This invention relates to a block-cutting gangsaw for cutting granite or other hard materials which cuts by combining the reciprocating motion of the frame with an oscillating movement of the frame guides, so that the area of contact between the blade and the block moves along an arc with an approximately circular shape. The invention also relates to a corresponding cutting method.
Marble-cutting machines exist in which the approximately linear vertical reciprocating motion of the frame is combined with the horizontal advance movement of the block. This combination of movements between the frame and the marble block produces a fairly uniform, though rather low specific pressure, and this loading condition gives the blades a degree of convexity in relation to the block, which is partly compensated by pre-loading the blades with tie-bars fitted eccentrically to the blade.
When cutting granite, the specific contact pressure with the blade must be much higher than is sufficient for marble or other materials. The contact area between the blade and the granite must consequently be limited, but this prevents a linear movement of the blade-holding frame from being maintained.
If a linear vertical movement were to be maintained when the granite is cut, and a sufficiently high block advance speed maintained, progressive curvature of the blade would be caused, as the load would be concentrated on the upper and lower ends of the block, and this would soon lead to breakage of the blade.
EP-0334831 describes a sawing machine with a vertical saw frame, wherein the blade-holding frame performs a reciprocating movement and is articulated at the four corners to blocks engaged with corresponding slides that limit the travel of the gangsaw. The slides are mounted slidingly in relation to the frame of the gangsaw, each along corresponding pairs of cross-guides, to define a trajectory perpendicular to the guiding direction of the slides. The lower and upper slides move in opposite directions, causing the blade-holding frame to oscillate around a horizontal median axis.
The result is that the cutting blades determine an ovoidal cutting trajectory with a progressive curvature radius.
The main purpose of said patent is to cause half the blade inserts to operate during the upward movement and the other half during the downward movement, unlike earlier solutions, wherein the whole blade operated in a single direction.
WO 99/42267 describes a cutting machine with a horizontal frame and illustrates different cutting methods, with an angular contour or an arched contour. When cutting with an arched contour, the blades are lifted from the block for part of the operating cycle, about halfway through the complete cycle.
Structurally, the machine is fitted with a flywheel, with a connecting rod and crank mechanism for the reciprocating linear motion of the blade-holding frame and a cam or crank system for the oscillating movement of a guide frame supporting the blade-holding frame. The cams can be variously phased in relation to the flywheel, and their (opposite) rotation speeds can be varied in relation to that of the flywheel, depending on the desired contact trajectory with the block to be cut.
Each cam always rotates in the same direction, and transmits a longitudinal as well as an oscillating movement to the guide frame.
The purpose of the invention is to offer a new gangsaw movement system which increases the contact pressure between the blade and the granite, or the workpiece in general if the material is not granite, by limiting the length of the contact area between blade and material, while the overall strength is maintained at values that cause acceptable loads and deformations on the blade.
A further purpose of the invention is to offer a gangsaw movement system that continuously and periodically moves the contact area between the blade and the workpiece along the whole height of the block.
A further purpose of the invention is to offer a gangsaw wherein the wear on the blade is distributed along its length.
These purposes, and others which will become clear from the description that follows, are achieved by the gangsaw and cutting method according to the invention, which present the characteristics described in independent claims 1 and 12 respectively.
Advantageous embodiments of the invention are described in the dependent claims.
Substantially, the gangsaw according to the invention has the following characteristics:
The term “block-cutting gangsaw” as used herein is intended to concisely describe a block-cutting machine using a blade-holding frame with reciprocating movement.
The term “gangsaw” or “blade-holding frame” defines the assembly constituted by the blades and the structure which supports and pre-loads them.
The term “reciprocating motion of the frame” means the motion imparted to the frame, causing it to travel along its guides.
The term “oscillating motion of the frame” means a combined traverse and rotation motion which modifies the position and orientation of the frame in relation to the workpiece so that the contact area moves along an arc with an approximately circular, convex shape.
The term “block” is used to mean the workpiece, which generally has a parallelepiped shape and is made of granite or other material.
This invention is further described below in a preferred form of practical embodiment, by way of example but not of limitation, with reference to the annexed drawings, wherein:
Frame 19 and the blades integral with it, to which diamond segments 16 are attached, moves with a practically linear motion as the four guides are vertical and fixed to the structure.
The oscillating frame is therefore driven in the longitudinal direction by the two connecting rods 25 at the top, via pins 27, and the two connecting rods 26 at the bottom, via the other two pins 28, which perform the same movement in pairs. The two upper connecting rods engage with pins 41, while the two lower connecting rods engage with integral pins 42, and rotate with the two upper discs 43 and two lower discs 44 respectively, which are free to rotate around coinciding upper axes 55 and lower axes 56 respectively. It should be noted that upper pins 41 move in a different quadrant from lower pins 42, and that their rotations are constrained by the presence of the two synchronous rods 39 which are connected to discs 43 and 44 via the two upper pins 46 and two lower pins 47. Upper discs 43, which are free to rotate around axis 45, are coaxial with two driven gears 29 that engage with drive gears 30 (
As the eccentricity of pins 34 on discs 35 is much less than the eccentricity of pins 37 on discs 36, pins 34 perform a complete, continuous rotation, whereas pins 37 perform an angular oscillation which in any event is of a smaller amplitude than 180 degrees. The amplitude of said angular oscillation of the two right and left discs 36 is reduced by the reduction ratio given by the ratio between the numbers of teeth of wheels 29 in relation to wheels 30, obtaining an angular oscillation of pins 41, integral with discs 43, which have the desired amplitude. Pins 42 in the lower part which are integral with discs 44 obviously perform the same angular oscillation, in the opposite direction, due to the effect of synchronous rods 39.
Said oscillating motion of the frame is produced by the angular oscillation of the two pins of connecting rods 25 and 26, which cause the oscillating frame to oscillate. The mean position b′ assumed by the two upper pins 41 in relation to upper disc 43 is opposite to mean position b″ assumed by the two lower pins 42 in relation to the corresponding disc 44. Consequently, when the discs rotate in one direction, e.g. clockwise, upper pins 41 move to position a′, which causes the frame to advance towards the block, while lower pins 42 move to position a″, causing it to retract. However, the amplitudes are different, as they are on the circumference, and the horizontal movement imparted to the frame is proportional to the cosine of the angle:
Xi=R cos(αo+αd)
Xs=R cos(αo−αd)
where αo is the mean angle and αd is the rotational traverse, R is the eccentricity of the pin, and Xi and Xs are the lower and upper movements respectively.
Similarly, when the two discs rotate anticlockwise, the upper pin moves to position c′ and causes the frame to retract, whereas the lower pin moves to position c″ which causes it to advance.
The result of these movements is that the angular oscillation imparted to the frame moves the action line of the blades so that said line is tangent to a curve whose shape is almost an arc.
The radius of curvature is a function of the geometrical factors present, such as the mean angle αo of the disc pins, the amplitude of the angular oscillation around said mean value, and the length of the connecting rods, but can easily be predefined, and possibly modified, by simulating the movement with CAD.
The aim of providing a gangsaw for cutting granite and marble which allows the pressure of the blade in contact with the material to be increased is achieved by the innovation forming the subject of the invention, which reduces the length of the contact area between the blade and the block.
The aim of providing a frame movement system which causes the contact area to describe a curved trajectory in which the blade moves in a way not synchronous with the reciprocal motion of the frame is also achieved.
A preferred embodiment of this invention has been illustrated and described, but working variations could be made in practice, while still remaining within the ambit of protection provided by this industrial invention patent.
Number | Date | Country | Kind |
---|---|---|---|
MI2006A001618 | Aug 2006 | IT | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2007/002251 | 8/6/2007 | WO | 00 | 2/5/2009 |