
After the reflector unit 30 has been positioned at the desired height, if the user 2 stops the pressing operation by releasing the fingers or the like from the operating unit 51a, the engagingly locking unit 51 moves in the +X-direction and then reverts to a position before the pressing operation (the position in the substantial X-direction) owing to the resilient force of the elastic member 52. In this manner, the lock unit 50 gets into the lock state in which the engagingly locking unit 51 and the engaging unit 53 engage with each other, and the reflector unit 30 is engagingly locked with the pillar 6R (the pillar main body 6a).
By means of the operation described hereinabove, the reflector unit 30 is adjusted to the desired height and then is fixed at that height. Thus, with the blind spot assist device 100 according to the first embodiment, merely by pressing and operating the operating unit 51a and then sliding the reflector unit 30, the height of the reflector unit 30 can be adjusted and thus adjustment is easy. This advantageous effect is achieved by the blind spot assist device 100 having the following construction.
The blind spot assist device 100 described hereinabove causes the user to visually recognize the image of the blind spot region D that is blocked by the pillar 6R of the vehicle 1 (the image of the object M). The blind spot assist device 100 is provided with: a reflector unit 30 having a first mirror 11 to reflect a part of the incident light and then transmit the remaining part; a second mirror 12 opposing to the first mirror 11 and reflecting the light from the first mirror 11 toward the first mirror 11; a slide unit 40 to make the reflector unit 30 slidable along the direction in which the pillar 6R extends; and a lock unit 50 to immobilize the reflector unit 30 with respect to the pillar 6R in the lock state.
The reflector unit 30 causes the image to be visually recognized in the vehicle 1 by means of the light having thus transmitted the first mirror 11, of the light representative of the image that is incident between the first mirror 1 and the second mirror 12. The lock state of the lock unit 50 is released, and the reflector unit 30 is slid along the direction (the Y-direction) and subsequently the lock unit 50 is established in the lock state, and the position in the direction of the reflector unit 30 is thereby made adjustable.
In addition, the lock unit 50 has: an engagingly locking unit 51 (an example of the first member) and an engaging unit 53 (an example of the second member) engaging with each other; an elastic member 52 to bias the engagingly locking unit 51 toward the engaging unit 53; and an operating unit 51a to space, if a releasing operation to release the lock state is made, the engagingly locking unit 51 and the engaging unit 53 along the direction in which the biasing force of the elastic member 52 acts.
If the release operation is made with respect to the operating unit 51a, the state in which the reflector unit 30 is engagingly locked with the pillar 6R is released, and it becomes possible to slide the reflector unit 30 along the direction. If the releasing operation with respect to the operating unit 51a is stopped, the lock state in which the reflector unit 30 is engagingly locked with the pillar 6R owing to the biasing force of the elastic member 52 is established.
Further, the reflector unit 30 has the casing 20. The engagingly locking unit 51 is provided in the casing 20, and moves together with the operating unit 51a if the operating unit 51a is operated to be pressed. The engaging unit 53 is immobilized with respect to the pillar 6R. The elastic member 52 biases the engagingly locking unit 51 toward the engaging unit 53 and then presses the operating unit 51a in the direction opposing to the biasing force of the elastic member 52, and the releasing operation for the engagingly locking unit 51 to be spaced from the engaging unit 53 is thereby made.
Furthermore, the pillar 6R has: a pillar main body 6a; and a pillar cover 6b to cover the pillar main body 6a, and in the pillar cover 6b, an aperture 6c is provided over the range in which the reflector unit 30 is slidable. The blind spot assist device 100 is immobilized with respect to the reflector unit 30, and is further provided with a cover member 25 to slide together with sliding of the reflector unit 30, the cover member 25 is positioned between the pillar cover 6b and the pillar main body 6a and closes the aperture 6c, and even if the reflector unit 30 is slid, the pillar main body 6a is not exposed from the aperture 6c.
In this manner, even if the reflector unit 30 is slid for the sake of height adjustment, it is possible to prevent exposure of the pillar main body 6a and impairment of the appearance of the inside of the vehicle 1. Also, in order to further improve the appearance, it is preferable that the cover member 25 be surface-finished with a similar material to that for the pillar cover 6b, and be formed in a similar color thereto.
Incidentally, although the foregoing description showed an example in which the reflector unit 30 slides inside of the aperture 6c that is provided in the pillar cover 6b, and height adjustment is possible, the present invention is not limited thereto.
Like the blind spot assist device 110 according to a modification example shown in
Although the foregoing description showed a variety of specific examples, it is possible to appropriately change the protrusion direction of the operating unit 51a, the shape of the elastic member 52 or the direction of the resilient force, and the shape of the slide unit 40 or the like. For example, the elastic member 52 may be a resin spring without being limited to the metal spring. Also, the elastic member 52 may be a torsion spring, a plate spring or the like.
Although the foregoing description showed an example in which the lock unit 50 is kept in the unlock state when the operating unit 51a is continuously operated to be pressed, the present invention is not limited thereto. The blind spot assist device 100 (hereinafter, like the blind spot assist device 100 according to a modification example) may be configured so that a mechanism to keep the unlock state if the user 2 presses the operating unit 51a once is further provided, and the lock state is established if the operating unit 51a is pressed again after height adjustment has been made by sliding the reflector unit 30.
Although the foregoing description showed an example in which the elastic member 52 presses the engagingly locking unit 51 that is provided at the reflector unit 30 side, against the engaging unit 53 that is provided at the pillar 6R side, the present invention is not limited thereto. It is also possible to configure the blind spot assist device 100 so that the elastic member 52 presses the engaging unit 53 against the engagingly locking unit 51.
Hereinafter, a description will be given with respect to blind spot assist devices 200, 300 according to second and third embodiments, which are different from that of the first embodiment in the direction of engagement between the engagingly locking unit and the engaging unit. Hereinafter, a description will be given focusing on differences from the first embodiment. It is to be noted that same constituent elements having the similar functions to those of the first embodiment are designated by same reference numerals as those of the first embodiment, and a duplicate description is omitted.
On the other hand, a locking unit 250 according to the second embodiment has: an engagingly locking unit 251 to engagingly lock a reflector unit 30 with a pillar 6R; an elastic member 252; and an engaging unit 253 to engage with the engagingly locking unit 251 to oppose to each other in the Z-axis direction.
The engagingly locking unit 251, as shown in
The comb unit 251b is formed to extend along the Y-direction. In the second embodiment, there are two comb units 251b which are respectively disposed at intervals in the X-direction. The shaft unit 251c is positioned between the two comb units 251b, and is provided to penetrate a slide plate 41.
In the second embodiment, as described later, the reflector unit 30 (the casing 20) per se functions as an operating unit operated to be pressed by the user 2 (in the second embodiment, an operation of lifting the reflector unit 30 in the +Z direction).
In a state in which the reflector unit 30 is not operated to be lifted, the engagingly locking unit 251 is kept to engage with the engaging unit 253 by a resilient force of the elastic member 252 which will be described later. This state is a lock state in which the reflector unit 30 cannot be slid along the pillar 6R.
On the other hand, in a state in which the user 2 lifts the reflector unit 30 in the +Z-direction (a releasing operation state in the second embodiment), the engagingly locking unit 251 moves in a direction opposing to the resilient force of the elastic member 252. In this manner, an unlock state in which the engagingly locked situation by the engagingly locking unit 251 has been released is established.
The shaft unit 251c penetrates the slide plate 41 in the −Z-direction, and moves in the Z-axis direction concurrently with movement in the Z-direction of the reflector unit 30. Therefore, if the reflector unit 30 is operated to be lifted in the +Z-direction, the shaft unit 251c also moves in the +Z-direction.
A tip end of the shaft unit 251c is positioned between the slide plate 41 and the guiderail 42. The elastic member 252 is provided so as to couple the tip end of the shaft unit 251c and a back face of the slide plate 41 (the face oriented to the −Z side) to each other.
The elastic member 252 is a coil sprint, for example, and biases the engagingly locking unit 251 toward the −Z-direction owing to the resilient force.
The engaging unit 253, like the first embodiment, is a plate-shaped member fixed to the pillar main body 6a. However, the engaging unit 253, as shown in
Incidentally, it is preferable that the comb unit 253a of the engaging unit 253 be in the shape shown in
Hereinafter, a description will be given with respect to how the height of the reflector unit 30 is adjusted in the blind spot assist device 200 according to the second embodiment.
In a state in which the lock unit 250 is locked, owing to the biasing force in the −Z-direction of the elastic member 252, the comb unit 251b of the engagingly locking unit 251 meshes with the comb unit 253 of the engaging unit 253 that is immobilized with respect to the pillar 6R, and the reflector unit 30 is thereby positioned at a certain height.
If the user 2 lifts the reflector unit 30 (the casing 20) in the +Z-direction against the resilient force of the elastic member 252, the engagingly locking unit 251 moves in the +Z-direction, and the comb unit 251b of the engagingly locking unit 251 is spaced from the comb unit 253a of the engaging unit 253. In this manner, a lock state in which the engagingly locked situation by the engagingly locking unit 251 has been released is established.
The user 2 slides the reflector unit 30 along the Y-direction and then positions the reflector unit at a desired height while the reflector unit is thus operated to be lifted.
After the reflector unit 30 has been positioned at the desired height, if the user 2 stops the lifting operation of the reflector unit 30, owing to the resilient force of the elastic member 252, the engagingly locking unit 251 moves in the −Z-direction together with the reflector unit 30 and then reverts to a position before the lifting operation. In this manner, the lock unit 250 is established in the lock state in which the engagingly locking unit 251 and the engaging unit 253 engage with each other, and the reflector unit 30 is engagingly locked with the pillar 6R.
By the operation described hereinabove, the reflector unit 30 is adjusted at the desired height, and is fixed at that height. Thus, in the second embodiment, merely by the operation of lifting the reflector unit 30 also functioning as an operating unit (the pressing operation in the +Z-direction and sliding the reflector unit 30, the height of the reflector unit 30 can be adjusted and thus adjustment is easy like the first embodiment.
The lock unit 350 according to the third embodiment has: an engagingly locking unit 351 to engagingly lock a reflector unit 30 with a pillar 6R; an elastic member 352; and an engaging unit 353 to engage with the engagingly locking unit 351 to oppose to each other in the Z-axis direction.
Although a comb unit 351b included in the engagingly locking unit 351 is formed to extend in the Y-direction like the second embodiment, only one comb is provided unlike the second embodiment. Also, only one comb unit 353a included in the engaging unit 353 is provided similarly.
In addition, the blind spot assist device 300 according to the third embodiment is provided with a hinge unit 60 to couple a slide plate 41 and a casing 20 of a reflector unit 30 to each other.
This hinge unit 60 has a hinge shaft 60a which is substantially parallel to the Y-direction, and about this hinge shaft 60a, makes the reflector unit 30 rotatable in the clockwise direction in
In the third embodiment, like the second embodiment, the reflector unit 30 (the casing 20) per se functions as an operating unit operated to be pressed by the user 2. It is to be noted that the pressing operation of the reflector unit 30 in the third embodiment, in
A state in which the reflector unit 30 is not thus operated to be pressed is referred to as a lock state in which the engagingly locking unit 351 and the engaging unit 353 has been engaged with each other owing to a resilient force of the elastic member 352 which will be described later.
On the other hand, in a state in which the user 2 makes a pressing operation of the reflector unit 30 (a state of releasing operation in the third embodiment), the engagingly locking unit 351 moves in the direction opposing to the resilient force of the elastic member 352. In this manner, an unlock state in which the engagingly locked situation by the engagingly locking unit 351 has been released is established.
The elastic member 352 is made of a torsion spring, for example, and is provided at the hinge unit 60. The elastic member 352 is provided so as to have the resilient force in a direction in which the hinge unit 60 opens.
The thus provided elastic member 352 biases the engagingly locking unit 351 toward an approximate −Z-direction owing to the resilient force. Specifically, the elastic member 352 biases the reflector unit 30 in the clockwise direction in
By means of the hinge unit 60 and elastic member 352 that are configured as described above, the comb unit 351b of the engagingly locking unit 351 is biased in the substantial −Z-direction so as to mesh with the comb unit 353a of the engaging unit 353.
Hereinafter, a description will be given with respect to how the height of the reflector unit 30 is adjusted in the blind spot assist device 300 according to the third embodiment.
In a state in which the lock unit 350 is locked, by means of the biasing force in the counterclockwise direction in
If the user 2 makes a pressing operation of the reflector unit 30 (the casing 20) (as described previously, the user lifts the right side of the reflector unit 30 or pushes down the left side), the reflector unit 30 that has been fixed to the hinge unit 60 via the fixing member 61 moves in the counterclockwise direction about the hinge shaft 60a. Concurrently with this movement, the comb unit 351b of the engagingly locking unit 351 is spaced from the comb unit 353a of the engaging unit 353. In this manner, the blind spot assist device 300 according to the third embodiment, as shown in
The user 2 causes the reflector unit 30 to slide in the Y-direction and then to be positioned at a desired height while this unlock state is kept as it is.
After the reflector unit 30 has been positioned at the desired height, if the user 2 stops the pressing operation of the reflector unit 30, owing to the resilient force of the elastic member 352, the engagingly locking unit 351 moves in the clockwise direction about the hinge shaft 60a, together with the reflector unit 30, and reverts to a position before the pressing operation. In this manner, the lock unit 350 is established in a lock state in which he engagingly locking unit 351 and the engaging unit 353 engage with each other, and the reflector unit 350 is engagingly locked with the pillar 6R.
By the operation described hereinabove, the reflector unit 30 is adjusted at a desired height, and is fixed at that height. Thus, in the third embodiment, merely by making a pressing operation of the reflector unit 30 that also functions as an operating unit and then sliding the reflector unit 30, the height of the reflector unit 30 can be adjusted and thus adjustment is easy like the first and second embodiments.
Incidentally, although the third embodiment described hereinabove showed an example in which the elastic member 352 was provided so as to have the resilient force in the open direction of the hinge unit 60, this elastic member can also be provided so as to have a resilient force in a closed direction of the hinge unit 60. Hereinafter, a modification example of the third embodiment in which the elastic member 352 was thus provided will be described with reference to
The hinge unit 60 according to this modification example is provided so as to open in a back rotation direction (the counterclockwise direction) to the hinge unit 60 that was shown in
By the thus configured elastic member 352 according to the modification example as well, owing to the elastic force, the engagingly locking unit 351 can be biased in the clockwise direction. In this manner, the engagingly locking unit 351 that has been fixed to the reflector unit 30 is also biased in the counterclockwise about the hinge shaft 60a, and as a result, is biased in an approximate −Z-direction.
In this modification example as well, the user 2 lifts the right side in the
In the blind spot assist devices 200, 300 according to the second and third embodiments described hereinabove (including the modification example of the third embodiment), the engagingly locking units 251, 352 (one example of the first member) and engaging units 253, 353 (one example of the second member) oppose to each other in the normal line direction of the face oriented into the vehicle 1 of the pillar 6R (the substantial Z-direction), and meshes with each other. In addition, in the blind spot assist devices 200, 300 according to the second and third embodiments, the casing 20 of the reflector unit 30 is employed as an operating unit. In this manner also, as described previously, it is possible to facilitate height adjustment of the reflector unit 30.
It is to be noted that the present invention is not limited by the foregoing embodiments, modification examples, and drawings. Various modifications (including deletion of constituent element(s)) can be appropriately made without deviating from the spirit of the present invention.
Although the foregoing description showed an example in which each of the blind spot assist devices 100, 200, 300 was provided at the right side pillar 6R when seen from the driver, of the front pillar, the device may be provided at the left side pillar 6L.
Also, the pillars of the vehicle 1 are referred to as pillar A (the front pillar), pillar B, pillar C, pillar D, . . . in sequential order from the front side to the rear side of the vehicle 1, of course, a blind spot is produced by a pillar other than pillar A. Therefore, it is also possible to provide the blind spot assist device 100 at a pillar other than pillar A, such as pillar B or pillar C.
In the foregoing description, in order to ensure a clear understating of the present invention, an explanation of publicly known technical matters which are not important was appropriately omitted.
The present invention can be applied to blind spot assist devices, and specifically, is applicable to a device to cause a driver to visually recognize an image of a blind spot region which is blocked by a pillar of a vehicle.
Number | Date | Country | Kind |
---|---|---|---|
2014-150432 | Jul 2014 | JP | national |
2014-256213 | Dec 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/069840 | 7/10/2015 | WO | 00 |