This invention relates to a method for making blind threaded fasteners, and to the resultant fastener.
Blind threaded fasteners are known, and they involve fasteners which are intended for use on metal or plastic sheets or panels, particularly where one side of the sheet or panel is not readily accessible. The fasteners often involve an enlarged head, an internally threaded outer end, and an intermediate, thin-walled hollow tube interconnecting the head and the threaded outer portion. The fastener is mounted into a hole in the panel. A drive screw extends through the thin walled hollow tube and the drive screw is rotated to pull the threaded portion of the fastener toward the panel, with the result being that the thin walled tubular part of the fastener collapses, extending outward beyond the hole, and the fastener is securely held in the panel by the head on the accessible side of the panel, and the enlarged collapsed portion of the fastener on the inaccessible side of the panel.
It has previously been proposed to manufacture blind fasteners of this type by initial cold forming steps in a header type machine, subsequently cutting four longitudinally extending slits in the thin tubular material, using inwardly directed blades, and in a further step, bowing the resultant sections of the tube slightly outward.
However, the foregoing method and the resultant fasteners have certain shortcomings. For example the various steps required in separate machines makes the fasteners unduly expensive; and excessive time and space are needed to manufacture the completed blind fastener. In addition, the tube slitting step may form burrs which may interfere with a subsequent plating process, resulting in incomplete plating, so that the fasteners may corrode and fail. In addition, it is not convenient to form more than four slits in the separate slitting process, and the resultant fastener has concentrated forces which may damage thin plastic sheets into which the fasteners may be secured.
In accordance with one aspect of the invention, the longitudinal slitting and the outward bowing of the tubular section of the fastener are all accomplished by cold metal forming, preferably in machines of the general type used to make conventional threaded bolts with heads. These machines are known as “headers” and they are expensive, noisy and may cost several hundred thousand dollars. One well known manufacturer of multi-station header type machines is Sacma, based in Italy near Milan.
Returning to the process, the longitudinal splits in the tubular intermediate portion of the fastener are formed in part by inwardly directed protrusions on the header die and backward extrusion of the metal from the deepening central opening in an intermediate step of cold forming the fastener. In a later step included in a multiple station header, the head of the fastener is more completely formed and the tubular sections are fully separated and are bowed slightly outward.
The resultant fastener body is fully cold formed, and may have as many outwardly extending sections, such as 5 or 6, as may be desired, to spread the area of the retention portion of the fastener. In addition, in the absence of the cutting burrs, the fastener is smoothly formed and shaped to receive a complete plating coating thereby avoiding possible corrosion and failure.
In accordance with one preferred method illustrating the principles of the invention, a blind threaded fastener may be formed from coils or rods of heavy cylindrical stock by the following steps:
1. Cut off slug of generally cylindrical configuration.
2. Cold forming slug to size while starting a central recess.
3. Deepening the central recess and initial formation of flange or head of fastener.
4. The knurling and vertical slits are accomplished by inwardly directed portions of the header die, and backward extrusion of the metal as the central opening through the fastener is enlarged.
5. The final cold forming step punches out the small central slug of metal closing the end of the fastener, completes the flange or head of the fastener, and bows out the previously formed sections of the tubular portion of the fastener.
It is noted in passing that the length of the completed fastener may be double the length of the initial cylindrical slug, for example, a ⅜ inch long cylindrical slug may be formed into a ¾ inch long fastener.
Following the cold forming steps outlined above, the fasteners may be annealed to reduce or eliminate work hardening in the side walls which are to be deformed, and internal threads at the outer end of the fastener are roll formed to provide some work hardening. Subsequently, depending on the material of the fasteners, they may be plated. Concerning materials, the fasteners may typically be formed of steel, brass, monel or other metals; and they may be plated with zinc, tin, gold, or in some cases nickel. A zinc coating on steel fasteners, to avoid corrosion, is commonly employed.
The fastener need not be knurled, but are preferably knurled to resist rotation relative to the panel or wall into which they are mounted. This knurling may be accomplished as part of one step in a multi-station header machine. Also, as mentioned above, the fastener may have 3 or more or even 5 or more separate “back-side” locking sections to increase the “pull-out” or resistance force when an outward force is applied to the fastener.
Other objects, features and advantages will become apparent from a consideration of the following detailed description and the accompanying drawings.
While the specification describes particular embodiments of the present invention, those of ordinary skill can devise variations of the present invention without departing from the inventive concept.
Referring more particularly to the drawings,
Referring now to
In the following portion of the specification, the successive cold forming steps of which the final fastener body is formed will be described. It is noted that the material such as steel wire of a circular cross-section is normally received at the multi-station header machine in the form of rolls or coils of metal, or in some cases for large fasteners, in the form of rods of metal. They are initially cut off into short sections or cylindrical slugs for processing by the heading machine which cold forms the material into the basic fastener configuration.
Referring now to
Referring to
Reference will now be made to
Referring now to
The resultant part 54 as shown in
Reference will now be made to
Reference will now be made to
Incidentally, concerning multi-station heading machines, the work pieces are normally transferred successively from station to station by known arrangements, with successive cold forming steps taking place at successive stations, and with all of the punch members being actuated concurrently.
It is to be understood that the foregoing detailed description and the accompanying drawings relate to one illustrative preferred embodiment of the method of the present invention. Various changes and modifications may be made without departing from the spirit and scope of the invention. Thus, by way of example and not of limitation, instead of a single multi-station header machine, the cold forming may be done in various successive machines. Further, the particular operations which are accomplished in successive stages may be shifted somewhat with more or less being accomplished at each station and with additional or fewer stations being required for the cold formation process, depending largely on the configuration of the fasteners. Also, depending on the application, the thickness of the panel into which the fasteners are to be secured, and other factors, the length of the thin walled slit section of the fastener may be increased or decreased, or the number of sections modified. In addition, in some cases the threads at the outer end of the fastener may be formed by cutting, using a tap, and an appropriate support for the cylindrical outer surface of the die, if necessary. Accordingly, the present invention is not limited to the exact embodiments shown in the drawings and described in detail hereinabove.
Number | Name | Date | Kind |
---|---|---|---|
1164322 | Yeatman | Dec 1915 | A |
2017421 | Post | Oct 1935 | A |
3180203 | Vaughn | Apr 1965 | A |
3253495 | Orloff | May 1966 | A |
3759080 | Sugahara et al. | Sep 1973 | A |
3834270 | Triplett et al. | Sep 1974 | A |
3951561 | Speakman | Apr 1976 | A |
4499647 | Sakamura et al. | Feb 1985 | A |
4557649 | Jeal | Dec 1985 | A |
4580936 | Francis et al. | Apr 1986 | A |
4586231 | Powderley et al. | May 1986 | A |
4635310 | Kendall | Jan 1987 | A |
4741091 | Settles | May 1988 | A |
4770585 | Astl | Sep 1988 | A |
4875815 | Phillips, II | Oct 1989 | A |
RE33809 | Okada et al. | Jan 1992 | E |
5078561 | Wollar et al. | Jan 1992 | A |
5180264 | Farwell | Jan 1993 | A |
5246323 | Vernet et al. | Sep 1993 | A |
5294223 | Phillips, II | Mar 1994 | A |
5690454 | Smith | Nov 1997 | A |
5919016 | Smith et al. | Jul 1999 | A |
5947630 | Dillon | Sep 1999 | A |
6287044 | Huber | Sep 2001 | B1 |
6308544 | Kuehnl et al. | Oct 2001 | B1 |
6447399 | Denham | Sep 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040110569 A1 | Jun 2004 | US |