Information
-
Patent Grant
-
6275206
-
Patent Number
6,275,206
-
Date Filed
Wednesday, March 17, 199925 years ago
-
Date Issued
Tuesday, August 14, 200123 years ago
-
Inventors
-
Original Assignees
-
Examiners
- Hjerpe; Richard
- Zamani; Ali
Agents
- Blakely, Sokoloff, Taylor & Zafman LLP
-
CPC
-
US Classifications
Field of Search
US
- 345 88
- 345 150
- 345 152
- 345 153
- 345 154
- 345 155
- 345 132
- 345 100
-
International Classifications
-
Abstract
A method is disclosed having the step of loading a register with a set of color pixel component values. The method also includes circularly shifting the register a predetermined number of times before outputting each value in the register to create a cell of color pixel component values suitable for display in a liquid crystal display. An apparatus for performing the method is also disclosed.
Description
FIELD OF THE INVENTION
This invention is related to the field of use of image processing. More particularly, this invention is directed to a method and apparatus for converting color images for liquid crystal display (LCD).
BACKGROUND
Video and still image capture using a digital camera has become very prevalent. Video capture may be used for such applications as video conferencing, video editing, and distributed video training. Still image capture with a digital camera may be used for such applications as photo albums, photo editing, and compositing. Many components of hardware and software need to work seamlessly to both get the video data (also referred to as a video “stream”) or the still image data from the hardware through the various layers of software on the personal computer (PC) and made visible on a display medium such as a monitor.
In many digital cameras, video or still image data is first stored on a local storage device in the image capture system as the digital camera is not tethered to the PC at all times (e.g., the user goes to a park to take pictures). Then, when the user returns to the location of the user's PC, the data is then transferred to the PC when the user connects the digital camera to the PC. It is often useful to provide a way to preview captured video or still images before the data is transferred to the PC, as the process of image transfer can be time consuming. This allows the user to be selective in what data the user transfers to the PC or leaves on the digital camera.
To provide a preview mechanism, the digital camera may either provide a viewfinder or a liquid crystal display (LCD). Many digital cameras include both, as the viewfinder offers more privacy of what is being filmed (e.g., only the user can see what is being filmed or being played back) and does not consume as much power as a LCD display while a LCD allows the user to operate the digital camera more easily when viewing playback (e.g., the user can control the fast forwarding, reverse, and pausing of the video without trying to look into the viewfinder at the same time) or allows more flexibility in the positioning of the camera for the capturing of a scene (e.g., the user can hold the camera above the user when the user is behind a crowd, and use the LCD to see what is being captured).
Typically, digital cameras capture each frame of a video or each still image in an 8-bit RGGB (red, green, green, and blue) format (also known as a Bayer pattern) and this converts it into a 24-bit RGB (red, green, and blue) format. In the 24-bit RGB image format, each pixel in the image is represented by the combination of an 8-bit value of red, an 8-bit value of green, and an 8-bit value of blue. Neither format is not suitable for display on an LCD, which uses a pattern of individual color components to form each pixel, so the images must be converted to a suitable LCD format. An exemplary format for use in LCD's is an 8-bit RGB diagonal mosaic, where each pixel is composed from a square of 4 individual component values that is viewed by the human eye as one single pixel.
One method used to perform the necessary image conversion first up-samples the 24-bit RGB format captured image to the same size as required by the display, and then maps the data to a particular pattern, such as the 8-bit RGB diagonal mosaic. During the mapping process, the up-sampled image is decimated (that is, values in the up-sampled image are thrown out).
FIG. 1
illustrates the current two-step process for converting a 24-bit RGB format image to a 8-bit RGB diagonal mosaic. Where the image data for a 24-bit image data
50
is composed of three separate matrices of 8-bit color data, one for each of the red
52
, green
54
, and blue
56
components. In
FIG. 1
, the 24-bit RGB image is an image that is 3 pixels wide by 3 pixels tall. Red pixel matrix
52
thus contains 9 red component values (at a size of 8-bits for each value), one for each of the 9 pixels in the image. Similarly, green and blue pixel matrices
54
and
56
also contain the green and blue component values, respectively, for the 9 pixels in the image.
The first step in the prior art method for converting a 24-bit RGB image to a format suitable for LCD display is to up-sample the 24-bit RGB image to an image size that is twice as large as the original image size. Thus, the 3×3 matrices are up-sampled to 6×6 matrices. Up-sampling may be performed in several ways. For example, red component values R(
0
,
0
) [where, the (i, j) coordinates are the (row, column) coordinates], R(
0
,
1
), R(
1
,
0
), and R(
1
,
1
) in red pixel matrix
62
may all be the same value as the red component value R(
0
,
0
) in red pixel matrix
52
. Alternatively, red component values in the up-sampled matrix may be interpolated, where red component value R(
0
,
1
) in red pixel matrix
62
may be an average of the red component values R(
0
,
0
) and R(
0
,
1
) in red pixel matrix
52
. Similarly, green component value G(
0
,
1
) in green pixel matrix
64
may be an average of the green component values G(
0
,
0
) and G(
0
,
1
) in green pixel matrix
54
.
The second step in the conversion process is to perform a decimate mapping of the up-sampled matrices to form the 8-bit RGB diagonal mosaic patterned image suitable for display by the LCD. For example, in LCD matrix
70
, pixel (
0
,
0
) is composed of four 8-bit values (R, B, B, and G). Similarly, for pixel (
0
,
1
), a different pattern of four 8-bit values (G, R, R, and B) make up the pixel. For pixel (
0
,
0
), the red component comes from red component value R(
0
,
0
) in red pixel matrix
62
, the green component comes from green component value G(
1
,
1
) in green pixel matrix
64
, and the blue components comes from blue component values B(
1
,
0
) and B(
0
,
1
) in blue pixel matrix
66
. The component values that are not used are ignored.
The process as illustrated in
FIG. 1
is wasteful as interpolation error is introduced during the up-sampling step. In addition, during the decimating step, two-thirds of the up-sampled image data is thrown-away. Computational resources are consumed by performing the up-sampling and decimation steps, and storage resources are also consumed for the up-sampled data.
SUMMARY
A method is disclosed having the step of loading a register with a set of color pixel component values. The method also circularly shifting the register a predetermined number of times before outputting each value in the register to create a cell of color pixel component values suitable for display in a liquid crystal display. An apparatus for performing the method is also disclosed.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
FIG. 1
is a diagram that illustrates a prior-art conversion of a 24-bit RGB image to an image format suitable for display on a LCD.
FIG. 2
is a diagram that illustrates a direct block mapping conversion of a 24-bit RGB image to an image format suitable for display on a LCD in accordance with one embodiment of the present invention.
FIG. 3
is a flow diagram of a direct block mapping conversion process performed in accordance with one embodiment of the present invention.
FIG. 4
is a block diagram of an imaging system configured in accordance with one embodiment of the present invention.
DETAILED DESCRIPTION
The present invention provides a system for a block mapping based up-sampling process to up-sample a 24-bit RGB image to a higher resolution 8-bit RGB diagonal mosaic type image in one conversion. By using one step to perform the conversion process, computational and storage resources are saved by not having to perform additional steps or store intermediary data.
In one embodiment, the block mapping up-sampling system is based on a lay-out of a specific diagonal mosaic-type pattern. In other embodiments, other lay-outs of patterns may be used and adapted to.
FIG. 2
is a block diagram illustrating the process for converting a 24-bit RGB image to a higher resolution 8-bit RGB diagonal mosaic type image in one conversion. In
FIG. 2
, the original 24-bit RGB image is made up of three matrices-one red pixel matrix
52
, one green pixel matrix
54
, and one blue pixel matrix
56
. The direct block mapping process re-maps the component values in these matrices into a specific diagonal mosaic-type pattern as in LCD matrix
70
. This process avoids the two-step process of first up-sampling the three matrices into three larger matrices, and then having to perform decimate mapping to throw away unused information to form the final matrix used to display in the LCD.
FIG. 3
is a flow diagram illustrating a process for image conversion in accordance with one embodiment of the present invention. The process begins with block
300
, where an M×N raw 24-bit RGB image is input to the image conversion system. Then, in block
302
, the system is reset by resetting two counters, i and j, to zero. In one embodiment, the value in counter i represents the row being addressed, while the value in counter j represents the column being addressed.
In block
304
, the value in counter i is compared to M, and if M is less than or equal to the value in counter i, then the process continues with block
306
, where the value in counter j is compared to N. If the value in counter j is less than or equal to N, then the process continues with block
308
. Otherwise, the process continues with block
322
. Blocks
304
and
306
are to check for out-of-bounds cases where the values of counters i and j are larger than M and N, respectively. This is to prevent the operations in blocks
308
-
320
from being executed in out-of-bounds cases as it would not make sense to try and access/process a pixel with a location outside of M or N.
In block
308
, the values of the individual color components for each of the color components at position (i,j) are retrieved from the 24-bit RGB image. For example, where the values in counters i and j are 0 and 1, respectively, the red pixel value at position R(
0
,
1
) of red pixel matrix
52
; the green pixel value at position G(
0
,
1
) of green pixel matrix
54
; and the blue pixel value at position B(
0
,
1
) of blue pixel matrix
56
are retrieved. Operation the continues with block
310
.
In block
310
, a register X having three locations for storing three pixel values is loaded with the values that were retrieved in block
308
. In one embodiment, each location has a size of 8 bits, which is the size of the pixel retrieved from the raw image. X[
0
] (position
0
in register X) is loaded with the red pixel value, X[
1
] (position
1
in register X) is loaded with the green pixel value, and X[
2
] (position
2
in register X) is loaded with the blue pixel value. In the example discussed above, X[
0
] would be loaded with the red pixel value at position R(
0
,
1
) of red pixel matrix
52
; X[
1
] would be loaded with the green pixel value at position G(
0
,
1
) of green pixel matrix
54
; and X[
2
] would be loaded with the blue pixel value at position B(
0
,
1
) of blue pixel matrix
56
. After register X is loaded, operation continues with block
312
.
In block
312
, a variable n is set to be addition of the values contained in counters i and j, and then run through a modulus of 3. For example, if the value in counter i is 0, and the value in counter j is 1, then the sum of i and j will be 1, and modulus 3 of one is one. Thus, n is set to 1.
In block
314
, register X is left shifted circularly by n times. For example, if n is equal to one, the pixel value in X[
0
] is circularly moved to the left by one position (specifically, the value in X[
0
] becomes the value in X[
2
], the value in X[
1
] becomes the value in X[
0
], and the value in X[
2
] becomes the value in X[
1
]). Thus, after shifting, X[
0
] contains the green pixel value at position G(
0
,
1
) of green pixel matrix
54
; X[
1
] contains the blue pixel value at position B(
0
,
1
) of blue pixel matrix
56
; and, X[
2
] contains the red pixel value at position R(
0
,
1
) of red pixel matrix
52
. Operation then continues with block
316
.
In block
316
, variable A is set to the value contained in X[
0
], variable B is set to the value contained in X[
1
], and variable C is set to the value contained in X[
2
]. Continuing with the example above, where i and j are 0 and 1, respectively, variable A is set to contain the green pixel value at position G(
0
,
1
) of green pixel matrix
54
, variable B is set to contain the blue pixel value at position B(
0
,
1
) of blue pixel matrix
56
, and variable C is set to contain the red pixel value at position R(
0
,
1
) of red pixel matrix
52
. Operation then continues with block
318
.
In block
318
, a new cell for the image to be displayed on the LCD display is output with the appropriate pixel values in the corresponding blocks. Thus, for example, the output block for i and j equal to 0 and 1, respectively would be:
In block
320
, the value of counter j would be incremented by 1, and operation would return to block
306
.
Returning to the discussion of block
306
, if the value in counter j is greater than N, then operation would continue with block
322
, where the value in counter j is reset to 0, and the value in counter i is incremented by 1.
An embodiment of the invention included in an imaging system
100
is shown as a logical block diagram in FIG.
4
. Imaging system
100
includes a number of conventional elements, such as an optical system having a lens
104
and aperture
108
that is exposed to the incident light reflected from a scene or object
102
. The optical system properly channels the incident light towards a sensor array
114
that generates sensor signals in response to an image of object
102
being formed on sensor array
114
. The various control signals used in the operation of sensor array
114
, such as a RESET signal, a SAMPLE signal and an ADDRESS signal is generated by a system controller
160
. System controller
160
may include a microcontroller or a processor with input/output (I/O) interfaces that generates the control signals in response to instructions stored in a memory such as a memory
162
. In one embodiment, memory
162
which stores code/program instructions and data includes both a non-volatile programmable memory component and a volatile memory component. System controller
160
also acts in response to user input via a local user interface
158
(as when a user pushes a button or turns a knob of system
100
) or a host/PC interface
154
to manage the operation of imaging system
100
. The functions of controller
160
may also be implemented as a logic circuit that is tailored to generate the control signals with proper timing. Host/PC interface
154
may also transfer the captured image data to an image processing and/or viewing system such as a computer separate from imaging system
100
.
Imaging system
100
contains a display
130
for displaying the captured image data. In one embodiment, imaging system
100
is a portable digital camera with display
130
as a LCD for showing the image data captured. As discussed above, the LCD requires that the image data sent to it to be displayed is in a format such as the 8-bit RGB diagonal mosaic.
To obtain images, a signal and image processing block
110
is provided in which hardware and software operates according to image processing methodologies to generate captured image data in response to receiving the sensor signals. The captured image data is then stored in memory
162
as in the raw 24-bit RGB image format. In addition to storing this image data in memory
162
, optional storage devices (not shown) can be used aboard system
100
for storing the captured image data. Such local storage devices may include a removable memory card.
To display images on display
130
, system controller
160
processes the raw 24-bit RGB image as discussed above to arrive at the 8-bit RGB diagonal mosaic format. The processed image data is stored in memory
162
for access by display
130
or may be sent to display
130
directly after processing for display.
In the foregoing specification, the invention has been described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.
Claims
- 1. A method comprising:loading a register with a set of color pixel component values wherein loading the register with the set of color pixel component values includes retrieving the set of color pixel component values using a set of coordinates; circularly shifting the register a predetermined number of times by a modulus of a sum of the set of coordinates by a modulus number; and, outputting each value in the register to create a cell of color pixel component values suitable for display in a liquid crystal display.
- 2. The method of claim 1, wherein loading the register with the set of color pixel component values includes loading a red pixel component value, a green pixel component value, and a blue pixel component value in the register.
- 3. The method of claim 1, wherein loading the register with the set of color pixel component values includes loading each color pixel component value in the set of color pixel component values from a corresponding color matrix into the register.
- 4. The method of claim 1, wherein circularly shifting the register by the modulus of the sum of the set of coordinate by the modulus number includes circularly shifting the register by the modulus of the sum of the set of coordinates by 3.
- 5. The method of claim 1, wherein outputting each value in said register to create the cell of color pixel component values includes outputting a two pixel value high by two pixel value wide matrix.
- 6. An article comprising a computer readable medium having instructions stored thereon, which when executed, causes:retrieval of a set of color pixel component values using a set of coordinates; loading of a register with the set of color pixel component values; circularly shifting of the register a predetermined number of times by a modulus of a sum of the set of coordinates by a modulus number; and, outputting of each value in said register to create a cell of color pixel component values suitable for display in a liquid crystal display.
- 7. The article of claim 6, wherein the computer readable medium further having instructions stored thereon, which when executed, causes:loading of a red pixel component value, a green pixel component value, and a blue pixel component value in the register.
- 8. The article of claim 6, wherein the computer readable medium further having instructions stored thereon, which when executed, causes:loading of each color pixel component value in the first set of color pixel component values from a corresponding color matrix in the register.
- 9. The article of claim 6, wherein the computer readable medium further having instructions stored thereon, which when executed, causes:circularly shifting of the register by the modulus of the sum of the set of coordinates by 3.
- 10. The article of claim 6, wherein the computer readable medium further having instructions stored thereon, which when executed, causes:output of a two pixel value high by two pixel value wide matrix.
- 11. An apparatus comprising:a register having a set of color pixel component values stored therein wherein the set of color pixel component values have an associated set of coordinates; a controller coupled to the register configured to circularly shift the register a predetermined number of times by a modulus of a sum of the set of coordinates by a modulus number; and, an output circuit coupled to the register to output each value in the register to create a cell of color pixel component values suitable for display in a liquid crystal display.
- 12. The apparatus of claim 11, wherein the first set of color pixel components include a red pixel component value, a green pixel component value, and a blue pixel component value.
- 13. The apparatus of claim 11, wherein each color pixel component value in the set of color pixel component values is from a corresponding color matrix into the register.
- 14. The apparatus of claim 11, wherein the controller is configured to circularly shift the register by the modulus of the sum of the set of coordinates by 3.
- 15. The apparatus of claim 11, the output circuit is configured to output a two pixel value high by two pixel value wide matrix.
- 16. An apparatus comprising:means for storing a set of color pixel component values wherein the set of color pixel component values have an associated set of coordinates; means for circularly shifting the storing means a predetermined number of times by a modulus of a sum of the set of coordinates by a modulus number; means for outputting each value in the storing means to create a cell of color pixel component values suitable for display in a liquid crystal display.
- 17. The apparatus of claim 16, wherein the first set of color pixel components include a red pixel component value, a green pixel component value, and a blue pixel component value.
- 18. The apparatus of claim 16, wherein each color pixel component value in the set of color pixel component values is from a corresponding color matrix into the storing means.
- 19. The apparatus of claim 16, wherein the circularly shifting means is configured to circularly shift the storing means by the modulus of the sum of the set of coordinates by 3.
- 20. The apparatus of claim 16, the outputting means is configured to output a two pixel value high by two pixel value wide matrix.
US Referenced Citations (4)