The present invention relates to drug containment systems suitable for dry powders formulated for delivery as Inhalant aerosols.
Dry powder inhalers (DPI's) represent a promising alternative to pressurized pMDI (pressurized meted dose inhaler) devices for delivering drug aerosols without using CFC propellants. See generally, Crowder et al., 2001: an Odyssey in Inhaler Formulation and Design, Pharmaceutical Technology, pp. 99-113, July 2001; and Peart et al., New Developments in Dry Powder Inhaler Technology, American Pharmaceutical Review, Vol. 4, n.3, pp. 37-45 (2001). Typically, the DPIs are configured to deliver a powdered drug or drug mixture that includes an excipient and/or other ingredients. Conventionally, many DPIs have operated passively, relying on the inspiratory effort of the patient to dispense the drug provided by the powder. Unfortunately, this passive operation can lead to poor dosing uniformity because inspiratory capabilities can vary from patient to patient (and sometimes even use-to-use by the same patient, particularly if the patient is undergoing an asthmatic attack or respiratory-type ailment which tends to close the airway).
Generally described, known single and multiple dose dry powder DPI devices use: (a) individual pre-measured doses, such as capsules containing the drug, which can be inserted into the device prior to dispensing; or (b) bulk powder reservoirs which are configured to administer successive quantities of the drug to the patient via a dispensing chamber which dispenses the proper dose. See generally Prime et al., Review of Dry Powder Inhalers, 26 Adv. Drug Delivery Rev., pp. 51-58(1997); and Hickey et al., A new millennium for inhaler technology, 21 Pharm. Tech., n. 6, pp. 116-125(1997).
In operation, DPI devices strive to administer a uniform aerosol dispersion amount in a desired physical form (such as a particulate size) of the dry powder into a patient's airway and direct it to a desired deposit site(s). If the patient is unable to provide sufficient respiratory effort, the extent of drug penetration, especially to the lower portion of the airway, may be impeded. This may result in premature deposit of the powder in the patient's mouth or throat.
A number of obstacles can undesirably impact the performance of the DPI. For example, the small size of the inhalable particles in the dry powder drug mixture can subject them to forces of agglomeration and/or cohesion (i.e., certain types of dry powders are susceptible to agglomeration, which is typically caused by particles of the drug adhering together), which can result in poor flow and non-uniform dispersion. In addition, as noted above, many dry powder formulations employ larger excipient particles to promote flow properties of the drug. However, separation of the drug from the excipient, as well as the presence of agglomeration, can require additional inspiratory effort, which, again, can impact the stable dispersion of the powder within the air stream of the patient. Unstable dispersions may inhibit the drug from reaching its preferred deposit/destination site and can prematurely deposit undue amounts of the drug elsewhere.
Further, many dry powder inhalers can retain a significant amount of the drug within the device, which can be especially problematic over time. In addition, the hygroscopic nature of many of these dry powder drugs may also require that the device be cleansed (and dried) at periodic intervals.
Some inhalation devices have attempted to resolve problems attendant with conventional passive inhalers. For example, U.S. Pat. No. 5,655,523 proposes a dry powder inhalation device which has a deagglomeration/aerosolization plunger rod or biased hammer and solenoid, and U.S. Pat. No. 3,948,264 proposes the use of a battery-powered solenoid buzzer to vibrate the capsule to effectuate the release of the powder contained therein. These devices propose to facilitate the release of the dry powder by the use of energy input independent of patient respiratory effort. U.S. Pat. No. 6,029,663 to Eisele et al. proposes a dry powder inhaler delivery system with a rotatable carrier disk having a blister shell sealed by a shear layer that uses an actuator that tears away the shear layer to release the powder drug contents. The device also proposes a hanging mouthpiece cover that is attached to a bottom portion of the inhaler. U.S. Pat. No. 5,533,502 to Piper proposes a powder inhaler using patient inspiratory efforts for generating a respirable aerosol and also includes a rotatable cartridge holding the depressed wells or blisters defining the medicament holding receptacles. A spring-loaded carriage compresses the blister against conduits with sharp edges that puncture the blister to release the medication that is then entrained in air drawn in from the air inlet conduit so that aerosolized medication is emitted from the aerosol outlet conduit. The contents of these patents are hereby incorporated by reference as if stated in full herein.
More recently, Hickey et al., in U.S. patent application Ser. No. 10/434,009 and PCT Patent Publication No. WO 01/68169A1 and related U.S. National Stage patent application Ser. No. 10/204,609, have proposed a DPI system to actively facilitate the dispersion and release of dry powder drug formulations during inhalation using piezoelectric polymer film elements which may promote or increase the quantity of fine particle fraction particles dispersed or emitted from the device over conventional DPI systems. The contents of these documents are hereby incorporated by reference as if recited in full herein.
Notwithstanding the above, there remains a need for alternative blister packages that can be used with dry powder inhalers.
Embodiments of the present invention provide blister packages that can be used with dry powder inhalers. The blister packages may be configured to employ active piezoelectric polymer-driven dispersion. Other embodiments are related to methods of fabricating blister packages that can be used in inhalers.
Certain embodiments are directed to multi-dose blister packages having a plurality of blisters thereon and adapted for use in an inhaler.
Some embodiments are directed to multi-dose blister packages having a plurality of blisters thereon and adapted for use in an inhaler. The packages include: (a) a frame member having opposing top and bottom surfaces with a plurality of spaced apart gap spaces, a respective gap space configured to define at least a portion of a sidewall of a respective blister; and (b) a floor comprising a flexible material attached to the bottom surface of the intermediate member so that the floor extends under each gap space to define a bottom of each blister.
In some embodiments the blister packages can include: (a) an intermediate member having opposing top and bottom surfaces with a plurality of spaced apart gap spaces formed therethrough, a respective one gap space configured to define at least portion of a sidewall of a respective blister; (b) a ceiling attached to the top surface of the intermediate member so that the ceiling extends above each gap space to define a top of each blister; and (c) a floor comprising a flexible material attached to the bottom surface of the intermediate layer so that the floor extends under each gap space to define a bottom of each blister.
In particular embodiments, the ceiling comprises a flexible material having sufficient structural rigidity so that the ceiling is able to define a plurality of spaced apart projections therein and the intermediate member is substantially rigid. In some embodiments, the floor comprises a piezoelectric polymer and the blister package further includes a bolus quantity of dry powder disposed in respective blisters.
Other embodiments are directed to multi-dose blister packages adapted for use in an inhaler. The blister packages include: (a) a frame member having a plurality of spaced apart apertures; (b) a ceiling disposed over the frame apertures; and (c) a flexible floor underlying and attached to the ceiling, wherein the ceiling and floor are configured to define a plurality of spaced apart sealed blisters therebetween.
The frame member can be configured to resist flexure. In some embodiments, the frame member can have a substantially planar body with sufficient rigidity to remain substantially planar during operation.
The ceiling can be flat or be configured to have a plurality of spaced apart projections. In particular embodiments, the frame member can be configured with a closed primary surface that defines the ceiling. In other embodiments, a respective ceiling projection extends through and rises above a respective frame aperture. The ceiling and/or the floor can comprise a piezoelectric polymer material. In certain embodiments, the ceiling is a substantially continuous layer that is sized and configured to extend over all of the blisters under the frame member with the projections aligned to reside in the frame member apertures.
Other embodiments are directed to methods for fabricating a multi-dose blister package having a plurality of blisters thereon that is adapted for use in an inhaler. The method includes: (a) providing a substantially rigid member having opposing top and bottom surfaces with a plurality of spaced apart gap spaces formed therethrough, a respective gap space configured to define at least a portion of a sidewall of a respective blister; (b) attaching a ceiling to the top surface of the intermediate member so that, in operation, the ceiling extends above each gap space to define a top of each blister; (c) disposing or positioning a quantity of dry powder in the blisters; and (d) sealing a floor comprising a flexible material to the bottom surface of the intermediate member so that the floor extends under each gap space to define a bottom of each blister.
Still other methods making a multi-dose blister package adapted for use in an inhaler include: (a) providing a generally rigid frame member having opposing top and bottom surfaces with a plurality of spaced apart gap spaces, a respective gap space configured to define at least a portion of a sidewall of a respective blister; (b) placing a meted quantity of dry powder in each of the blisters; and (c) sealing a floor comprising a flexible material to the bottom surface of the intermediate member so that the floor extends under each gap space to define a bottom of each blister.
In particular embodiments, the methods can include: (a) providing a frame member having a plurality of spaced apart apertures; (b) forming a plurality of spaced apart wells in a ceiling that, in position on a sealed blister package, define projections; (c) positioning a ceiling having the spaced apart wells above the frame and aligned therewith so that a respective ceiling well extends through and falls below a respective frame aperture; (d) placing a quantity of dry powder in the ceiling wells; and (e) sealing a flexible floor to the ceiling to define a plurality of spaced apart sealed blisters therebetween.
In some embodiments, the frame member can be configured to resist flexure and the floor can comprise a piezoelectric polymer material.
In yet other embodiments, the present invention is directed to multi-dose dry powder packages that include: (a) a polymeric frame body comprising a plurality of spaced apart drug apertures; (b) a meted quantity of dry powder medicament held in each of the drug apertures; and (c) a detachable floor attached to the frame body apertures.
The polymeric frame body may have an upper primary surface that defines a generally rigid ceiling over the plurality of spaced apart drug apertures. In other embodiments, the spaced apart apertures are through apertures, the package further comprising a sealant layer disposed over the frame body to define a ceiling over each of the apertures.
It is noted that aspects of the invention may be embodied as hardware, software or combinations of same, i.e., devices and/or computer program products. These and other objects and/or aspects of the present invention are explained in detail in the specification set forth below.
The present invention will now be described more fully hereinafter with reference to the accompanying figures, in which embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like numbers refer to like elements throughout. In the figures, certain layers, components or features may be exaggerated for clarity, and broken lines illustrate optional features or operations unless specified otherwise. In addition, the sequence of operations (or steps) is not limited to the order presented in the figures and/or claims unless specifically indicated otherwise. Where used, the terms “attached”, “connected”, “contacting”, and the like, can mean either directly or indirectly, unless stated otherwise.
In the description of the present invention that follows, certain terms are employed to refer to the positional relationship of certain structures relative to other structures. As used herein, the term “front” or “forward” and derivatives thereof refer to the general or primary direction that the dry powder travels as it is dispensed to a patient from a dry powder inhaler; this term is intended to be synonymous with the term “downstream,” which is often used in manufacturing or material flow environments to indicate that certain material traveling or being acted upon is farther along in that process than other material. Conversely, the terms “rearward” and “upstream” and derivatives thereof refer to the direction opposite, respectively, the forward or downstream direction.
It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a blister package shown in the figures oriented upward is inverted (turned over), elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees, 180 degrees, or at other orientations) and the spatially relative descriptors (such as, but not limited to, vertical, horizontal, above, upper, lower, below and the like) used herein interpreted accordingly.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and should not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
The term “blister” means a sealed dry powder well, compartment or receptacle that can releasably hold a (typically meted bolus) quantity of a dry powder, typically a dry powder medicament. As such, the term “blister” is not limited to a particular shape or configuration (i.e., is not limited to a raised surface configuration). The term “blister package” describes a device (such as a card) that holds a plurality of sealed blisters and may be also known as a drug containment system (“DCS”). In particular embodiments, the blisters may be configured with planar ceilings and or floors, in other embodiments the ceiling and/or floor may have a projecting configuration, or configured in other suitable geometries, as will be described further below. The term “sealant layer” and/or “sealant material” includes configurations that have at least one layer or one material; thus, such a phrase also includes multi-layer or multi-material sealant configurations.
The devices and methods of the present invention may be particularly suitable for holding doses of dry powder substances that are formulated for in vivo inhalant dispersion (using an inhaler) to subjects, including, but not limited to, animal and, typically, human subjects. The dry powder substance may include one or more active pharmaceutical constituents as well as biocompatible additives that form the desired formulation or blend. As used herein, the term “dry powder” is used interchangeably with “dry powder formulation” and means the dry powder can comprise one or a plurality of constituents or ingredients with one or a plurality of (average) particulate size ranges. The term “low-density” dry powder means dry powders having a density of about 0.8 g/cm3 or less. In particular embodiments, the low-density powder may have a density of about 0.5 g/cm3 or less. The dry powder may be a dry powder with cohesive or agglomeration tendencies.
In any event, individual dispensable quantities of dry powder formulations can be a single ingredient or a plurality of ingredients, whether active or inactive. The inactive ingredients can include additives added to enhance flowability or to facilitate aeorolization delivery to the desired systemic target. The dry powder drug formulations can include active particulate sizes that vary. The device may be particularly suitable for dry powder formulations having particulates which are in the range of between about 0.5-50 μm, typically in the range of between about 0.5 μm-20.0 μm, and more typically in the range of between about 0.51 μm-8.0 μm. The dry powder formulation can also include flow-enhancing ingredients, which typically have particulate sizes that may be larger than the active ingredient particulate sizes. In certain embodiments, the flow-enhancing ingredients can include excipients having particulate sizes on the order of about 50-100 μm. Examples of excipients include lactose and trehalose. Other types of excipients can also be employed, such as, but not limited to, sugars which are approved by the United States Food and Drug Administration (“FDA”) as cryoprotectants (e.g., mannitol) or as solubility enhancers (e.g., cyclodextrine) or other generally recognized as safe (“GRAS”) excipients.
Examples of diseases, conditions or disorders that may be treated with embodiments of the invention include, but are not limited to, asthma, COPD (chronic obstructive pulmonary disease), viral or bacterial infections, influenza, allergies, and other respiratory ailments as well as diabetes and other insulin resistance disorders. The dry powder inhalation may be used to deliver locally acting agents such as antimicrobials, protease inhibitors, and nucleic acids/oligionucleotides as well as systemic agents such as peptides like leuprolide and proteins such as insulin. For example, inhaler-based delivery of antimicrobial agents such as antitubercular compounds, proteins such as insulin for diabetes therapy or other insulin-resistance related disorders, peptides such as leuprolide acetate for treatment of prostate cancer and/or endometriosis and nucleic acids or ogligonucleotides for cystic fibrosis gene therapy may be performed. See e.g. Wolff et al., Generation of Aerosolized Drugs, J. Aerosol. Med. pp. 89-106 (1994). See also U.S. Patent Application Publication No. 20010053761, entitled Method for Administering ASPB28-Human Insulin and U.S. Patent Application Publication No. 20010007853, entitled Method for Administering Monomeric Insulin Analogs, the contents of which are hereby incorporated by reference as if recited in full herein.
Typical dose amounts of the unitized dry powder mixture dispersed in the inhaler will vary depending on the patient size, the systemic target, and the particular drug. Conventional exemplary dry powder dose amount for an average adult is about 10-30 mg and for an average adolescent pediatric subject is from about 5-10 mg. A typical dose concentration may be between about 1-2%. Exemplary dry powder drugs include, but are not limited to, albuterol, fluticasone, beclamethasone, cromolyn, terbutaline, fenoterol, β-agonists (including long-acting β-agonists), salmeterol, formoterol, cortico-steroids and glucocorticoids. In certain embodiments, the administered bolus or dose can be formulated with an increase in concentration (an increased percentage of active constituents) over conventional blends. Further, the dry powder formulations may be configured as a smaller administerable dose compared to the conventional 10-25 mg doses. For example, each administerable dry powder dose may be on the order of less than about 60-70% of that of conventional doses. In certain particular embodiments, using the active dispersal systems provided by certain embodiments of the DPI configurations of the instant invention, the adult dose may be reduced to under about 15 mg, such as between about 10 μg-10 mg, and more typically between about 50 μg-10 mg. The active constituent(s) concentration may be between about 5-10%. In other embodiments, active constituent concentrations can be in the range of between about 10-20%, 20-25%, or even larger. In particular embodiments, such as for nasal inhalation, target dose amounts may be between about 12-100 μg.
In certain particular embodiments, during dose dispensing, the dry powder in a particular dose receptacle may be formulated in high concentrations of an active pharmaceutical constituent(s) substantially without additives (such as excipients). As used herein, “substantially without additives” means that the dry powder is in a substantially pure active formulation with only minimal amounts of other non-biopharmacological active ingredients. The term “minimal amounts” means that the non-active ingredients may be present, but are present in greatly reduced amounts, relative to the active ingredient(s), such that they comprise less than about 10%, and preferably less than about 5%, of the dispensed dry powder formulation, and, in certain embodiments, the non-active ingredients are present in only trace amounts.
In certain embodiments, certain active elements are integral to/included as part of a disposable (replaceable) blister package. In other embodiments, the inhaler with the drug blister package can itself be disposable after dispensing the doses provided by a blister package and/or may be configured with an integral active piezoelectric polymer member. In yet other embodiments, combinations of the above configurations may be used. Unlike many conventional active dispersion systems, cleansing of the active mechanism portion of the inhaler may not be required. Examples of suitable inhalers are described in co-pending U.S. patent application Ser. No. 10/434,009 and U.S. patent application Ser. No ______, filed Oct. 21, 2004, corresponding to U.S. Provisional Application No. 60/514,671, filed Oct. 27, 2003, the contents of these documents are hereby incorporated by reference as if recited in full herein.
In certain embodiments, the ceiling 16 is configured to be removed, when in position in an inhaler, to dispense the dry powder 100 held therein (
In other embodiments, such as shown for example in
Referring again to
As shown in
In the embodiment shown in
The frame member 17 can have increased rigidity with respect to that of the floor 18 and/or ceiling 16. In particular embodiments, the frame member 17 can be a substantially rigid light-weight member that provides structural integrity to the ceiling and floor 16, 18. The ceiling 16 can be attached to an upper primary surface 17u of the intermediate member 17 and the floor 18 can be attached to a lower primary surface 17b of the frame member 17. The frame member 17 may have a unitary body as shown or a laminated or stacked structure (not shown). In certain embodiments, the frame member 17 can be a molded polymer and/or fiber reinforced resin material. In particular embodiments, the frame member 17 comprises a natural homopolymer polypropylene and can typically be between about 1-3 mm thick, and is more typically about 2 mm thick. Other suitable materials or fabrication methods and thicknesses can also be used. The frame member 17 may include additional apertures, slots or depressions and the like to further decrease weight as suitable. The frame member 17 may be configured with sufficient thickness, material and/or coatings to provide a moisture barrier (inhibit moisture penetration) to the dry powder held in the blister as discussed above for the ceiling.
The ceiling and/or floor 16, 16′, 18, respectively, can comprise a generally continuous sheet(s) or layer(s) of material as shown in
It is noted for clarity that features described for one embodiment may be used in conjunction with another embodiment although not specifically discussed with respect to a different embodiment. For example, the frame structure and/or the floor and/or ceiling of the embodiments shown in
Typically, when a plurality of floor layers 18i are used, the floor layers 18i (such as, for example 181, 182) are attached to each other so that flexure (up and down) of one layer causes the other(s) to substantially concurrently flex up and down in response thereto. The floor layers 18i can be configured so that the flexing of the active layer 182 is not substantially reduced or insulated by the other contacting layer (s) to thereby provide a desired vibratory dispersion input to the dry powder 100 in a blister 15b during active inspiration. The floor layers 181, 182 can be a laminated structure or otherwise attached over a sufficient surface area to facilitate substantially concurrent flexing at a floor 18 of a respective blister 15b to thereby vibrate dry powder held therein during operation. The non-active portion or layers of the floor 18 may include material(s) similar to that described for the ceiling 16 above. The floor layers 18i, 182 may be adhesively attached, heat and/or pressure bonded, or otherwise attached.
The non-active layer 181, can include foil, typically aluminum foil, and may, in certain embodiments, include a polymer coating or layer on the top and/or bottom thereof. Typically the non-active portion of the floor 181, will be at least about 20 microns thick. Coatings and/or other materials can be used to inhibit moisture penetration (i.e., act as a moisture barrier) into the sealed blister cavity and/or to aid in sealing (i.e., adhering) the floor 18 to adjacent structures or layers. One suitable material is available from Hueck Foils, located in Blythewood, S.C.
In particular embodiments, the non-active layer 181, may be attached using a relatively thin foil-release material such as a release film. The release film can be used to transfer a pressure sensitive adhesive (PSA) to a desired layer (such as shown in
As shown in
For example,
In some embodiments, in operation, a predetermined electrical signal can be applied to the active layer 182 to flex the floor of the blister 15b and vibrate the powder 100 held therein (
The predetermined pattern 18p can comprise a conductive material such as metal. The conductive material can be a thin layer of metal or other conductive material that can be inked, stamped, printed (including screen printed), imaged (including, but not limited to, photo-resist imaging), rolled, deposited, sprayed, or otherwise applied to (one or both primary surfaces of) the active layer 182. Other methods of providing the conductive pattern 18p can also be used, including electron beam evaporation, thermal evaporation, painting, dipping, or sputtering a conductive material or metallic paint and the like or material over the selected surfaces of the piezoelectric substrate (preferably a PVDF layer as noted above). In particular embodiments, alternative metallic circuits, foils, surfaces, or techniques can also be employed, such as attaching a conductive mylar layer or flex circuit over the desired portion of the outer surface of the piezoelectric substrate layer. If flex circuits are used, they may be configured or attached to the piezoelectric substrate layer so as to be substantially transparent to the structure to reduce any potential dampening interference with the substrate layer.
Typically, upper and lower surface metal trace patterns are formed on opposing sides of a piezoelectric polymer material layer but do not connect or contact each other. For example, conductive paint or ink (such as silver or gold) can be applied onto the major surfaces of the package about the elongated channels and associated metal traces such that it does not extend over the perimeter edge portions of the piezoelectric substrate layer, thereby keeping the metal trace patterns on the top and bottom surfaces separated with the piezoelectric substrate layer therebetween. This configuration forms the electrical excitation path when connected to a control system to provide the input/excitation signal for creating the electrical field that activates the deformation of the piezoelectric substrate layer during operation. Typically, one pattern 18p is applied to one side of the active floor 182 and the other side may have a different conductive pattern and/or coverage.
In the embodiment shown in
In certain embodiments, the active layer 182 includes a piezoelectric polymer material that can be formed from a piezoelectrically active material such as PVDF (known as KYNAR piezo film or polyvinylidene fluoride) and its copolymers or polyvinylidene difluoride and its copolymers (such as PVDF with its copolymer trifluoroethylene (PVDF-TrFe)).
In particular embodiments, the piezoelectric polymer material comprises a layer of a thin PVDF film. As used herein, the term “thin film” means that the piezoelectric polymer layer is configured as a structurally flexible or pliable layer that can be sized to be about 10-200 μm thick. In certain embodiments, the piezoelectric polymer layer can be sized to be less than about 100 μm thick, typically about 20-60 μm thick, and more typically about 28 μm.
As noted above, selected regions of the piezoelectric polymer material can be coated or layered with a conductive material to form a desired conductive pattern 18p. The conductive regions (at least portions of the blister regions) of the floor 18 define the active regions and can be individually or selectively activated during operation. Although shown as forming the bottom layer of the floor 182, the PVDF may form the bottom, top, or an intermediate layer of the laminated material structure. For intermediate layer configurations, vias and/or edge connections can be used to apply the electric signal to the blister piezoelectric material.
The excitation circuit (signal generating circuitry) configuration can be such that the one surface operates with a positive polarity while the other surface has a negative polarity or ground, or vice versa (thereby providing the electric field/ voltage differential to excite the piezoelectric substrate in the region of the selected blister 15b). Of course, the polarities can also be rapidly reversed during application of the excitation signal (such as +to −, or +to −) depending on the type of excitation signal used, thereby flexing the piezoelectric material in the region of the receptacle portion. For a more complete discussion of the active excitation path or configuration, see U.S. application Ser. No. 10/204,609, incorporated by reference herein.
In particular embodiments, the mounting member 50 can be configured as a rotatable gear 50g with gear teeth 50t(
In certain embodiments, the ceiling projections 16p are configured to rise above the top surface 117t of the frame 117 a desired distance. As shown in
The ceiling 16 and floor 18 can be configured as described above.
It is noted that other and/or additional mounting structures beyond those shown in the figures may be used to configure the blister package 15 for use in an inhaler. It is also noted that the shape of the blisters 15b is not limited to that shown in the embodiments described herein. In particular embodiments, the blister package 15, 15′ may be configured to have a substantially disk-like shape. The blister package 15, 15′ can be configured to rotate in the inhaler to advance a respective blister into an indexed or registered inhalation position.
In the embodiment shown in
In certain embodiments, the blister package 15, 15′ can include visible indicia and/or can be configured to engage an inhaler to provide audible alerts to warn a user that he/she is approaching the last of the filled blister inhalant doses on the blister package 15, 15′ and/or to indicate that the dose was properly (and/or improperly) inhaled or released from the inhaler device. For example, certain dry powder dose sizes are formulated so that it can be difficult for a user to know whether they have inhaled the medicament (typically the dose is aerosolized and enters the body with little or no taste and/or tactile feel for confirmation). Thus, a sensor can be positioned in communication with a blister 15b in a dispensing position in an inhaler and configured to be in communication with a digital signal processor or microcontroller, each held in or on the inhaler and/or the blister package 15, 15′. In operation, the sensor is configured to detect a selected parameter, such as a difference in weight, a density in the exiting aerosol formulation, and the like, to confirm that the dose was released.
In certain embodiments, the blister package 15, 15′ can include color-enhanced markings for the last few (such as the last 5) doses. The color-enhanced markings may change from darker (orange to salmon or red) or to completely different colors as the last dose or last few doses approach. Alternatively (or additionally), the multi-dose disposable package 15, 15′ may be configured with audible alert features that activate a digital signal processor or micro-controller (not shown) housed in the inhaler to generate a stored audible verbal message or warning (such as “warning, refill needed, only five doses remain ”) when a desired number of doses have been administered.
In certain embodiments, in position, a forward or leading (cutting) edge portion of a blade can be configured to open (typically cut or slice) at least a portion of the projecting ceiling 16p of a blister 15b, 15b′ by traveling generally (typically substantially) parallel to a plane extending horizontally about an upper portion of an underlying blister along a length direction thereof at a position that is less than the height of the blister projection, to slice a major portion of the ceiling in the length direction, forming a gap space to allow the dry powder held in the blister 15b, 15b′to be dispensed.
The signal generator 200 may, in certain embodiments, also include a powder specific non-linear signal generator computer program module 220 that provides the electrical signal characteristics for the drug being dispensed. The module 220 may be programmed into the memory 222. The signal generator 200 may have a sleep or inactive (or off) mode that is turned to an active mode based on inhaler activation via input from a switch or a sensor 223. For example, the signal generator 200 may communicate with a power source 10 such as a battery (typically a miniaturized battery, such as a digital camera or pancake type flat battery) to power the signal generator and transmit the electrical signal to the desired blister 15b, 15b′. The activation may be carried out automatically based upon input from a sensor and/or activation from an “on” switch.
Examples of an amplitude-modified vibratory signal suitable for vibrating the blister 15b, 15b′ holding the dry powder are described in co-pending U.S. patent application Ser. No. 10/434,009, the contents of which are incorporated by reference as if recited in full herein. The vibratory signal can include a kHz carrier frequency (such as about 5 kHz-50 kHz) modified by low modulating frequency (typically about 10-200 Hz). The frequency of the vibration can be modified to match or correspond to the flow characteristics of the dry powder substance held in the package to attempt to reach a resonant frequency(s) to promote uniform drug dispersion into the body. In some embodiments, a non-linear powder-specific dry powder vibratory energy signal a different powder specific signal for each of the formulations on a blister package or the same for a particular formulation on each package) comprising a plurality of selected frequencies can be generated (corresponding to the particular dry powder being currently dispensed) to output the particular signal corresponding to the dry powder then being dispensed. As used herein, the term “non-linear” means that the vibratory action or signal applied to the package to deliver a dose of dry powder to a user has an irregular shape or cycle, typically employing multiple superimposed frequencies, and/or a vibratory frequency line shape that has varying amplitudes (peaks) and peak widths over typical standard intervals (per second, minute, etc.) over time. In contrast to conventional systems, the non-linear vibratory signal input can operate without a fixed single or steady state repeating amplitude at a fixed frequency or cycle. This non-linear vibratory input can be applied to the blister to generate a variable amplitude motion (in either a one, two and/or three-dimensional vibratory motion). The non-linear signal fluidizes the powder in such a way that a powder “flow resonance” is generated allowing active flowable dispensing.
The blister package 15, 15′ can include signal-generating circuitry and/or components held thereon or therein which, in operation, are in communication with the blisters 15b, 15b′ (via the conductive pattern 18p on the active floor 182). The signal generating circuitry may be programmed with a plurality of predetermined different input signals, or if the blister package dispenses only a single dry powder, the signal generator may be programmed with a single signal. Appropriate powder-specific signals can be determined experimentally and/or computationally at an OEM or evaluation site and input into the inhalers (via hardware and/or software components including programmable processors). For additional description of signals and operations to determine same, see co-pending and co-assigned U.S. patent application Ser. Nos. 10/434,009, 10/606,678, 10/607,389, and 10/606,676: the contents of these applications are hereby incorporated by reference in their entireties as if recited in full herein.
In some embodiments, a signal of combined frequencies can be generated to provide a non-linear signal to improve fluidic flow performance. Selected frequencies can be superimposed to generate a single superposition signal (that may also include weighted amplitudes for certain of the selected frequencies or adjustments of relative amplitudes according to the observed frequency distribution). Thus, the vibratory signal can be a derived non-linear oscillatory or vibratory energy signal used to dispense a particular dry powder. In certain embodiments, the output signal used to activate the piezoelectric blister channel may be include a plurality (typically at least three) superpositioned modulating frequencies and a selected carrier frequency. The modulating frequencies can be in the range noted herein (typically between about 10-500 Hz), and, in certain embodiments may include at least three, and typically about four, superpositioned modulating frequencies in the range of between about 10-100 Hz, and more typically, four superpositioned modulating frequencies in the range of between about 10-15 Hz.
Generally describing some embodiments, in operation, the blister packages 15, 15′ are configured to operate with dry powder inhalers. The inhalers can be used for nasal and/or oral (mouth) respiratory delivery. The inhalable dry powder doses can be packaged in multi-dose dry powder drug packages that may include a piezoelectric polymer substrate (such as PVDF) that flexes to deform rapidly and provide mechanical oscillation in an individually selectable signal path on the package. The signal path directs the signal to the region of the drug receptacle or well to cause the well to oscillate in cooperation with a user's inspiratory effort, and, thus, actively direct the dry powder out of the well and up into the exit flow path.
As shown in
While the present invention is illustrated, for example, with reference to the powder signal generator module 220 being an application program in
The I/O data port can be used to transfer information between the data processing system 405 and the inhaler dispensing system 420 or another computer system or a network (e.g., the Internet) or to other devices controlled by the processor. These components may be conventional components such as those used in many conventional data processing systems which may be configured in accordance with the present invention to operate as described herein.
While the present invention is illustrated, for example, with reference to particular divisions of programs, functions and memories, the present invention should not be construed as limited to such logical divisions. Thus, the present invention should not be construed as limited to the configuration of
The floor can be sealed to the intermediate member after the intermediate member is aligned with and/or sealed to the ceiling (block 321). Alternatively, the floor can be sealed to the intermediate member before the intermediate member is aligned with and/or sealed to the ceiling (block 322). In addition, the intermediate member can be attached to the ceiling before the dry powder is positioned therein or after the dry powder is held therein. If the latter, the intermediate member is attached to the ceiling while the projections are facing down with the wells holding the dry powder. If the former, the ceiling can be a planar sheet (not requiring projections or wells) as the intermediate member can define a well sized to hold dry powder therein. The sheet of ceiling material can be cut into a predetermined shape after the dry powder is placed in the wells (block 307). If so, a sheet of a first floor layer can be used to seal the intermediate member and the first floor layer sheet cut concurrently with the ceiling material into a desired shape. In other embodiments, the ceiling material and floor can be separately formed into desired shapes prior to attachment. As described above, mounting and/or electrical components can be assembled to the blister package.
In certain embodiments, the floor can include first and second layers, the second layer comprising the piezoelectric polymer. The first layer can be a flexible material (i.e., lid stock and/or foil release material) that can be sealed to the ceiling to seal the blisters with the dry powder held therebetween and then the second layer can be attached to the first floor layer (block 361).
As before, the sheet of ceiling material can be cut into a predetermined shape after the dry powder is placed in the wells (block 357). The first floor layer can be cut into substantially the same shape as the ceiling prior to and/or after attaching to the ceiling holding the dry powder (block 363). If the latter, a sheet of the first floor layer can be cut concurrently with the ceiling material into a desired shape. The ceiling and floor layer can have a disk-like shape with center apertures and the second floor layer can have a substantially circular body with a greater surface area than that of the ceiling and or first layer of the floor (block 362). In other embodiments, the ceiling material and floor can be separately formed into desired shapes prior to attachment. As described above, mounting and/or electrical components can be assembled to the blister package.
In certain embodiments, the PVDF sheet can be metallized (coated, formed, or otherwise deposited with a thin metal layer) that can substantially cover both primary surfaces (typically not the minor surfaces) and the conductive pattern formed by selectively removing a portion of the metal on the selected primary surface (block 383). In other embodiments, the conductive pattern can be screen printed on the PVDF sheet (block 382). However, as noted above other conductive pattern formation techniques may also be used.
The PVDF sheet can be formed into a desired shape (block 384). The shape can be formed prior to or after the formation of the conductive pattern. The shape of the PVDF floor layer can be substantially circular (and planar). The flexible floor layers can be securely attached to define a flexible substantially laminated floor (block 386). The first floor layer can be attached after the first floor layer is sealed to the ceiling and/or intermediate member (block 387). The PVDF layer may be adhesively attached, heat and/or pressure bonded or otherwise attached. The conductive pattern may be oriented to face the first floor layer (block 388).
Certain operations may be automated and/or carried out using computer programs and automated equipment.
The flowcharts and block diagrams of certain of the figures herein illustrate the architecture, functionality, and operation of possible implementations of dry powder-specific dispensing and/or vibratory energy excitation means according to the present invention. In this regard, each block in the flow charts or block diagrams represents a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that in some alternative implementations, the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks 30 shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
In certain embodiments, the powder specific vibration energy signals are non-linear and the inhaler can include computer program code that automatically selectively adjusts the output of the vibration energy signal based on the identified dry powder being dispensed. The vibration energy output signals for the dry powders being dispensed can be based on data obtained from a fractal mass flow analysis or other suitable analysis of the dry powder being administered to the user. The inhaler may be particularly suited to dispense low-density dry powder.
The foregoing is illustrative of the present invention and is not to be construed as limiting thereof. Although a few exemplary embodiments of this invention have been described, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention as defined in the claims. In the claims, means-plus-function clauses, where used, are intended to cover the structures described herein as performing the recited function and not only structural equivalents but also equivalent structures. Therefore, it is to be understood that the foregoing is illustrative of the present invention and is not to be construed as limited to the specific embodiments disclosed, and that modifications to the disclosed embodiments, as well as other embodiments, are intended to be included within the scope of the appended claims. The invention is defined by the following claims, with equivalents of the claims to be included therein.
This application claims priority to U.S. Provisional Application Ser. No. 60/514,733 filed Oct. 27, 2003 and U.S. Provisional Application Ser. No. 60/605,484 filed Aug. 30, 2004, the contents of the above applications are hereby incorporated by reference as if recited in full herein.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US04/35433 | 10/26/2004 | WO | 7/11/2007 |
Number | Date | Country | |
---|---|---|---|
60514733 | Oct 2003 | US | |
60605484 | Aug 2004 | US |