The present invention relates to the field of networking and particularly to the filed of blocking spam messages from being further transmitted over a network.
Internet-based communication is now frequently subject to electronic vandalism. As the sophistication of measures intended to combat such vandalism grows, new forms of vandalism appear. For example, a worm known as W32.SQLExp.Worm, or more simply as the Slammer Worm, appeared in late January, 2003. The Slammer Worm inflicted damage upon its victims by sending 376-byte packets to UDP port 1434, which is the SQL Server Resolution Server Port, and in effect provided a Denial of Service attack. One highly damaging attribute of the Slammer Worm was its unprecedented rate of growth and propagation, reportedly doubling itself every 8.5 seconds.
Spam (unsolicited and unwanted e-mail) can pose serious Denial of Services (DOS) problems by consuming resources. Spam can also carry payloads such as Trojans (code that may attempt to acquire unauthorized access to files or engage in other malicious activity). The problem of automatically discarding spam traffic is difficult to solve satisfactorily because the traffic can be at a high rate and can be difficult to distinguish from legitimate-traffic.
Such extreme forms of vandalism exceed the capabilities of known defensive mechanisms, sometimes even turning the defensive mechanisms themselves into Pyrrhic exercises that are accompanied by so many unintended consequences as to make their benefits questionable. For example, to combat the Slammer Worm, all traffic that includes UDP port 1434 in a source or destination address may simply be blocked. Unfortunately, this disrupts any flow of legitimate traffic that happens to include the same identification. Perhaps more troublesome, any appearance of legitimate traffic for UDP 1434 may trigger defensive measures even in the absence of the Slammer Worm.
Instances of invoking defensive measures in the absence of an intended trigger may generally be called false positives. Conversely, failing to recognize an intended trigger, or allowing any substantial delay once a trigger is detected, may permit fact-acting agents of vandalism such as the Slammer Worm to inflict severe damage before being brought under control. Such instances of failing to invoke defensive measures in the presence of an intended trigger may generally be called false negatives.
To combat rapidly propagating agents of vandalism such as the Slammer Worm, or of distributing spam e-mail, there is a need for an improved method of applying measures that defend against malicious traffic, where the improved method has a low rate of false positives, so that legitimate traffic unrelated to vandalism is not blocked, and also has a low rate of false negatives, so that fast-acting agents of vandalism are not allowed to inflict significant damage before they are blocked.
The present invention includes a method of progressive response that applies and suspends blocking measures for an adaptive duration to prevent the transmission of spam e-mail in a way that minimizes the adverse consequences of false positives and false negatives.
The method starts in a state of readiness to act, wherein a detector monitors for spam traffic. When spam is detected, the detector notifies protective equipment such as a firewall or a router to apply a blocking measure against traffic that bears the distinguishing marks of spam traffic. The blocking measure is maintained for an initial duration, after which it is suspended while another test is made to determine whether the spam is still evident. If the spam is no longer evident, the method returns to the state of readiness.
Otherwise, (i.e., spam is still evident) the duration is adapted and the method begins to execute a loop. The loop includes the steps of re-applying the blocking measure for the duration, suspending the blocking measure at the end of the duration, and testing again for spam while the blocking measure is suspended. Each time that spam is detected during execution of the loop, the duration is again adapted, for example increased in accordance with a monotone non-decreasing function that may be subject to an upper bound which prevents the occurrence of extreme durations. The blocking measure is then re-applied for the newly specified duration. When a test indicates that spam is no longer evident, the duration is again adapted by re-setting it to its initial value, and the method returns to the state of readiness where the blocking measure is not applied.
Thus, with the present invention, the blocking measure is applied quickly once malicious traffic is detected and maintained as long as a threat of malicious traffic is evident, thereby minimizing the adverse consequences of false negatives, and yet also suspended as quickly as possible, once the threat of malicious traffic has passed, thereby minimizing the adverse consequences of false positives, consistent with minimizing unproductive churning and response to mid-attack false negatives. These and other aspects of the present invention will be more fully appreciated when considered in light of the following detailed description and drawings.
The present invention provides a progressive response that applies and suspends blocking measures to defend against network anomalies such as malicious network traffic, in a way that minimizes the adverse consequences of false positives and false negatives.
As shown in
Using methods known to those skilled in the art, a detector 131 detects the presence of network anomalies by observing malicious traffic incoming to, or originating from, the protected equipment 110. Responsive to the output of the detector 131, which output at time t is denoted here as D(t), logic 132 oversees steps of the inventive method for instructing protective equipment 120 to apply, for an adaptively determined duration and then to suspend, blocking measures that guard the protected equipment 110 against network anomalies. These steps are explained in more detail below.
Here, the term “blocking measure” is to be interpreted widely as the enforcement of a defensive rule, and includes, for example, discarding, logging, or rate limiting traffic from a particular source address or set of source addresses; discarding, logging, or rate limiting traffic to a particular destination address or set of destination addresses; discarding, logging, or rate limiting UDP traffic from the Internet 115 to a particular subnet or set of subnets; discarding, logging, or rate limiting UDP traffic from the Internet 115 to a subnet with a particular UDP destination port or set of UDP destination ports; and so forth, including various combinations of the foregoing.
More generally, it is important to note that the structural details shown in
As already mentioned, the invention includes methods for responding progressively to the detection of network anomalies by adapting the duration of blocking measures, exemplary aspects of which methods are shown in the flowchart of
In a preferred embodiment of the inventive method, time is partitioned into intervals of constant length, which is denoted here as Dt. The system is updated at integer multiples of the interval Dt, that is, at the times Dt, 2Dt, 3Dt, and so forth. Let S(t) be a time stamp that indicates the absolute start time of the most recent sequence of time values with consecutive application of a blocking measure. This is an internal variable that is periodically stored, refreshed, and restored with period Dt. Let K(t) be the count of the number of times, within the present epoch of consecutive detections of network anomaly, that the blocking measure has been suspended and then re-applied in response to the detection of a persistent network anomaly. K(t) is re-set to zero when the blocking measure is suspended and the network anomaly is no longer detected. Further, Let P(t) be the duration of the blocking measure, which has an initial value P0, and which is adapted to provide a progressive response, for example adapted according to a function of K(t) as explained below.
As shown in
Otherwise (i.e., the blocking measure has been applied for the full duration P(t)), the blocking measure is suspended (step 230). In a preferred embodiment, the blocking measure is suspended for one time interval Dt, although this is not a necessary condition of the invention. The detector 131 tests again to determine whether the network anomaly is still evident (step 235). If the network anomaly is no longer evident, P(t) is reset to its initial value P0 (step 240), and the method returns to the state wherein the detector 131 monitors for network anomalies (step 205).
Otherwise (i.e., an anomaly has been detected at step 235), the value of P(t) is adapted (step 245), the blocking measure is re-applied (step 250), and the method returns to the state wherein the adapted value of P(t) is compared (step 220) with the time lapsed since the last test for network anomalies.
The value of the variable P(t), which represents the duration of the blocking measure, may be adapted, for example by increasing the value according to a monotone non-decreasing function of, for example, K(t), optionally subject to a cap or maximum value or upper bound, which upper bound may be expressed as a function of K(t). In a preferred embodiment, P(t) may be increased according to P(t)=(M^(K(t)−1)*P0, where M is a positive real number, and a maximum value of L is imposed on K(t). Preferred embodiments have used the integer values M=2 and M=8, the first of which causes the value of P(t) to double each time it increases. In other embodiments, the value of P(t) may increase in other ways, for example linearly, exponentially as a function of the value of P(t), logarithmically, randomly, asymptotically to a prescribed maximum, according to a table of pre-computed values, and so forth.
The following set of difference equations provides another way of describing aspects of the embodiment of the invention wherein the blocking measure is suspended in step 230 for a length of time Dt while the test for the anomaly is made in step 235. In these equations, let B(t) characterize the state of the blocking measure (a value of one means that the blocking measure is applied, a value of zero means that the measure is suspended). As mentioned above, let D(t) characterize the output of the detector 131 as of its last measurement (a value of one means that an anomaly is evident, a value of zero means that no anomaly is evident). Then:
B(t+Dt)=D(t)*(1−B(t))+(1−D(t)*(1−B(t))) *if (t+Dt−S(t)<P(t), then 1, else 0),
S(t+Dt)=B(t+Dt)*(1−B(t))*(t+Dt−S(t))+S(t), and
K(t+Dt)=min{L, D(t)*(K(t)+B(t+Dt)*(1−B(t))+(1−D(t))*B(t+Dt)*(K(t)+1−B(t))}.
Also note that B(t+Dt) characterizes the decision to apply the blocking measure during the time interval t,t+Dt, whereas D(t) characterizes the output of the detector 131 during the interval of time t−Dt,t.
A preferred embodiment of the invention, described above, uses time to characterize and adapt the duration of the blocking measure. Another embodiment of the invention uses a count of traffic, such as a count of packets, bits, or frames, rather than time, to characterize and adapt the duration. In such embodiments, the blocking measure is applied until, for example, the requisite number X of packets is seen by the detector 131 or otherwise sensed. In a preferred embodiment, X has the value X=1000. These kinds of embodiments may be preferred to the aforementioned time-characterized embodiments when the bandwidth of the data stream incoming to the protected equipment 110 is highly variable.
In the embodiments of the invention described so far, the inventive method is responsive to the detection of anomalies. The invention also encompasses other embodiments wherein the method responds to penetrations rather than to detections. Here, a penetration is a time step in which malicious traffic arrives when no appropriate blocking measure is active. Such embodiments may be described by a similar set of difference equations as follows.
Over the time interval t−Dt,t, an attack might or might not occur. If an attack occurs, then denote its presence at time t by A(t)=1 and hold that value for the interval t,t+Dt. If an attack does not occur, the value of A(t) is A(t)=0 over the same interval. If a blocking measure is applied over the interval t,t+Dt, then B(t)=1; otherwise B(t)=0. Define penetration N(t)=A(t)*(1−B(t)). A timestamp S(t) and the count K(t) are updated. The blocking measure is applied (held on) for the duration P(t). Then:
B(t+Dt)=N(t)*(1−B(t))+(1−N(t))*(1−B(t))) *if (t+Dt−S(t)<(M^(K(t)−1))*P0 then 1, else 0),
S(t+Dt)=B(t+Dt)*(1−B(t))*(t+Dt−S(t))+S(t), and
K(t)=min{L, N(t)*(K(t)+1)+(1−N(t))*B(t)*K(t)}.
In
Alternatively, during e-mail post processing, the mail may be checked for keywords in the text, such as “Make Money Fast”, or for use of a large number of Hypertext Mark-up Language (HTML) tags, or for use of a numeric from field, or false statements such as the mailer indicating a specific format but the fields are not in that format, or for an e-mail that is binary, HTML only or attachment only.
Also, in the prior art methods of
Caught spam e-mail messages 303 are blocked or diverted while normal good e-mail 304 is forwarded to the e-mail client 305.
In
In
In
The present invention includes application of progressive responses to spam traffic stimulus. Such responses are shown, for example, in the flowchart of
In a rule, the range of header values in any header may be precisely one source address or ranges of header values within intervals, each interval having upper and lower limits. A rule may indicate blocking of a range of source address values, such as those covered by the prefix 1.2.3.0/24 (also expressed as 1.2.3.*).
The present invention, as described in
In
From the foregoing description, those skilled in the art will appreciate that the present invention provides a progressive response that applies and suspends blocking measures to defend against network spam traffic, in a way that minimizes the adverse consequences of false positives and false negatives. The foregoing description is illustrative rather than limiting, however, and the scope of the present invention is limited only by the following claims.
This application is a continuation-in-part of prior application Ser. No. 10/442,008, filed May 20, 2003 now U.S. Pat. No. 7,308,716.
Number | Name | Date | Kind |
---|---|---|---|
5557742 | Smaha et al. | Sep 1996 | A |
5621889 | Lermuzeaux et al. | Apr 1997 | A |
5991881 | Conklin et al. | Nov 1999 | A |
6189035 | Lockhart et al. | Feb 2001 | B1 |
6249805 | Fleming | Jun 2001 | B1 |
6282546 | Gleichauf et al. | Aug 2001 | B1 |
6298340 | Calvignac et al. | Oct 2001 | B1 |
6405318 | Rowland | Jun 2002 | B1 |
6421709 | McCormick et al. | Jul 2002 | B1 |
6460050 | Pace et al. | Oct 2002 | B1 |
6477651 | Teal | Nov 2002 | B1 |
6484197 | Donohue | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6530024 | Proctor | Mar 2003 | B1 |
6691156 | Drummond et al. | Feb 2004 | B1 |
7308716 | Danford et al. | Dec 2007 | B2 |
20020087882 | Schneier et al. | Jul 2002 | A1 |
20020101819 | Goldstone | Aug 2002 | A1 |
20030043853 | Doyle et al. | Mar 2003 | A1 |
20030074397 | Morin et al. | Apr 2003 | A1 |
20040215977 | Goodman et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
2001057554 | Feb 2001 | JP |
2002252654 | Sep 2002 | JP |
2003143182 | Apr 2003 | JP |
92003125005 | Apr 2003 | JP |
200329910 | Aug 2003 | JP |
WO0225402 | Mar 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20060037070 A1 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10442008 | May 2003 | US |
Child | 11244993 | US |