Blocking plate structure for improved acoustic transmission efficiency

Information

  • Patent Grant
  • 11529650
  • Patent Number
    11,529,650
  • Date Filed
    Monday, February 1, 2021
    3 years ago
  • Date Issued
    Tuesday, December 20, 2022
    a year ago
Abstract
An acoustic matching structure is used to increase the power radiated from a transducing element with a higher impedance into a surrounding acoustic medium with a lower acoustic impedance. The acoustic matching structure consists of a thin, substantially planar cavity bounded by a two end walls and a side wall. The end walls of the cavity are formed by a blocking plate wall and a transducing element wall separated by a short distance (less than one quarter of the wavelength of acoustic waves in the surrounding medium at the operating frequency). The end walls and side wall bound a cavity with diameter approximately equal to half of the wavelength of acoustic waves in the surrounding medium. In operation, a transducing element generates acoustic oscillations in the fluid in the cavity. The transducing element may be an actuator which generates motion of an end wall in a direction perpendicular to the plane of the cavity to excite acoustic oscillations in the fluid in the cavity, and the cavity geometry and resonant amplification increase the amplitude of the resulting pressure oscillation. The cavity side wall or end walls contain at least one aperture positioned away from the center of the cavity to allow pressure waves to propagate into the surrounding acoustic medium.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to improving acoustic transmission efficiency by incorporating acoustic matching structures into acoustic transducers.


BACKGROUND

Acoustic transducers convert one form of energy, typically electrical, into acoustic (pressure) waves. The proportion of energy that is emitted from the transducer into the surrounding acoustic medium depends on the acoustic impedance of the medium relative to the transducer. For effective transmission, the impedances should be close to equal. In many applications the acoustic medium will be air or another gaseous medium, which, typically, has an acoustic impedance several orders of magnitude lower than that of the transducing element. This large impedance mismatch leads to poor transmission of energy into the acoustic medium, limiting the amount of acoustic energy emitted by the transducer. Techniques to improve the transmission efficiency involve adding a matching layer, or matching structure, between the transducer and acoustic medium.


Many conventional impedance matching layer approaches require dimensions parallel to the transmission direction be a significant fraction of an acoustic wavelength. This limits their usability for applications that require a very thin or compact solution. A further disadvantage of conventional impedance matching layers is that the low acoustic impedance materials used may require complex manufacturing processes.


SUMMARY

This application describes an acoustic matching structure used to increase the transmission efficiency of an acoustic transducer when emitting into a medium that has an acoustic impedance significantly lower than that of the transducer.


The following terminology identifies parts of the transducer: the transducer consists of an acoustic matching structure and a transducing element. The acoustic matching structure is passive and is designed to improve the efficiency of acoustic transmission from the transducing element to a surrounding acoustic medium. The transducing element generates acoustic output when driven with an electrical input. The transduction mechanism may be by oscillating motion, for example using an electromechanical actuator, or by oscillating temperature, for example, using an electrothermal transducer.


Specifically, an acoustic matching structure is used to increase the power radiated from a transducing element with a higher impedance into a surrounding acoustic medium with a lower acoustic impedance.


The acoustic matching structure consists of a resonant acoustic cavity bounded by an acoustic transducing element and a blocking plate. The resonant acoustic cavity amplifies pressure oscillations generated by the transducing element and the blocking plate contains one or more apertures, which allow pressure oscillations to propagate from the resonant acoustic cavity into the surrounding acoustic medium.


A preferred embodiment of the acoustic matching structure consists of a thin, substantially planar cavity bounded by a two end walls and a side wall. The end walls of the cavity are formed by a blocking plate wall and a transducing element wall separated by a short distance, less than one quarter of the wavelength of acoustic waves in the surrounding acoustic medium at the operating frequency of the transducer. The end walls and side wall bound a cavity with diameter approximately equal to half of the wavelength of acoustic waves in the surrounding acoustic medium. In operation, a transducing element generates acoustic oscillations in the fluid in the cavity. The transducing element may be an actuator which generates motion of an end wall in a direction perpendicular to the plane of the cavity to excite acoustic oscillations in the fluid in the cavity, and the cavity causes resonant amplification of the resulting pressure oscillation. The cavity side wall or end walls contain at least one aperture positioned away from the center of the cavity to allow pressure waves to propagate into the surrounding acoustic medium.





BRIEF DESCRIPTION OF THE FIGURES

The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, serve to further illustrate embodiments of concepts that include the claimed invention and explain various principles and advantages of those embodiments.



FIG. 1 is a simplified schematic of a transducer with a simple quarter-wavelength acoustic matching layer.



FIG. 2 is a graph showing calculated acoustic impedance of an acoustic matching structure constructed from a plate.



FIGS. 3, 4 and 5 are graphs showing calculated acoustic impedance of a thin film matching layer.



FIG. 6 is a cross-section of a transducer including a Helmholtz resonator.



FIG. 7 is a transducing element coupled to an acoustic matching structure including a blocking plate that is an example embodiment of the invention.



FIG. 8 is a transducing element coupled to an acoustic matching structure that generates the desired acoustic resonant mode and which includes a blocking plate with annular apertures.



FIG. 9 is a transducing element coupled to an acoustic matching structure that generates the desired resonant mode which includes a blocking plate with non-annular apertures.



FIG. 10 is a transducing element coupled to an acoustic matching structure that generates the desired resonant mode which includes a blocking plate with a radial distribution of apertures.



FIG. 11 is a graph showing on-axis pressure measurements with and without an acoustic matching structure.



FIG. 12 is a graph showing radiated power calculated using a simulation with and without an acoustic matching structure.



FIG. 13 is a graph showing radial mode pressure distribution in an axisymmetric simulation of a transducer including an acoustic matching structure appropriate to this transducer structure.



FIG. 14A is a cross-section of transducer including a piezoelectric bending-mode actuator coupled to an acoustic matching structure appropriate to this actuator.



FIG. 14B shows the radial dependence of the pressure oscillation within the resonant acoustic cavity.



FIG. 14C shows the radial dependence of the bending-mode actuator velocity.



FIG. 15 is a graph showing radiated power in a simulation detailing dependencies on the parameters of the apertures in the embodiment.



FIG. 16 is a graph showing radiated power in a simulation with frequency response when the height of the cavity, hcavity in the embodiment is varied.



FIGS. 17A and 17B are a cross-section of a transducer including a tubular cavity with cylindrical side-walls.



FIG. 17C shows how the amplitude of pressure oscillations in a cavity varies along the longitudinal axis.



FIG. 18A is a cross-section of a transducer including an acoustic cavity driven with a higher order acoustic resonant mode.



FIG. 18B is a graph that shows how the phase of pressure oscillations varies along three parallel axes.



FIG. 18C shows the phase of pressure oscillations.



FIG. 18D shows the velocity profile of an actuator.



FIGS. 19A, 19B and 19C show cross-sections of a transducer with resonant acoustic cavity and blocking plate combined with a thin film matching layer.



FIGS. 20A, 20B and 20C show cross-sections of a transducer including an acoustic cavity and blocking plate combined with a plate with an array of holes.



FIG. 21 shows multiple transducers combined with both thin film and plate with holes matching layer structures.





Those skilled in the art will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.


The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.


DETAILED DESCRIPTION
I. Acoustic Matching Layers

In this description, a transducing element directly refers to the portion of the structure that converts energy to acoustic energy. An actuator refers to the portion of the solid structure that contains the kinetic energy before transferring it to the medium.


The specific acoustic impedance of a gas or material is defined as the ratio of the acoustic pressure and the particle speed associated with that pressure, or






z
=

p
u





This holds for arbitrary acoustic fields. To simplify this discussion, it is most useful to consider the plane wave solution to the above. This reduces the equation to scalar quantities,

z=ρc,

for a wave propagating in the same direction as the particle velocity, and where ρ is the density and c is the speed of sound of the medium. The importance of this quantity is highlighted when considering the reflection and transmission from an interface between two acoustic media with differing acoustic impedance. When a plane wave is incident on a medium boundary traveling from material with specific acoustic impedance z1 to z2, the normalized intensity of reflection (R) and transmission (T) is,








R
I

=


(



z
2

-

z
1




z
1

+

z
2



)

2


,


T
I

=


4


z
2



z
1




(


z
2

+

z
1


)

2







This shows that when the impedance of the two media have substantially different values, the reflected intensity is much larger than the transmitted intensity. This is the case for most gas coupled acoustic actuators where the actuator is composed of bulk, solid material with acoustic impedance on the order of Z1≈107 kg·m−2·s−1 and for example, air at sea level and 20° C. at Z3≈400 kg·m−2·s−1. This results in decreased efficiency and output.


The acoustic impedance of a resonant piezoelectric bending actuator has been analyzed for a 40 kHz actuator (Toda, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 49, No. 7, July 2002) giving Z1≈2×104 kg·m−2·s−1. Although this resonant bending actuator has a much lower acoustic impedance than the bulk materials from which it is constructed (PZT and aluminum), there remains a substantial difference between the actuator impedance and air impedance, decreasing efficiency and acoustic output.


A solution to this problem is to add an acoustic matching layer with an impedance Z2 which serves as an intermediary between the higher-impedance actuator and the lower-impedance bulk gaseous phase medium.


An acoustic matching layer or other acoustic matching structure is required to be inserted into the path of acoustic energy transfer from the actuator into the medium and is designed to have an acoustic impedance that is as close as possible to the optimal matching structure impedance, that is the geometric mean of the acoustic impedances of the source and the destination, which in some embodiments may be a higher-impedance actuator and the lower-impedance bulk air or other acoustic medium. The effect of the intermediate impedance matching layer is that the energy transfer from the higher impedance region to the matching layer and then from the matching layer to the lower impedance region is more efficient than the more direct energy transfer from the higher to the lower impedance regions.


There may also be a plurality of matching layers that form a chain which is at its most efficient when the logarithms of the acoustic impedances of the endpoints and each matching layer form a chain whose values are progressive and substantially equally spaced.


In the case of a single-material matching layer added to the surface of a transducing element, there are two key properties that must be selected and balanced:


1. The acoustic impedance of the layer, Z2, must be approximately equal to the geometric mean of the impedance of the acoustic source region, which in some embodiments may consist of a piezoelectric source element (Z1) and the impedance of the medium (Z3).


2. The thickness of the layer of bulk material must be approximately equal to a quarter wavelength of the longitudinal pressure waves in the matching layer material at the operating frequency (frequency of pressure oscillations).


These two properties must be tuned and matched, as the thickness of the layer of any given material also impacts the acoustic impedance. It can be seen that there will only be a limited selection of suitable materials, and for some ranges of frequencies this limited selection may be small.



FIG. 1 shows a schematic 100 of a transducer that includes a conventional matching layer. An intermediate layer 130 (with an intermediate acoustic impedance) serves as the matching layer which is added between the actuator 140 and acoustic medium 110 (such as air). The thickness 120 of the intermediate layer 130 is approximately equal to a quarter wavelength of the longitudinal pressure waves in the matching layer at the operating frequency when the matching layer is considered as a bulk material.



FIG. 2 is a graph 200 showing calculated acoustic impedance 210 of an acoustic matching structure constructed from a plate of thickness t 220 containing an array of holes, as described in the prior art (Toda, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, Vol. 49, No. 7, July 2002). Variation of acoustic impedance with plate thickness is calculated in air for frequencies of 30 kHz, 40 kHz and 50 kHz (250, 240, 230), showing impedance maxima when the plate thickness is equal to ¼ of the acoustic wavelength of air.



FIGS. 3, 4 and 5 are graphs 300, 400, 500 showing calculated acoustic impedance of a thin film matching layer, as described in the prior art referenced in the previous paragraph. In FIG. 3, acoustic impedance 310 is plotted against frequency 320 for the case of a 15 μm thick polyethylene film spaced away from a transducing element by an air gap with thickness from 0.1 mm to 0.5 mm (370, 360, 350, 340, 330). In FIG. 4, acoustic impedance 410 is plotted against frequency 420 for a range of film thickness values from 5 μm to 45 μm (470, 460, 450, 440, 430), with the film separated by an air gap of 0.2 mm from a transducing element. In FIG. 5, acoustic impedance 510 is plotted against separation between film and transducing element 520 for a film thickness of 25 μm. The combination of thin film and thin air gap creates a high acoustic impedance 530 when the gap is approximately 20-22 μm.



FIG. 6 is a cross-section of a transducer including a Helmholtz resonator. The Helmholz resonator 600 has a cavity 640 with dimensions substantially less than ¼ of the acoustic wavelength and spatially uniform pressure, and an aperture 650 typically located at the center of the cavity 640. The cavity is bounded by walls 610a, 610b, 620a, 620b.


As an example, the acoustic impedance of a matching layer for a thickness-mode, piezoelectric actuator operating in air may be computed. The acoustic impedance required in this situation is approximately 100,000 kg·m−2·s−1. The computation proceeds by taking logarithms of each of the impedances of the adjoining elements, which is found to be approximately 7.5 for the piezoelectric transducing element (Z1) and approximately 2.5 for the bulk air (Z3) at the expected temperature and pressure. Then, for each matching layer required the average of the logarithms of the impedances of the adjoining regions may be used to determine the logarithm of the impedance required for the matching layer. Table 1 shows the acoustic impedance of air and PZT-5A (a piezoelectric material), and the ideal acoustic impedance of a matching layer for a thickness mode piezoelectric actuator operating in air which is









7
.
5

+
2.5

2

=
5





alongside the logarithms of each of the impedances.











TABLE 1






Acoustic Impedance



Material
kg · m−2 · s−1
Impedance logarithm

















PZT 5A
34,000,000
7.53


Air (1 atm, 20° C.)
400
2.60


Ideal matching layer
100,000
5.00









The acoustic impedances required for an ideal matching layer to bridge this large gap in acoustic impedances must be therefore composed of a solid material with a very low speed of sound and low density. The low speed of sound is preferable in order to reduce the size or volume of material required to make a matching layer that fits the quarter wavelength criterion. The low density is required for the material to have an acoustic impedance that is appropriate to a matching layer. But in general, suitable materials do not occur naturally. They must be often constructed with special manufacturing processes that tend to be complex and difficult to control, leading to variable acoustic properties and variable performance as a matching layer. For examples of such constructed suitable materials, matching layers using glass and resin microspheres are described in U.S. Pat. No. 4,523,122 and a matching layer using a dry gel material is described in U.S. Pat. No. 6,989,625. An ideal matching layer for a typical resonant piezoelectric bending actuator would have even lower acoustic impedance and would be more challenging to construct.


A further problematic issue with low-density, low-speed-of-sound matching layers of suitable materials is the constraint on thickness imposed by the quarter wavelength requirement. The lower the primary operating frequency of the transducing element, the longer the wavelength and the thicker the matching layer must be. For example, the wavelength at 40 kHz in air at ambient pressure and temperature is 8.58 mm. Therefore, assuming the material has a similar speed of sound to that of air—which would itself be difficult to achieve as it would require a high-density but low-stiffness material which would again likely require a specialist process to create—an ideal matching layer would have a thickness close to 2.14 mm. In thickness-constrained applications, this may be too great to be viable, either commercially or for the particular application of interest. Matching layers made of a material with a speed of sound greater than air would need to be thicker than this 2.14 mm.


This invention proposes the use of a vented resonant acoustic cavity formed by placing a blocking plate in the path of the acoustic energy transfer from a transducing element to an acoustic medium to achieve an intermediate acoustic impedance, that is lower acoustic impedance than that of the transducing element and higher acoustic impedance than the surrounding acoustic medium. The intermediate acoustic impedance increases the efficiency of acoustic energy transfer from the transducing element to the acoustic medium, and is provided through the production of a controlled resonant acoustic mode in an acoustic cavity in the path of the transfer of acoustic energy from the transducing element to the acoustic medium. The acoustic cavity that constrains the acoustic medium in a way that gives rise to a resonant acoustic mode in the acoustic medium that can be excited by the transducing element. The blocking plate which forms one face of the acoustic cavity contains apertures that allow acoustic energy to be transmitted from the acoustic cavity into the acoustic medium.


The effective acoustic impedance of the acoustic matching structure can be determined from the definition of acoustic impedance, Z=p/u, that is the ratio of acoustic pressure to particle velocity. In operation, the actuator creates a boundary velocity field in the acoustic medium and is situated on one side of the blocking plate which is placed intentionally in the path of the energy transfer. The actuator and blocking plate form an acoustic cavity substantially bounded by the actuator and the blocking plate. The actuator drives an acoustic wave from the surface of the actuator into the acoustic cavity. As the actuator continues to oscillate with substantially constant displacement amplitude and frequency, resonant acoustic oscillations in the cavity are excited and build in amplitude. The resonant increase in acoustic pressure resulting from substantially constant actuator oscillation velocity amplitude indicates an increase in the effective acoustic impedance of the acoustic cavity relative to the bulk acoustic medium by a factor of Qcavity, where Qcavity is the quality factor of the cavity acoustic resonance.


In the structure designed to produce such a resonant acoustic mode, the dimensions can also be arranged and resized so that the close spacing of the blocking plate and actuator increases the effective acoustic impedance of the acoustic medium by confining the fluid to a thin layer and constraining the fluid motion to be substantially parallel to the face of the actuator. In the case of a flat cylindrical cavity, the fluid velocity and pressure are increased by a factor: fgeom=rcavity/(2 hcavity), where rcavity is the radius of the cavity and hcavity is the height of the cavity, that is the separation of the actuator and blocking plate, and the effective acoustic impedance of the medium is increased by the same factor fgeom. Preferably, rcavity>5 hcavity so that fgeom>2.5, and more preferably, rcavity>10 hcavity so that fgeom>5. The acoustic impedance of the fluid in the cavity is increased relative to the bulk acoustic medium by a factor: Qcavity×fgeom, the product of the resonant cavity quality factor and the geometric amplification factor. In this way the acoustic cavity acts as an acoustic matching layer with acoustic impedance higher than the bulk acoustic medium and lower than the actuator.


It is useful to consider the minimum cavity height that can support an acoustic resonance. In order to establish an acoustic resonance in the cavity without excessive viscous losses we require hcavity>δ, where δ is the viscous boundary layer thickness. For a cylindrical cavity with radius rcavity containing a fluid with speed of sound c, with a pressure node at its perimeter, the first radial acoustic mode has a pressure distribution following a Bessel function of the form:








p


(
r
)


=


J
0



(



k
0


r


r
cavity


)



;


k
0



2
.
4







and the frequency of the first radial acoustic resonance, f0, is given by:








f
0

=



k
0


c


2

π






r
cavity




.




From this we can derive the condition










h
cavity
2


r
cavity


>


δ
2


r
cavity



=


2

v



k
0


c



.





For or operation in air at 20° C., this gives








h
cavity
2


r
cavity


>

3.7
×
1


0

-
8








m
.







For gases with lower kinematic viscosity and higher speed of sound, this value may be smaller, as low as 1×10−8 m.


However a small cavity height is beneficial as the narrow separation of actuator and blocking plate constrains the acoustic medium and results in an increase in the radial velocity of the acoustic medium in the cavity for a given actuator drive velocity, with a geometric amplification factor fgeom=rcavity/(2 hcavity) as described above. The optimal cavity height results from a tradeoff between maximizing the geometric amplification factor, and maximizing the cavity quality factor by minimizing the viscous losses in the boundary layers.


However, as the goal is to transfer the energy into the medium, an aperture is needed to allow acoustic waves to escape from the structure. It is helpful to balance the constraints of the maintenance and conservation of the appropriate acoustic perturbation, wherein a smaller area aperture in the novel matching structure is beneficial, which the requirement that the increased perturbation be transmitted onwards into the acoustic medium, wherein a larger area aperture in the novel matching structure is beneficial. At least some aperture, which may comprise one or many discrete sections, must be added so that a portion of the acoustic output generated by the transducer can escape on every cycle into the bulk medium.


In these embodiments, the term “acoustic medium” refers to the medium inside the cavity through which acoustic waves travel. The “bulk medium” refers to the acoustic medium which exists outside the cavity. The medium can be liquid, such as water, or gas, such as air or any other medium which is distinct from the construction material of the invention. Any medium supporting acoustic waves can be referred to as a “fluid” for the purposes of this discussion.


The process of designing the structure that is to create a suitable resonant mode in the acoustic medium can be illustrated with a simplified boundary value problem. A simple structure can embody the properties described above in the form of an acoustic cavity consisting of a volume of the acoustic medium which has in this example been restricted by a surrounding structure of side walls. The resonant frequency mode structure can be determined by finding solutions to the Helmholtz equation,

2p+k2p=0

with p=P(x)exp(jωt) and p=c02ρ1, with appropriate boundary conditions. In these equations P(x) is the peak pressure deviation from ambient pressure (a spatially varying function of the displacement vector x=[x, y, z] in Cartesian coordinates or function of the displacement vector r=[r, θ, z] in cylindrical coordinates from the cavity origin), p is the complex-valued acoustic pressure, c0 is the speed of sound in the ambient medium, ρ1 is the first-order density deviation from ambient density (where the density is this deviation ρ1 added to the ambient density ρ0, so ρ=ρ01), ω is the acoustic angular frequency, t is time, j is √{square root over (−1)}, and k is the wavenumber. It can be immediately appreciated that the acoustic pressure, p, can be related to the density, ρ, and thus the acoustic impedance as previously discussed.


As an example using cylindrical coordinates, suitable for a cylindrical cavity, we can consider a cavity with radius acavity and height hcavity. The domain of interest is described by 0≤r≤acavity, 0≤θ≤2π, 0≤z≤hcavity. Separation of variables allows for an analytic solution of the form,

Plmn=AlmnJ0(krlr)cos(kθmθ)cos(kznz)ejωlmn t,

Where J0 is the zeroth order Bessel function of the first kind, with the radial wavenumber krl having values given by Bessel function zeros divided by the cavity radius, kθm having integer values (kθm=m) and kzn having values given by kzn=2πn/hcavity. The first three values of krl are given by: kr0=2.404/acavity, kr0=5.201/acavity, kr0=8.6537/acavity. Note that Plmn=0 at r=acavity in this analytical description, corresponding to a zero pressure boundary condition. In practice, this analytical description is not fully accurate, and the boundary condition will be mixed (neither zero pressure nor zero displacement) due to the presence of apertures near r=acavity. However Plmn will be small at r=acavity compared with its value at r=0, as shown by the results of a numerical simulation shown in FIG. 13.


As an example using Cartesian coordinates, we can work through the determination of the mode structure for the medium volume contained within a rectangular cavity with rigid walls, the origin placed at one corner of the box, with the axes oriented such that the domain of interest is described by x≥0, y≥0 and z≥0. Separation of variables then allows for an analytic solution of the form,

plmn=Almn cos(kxlx)cos(kymy)cos(kznz)elmnt,

with the wavenumbers kxl, kym and kzn given by the physical dimensions of the cavity Lx, Ly, and Lz respectively as:








k
xl

=

l


π

L
x




,


k
ym

=

m


π

L
y




,


k
zn

=

n


π

L
z




,





wherein l, m and n can be substituted for any unique combination of integers to describe each resonant mode of the cavity.


The angular frequency that generates the mode is then given by,

ωlmn=c0√{square root over (kxkl2+kym2+kzn2)}


The amplitude of the wave (Almn) scales with input but in this analysis has no effect on the frequency of the mode.


Let us examine the specific case of the mode l=2, m=2 and n=0 wherein Lx=Ly=L. Here the angular frequency is given by







ω
=


2


2



c
0


π

L


.





The acoustic pressure within the cavity is given by







p
=

A


cos


(


2

π

x

L

)




cos


(


2

π

y

L

)




e


j





2






2



c
0


π





t

L




,





with no dependence on z. The bottom center of the cavity






(


x
=

L
2


,

y
=

L
2



)





is an acoustic pressure antinode and experiences the same peak pressure as the walls which can be much higher than the ambient pressure. An actuator placed at this location receives the benefit of working against a higher pressure for a given displacement. The lack of z-dependence in this example means that this cavity achieves this mode even if Lz is very small.


The presence of apertures causes a mixed boundary condition, and this complicates the solution. Furthermore, losses and energy propagation from the transducing element to the external acoustic medium lead to a travelling wave component in the acoustic wave. The result is that there are no perfectly nodal locations, but there are locations of minimum pressure oscillation amplitude.


Aperture(s) which allow acoustic energy to propagate from the cavity to the surrounding acoustic medium are located in areas of lower pressure oscillation amplitude, and transducing elements are located in areas of higher pressure oscillation amplitude.


The description above describes the idealized case of an acoustic mode in a closed, rigid box. In practice, the pressure oscillation amplitude would be reduced near apertures which allow pressure waves to propagate through from the cavity to the external acoustic medium.


There is a minimum necessary Lz related to the viscous penetration depth,







δ



v

π

f




,





where v is the kinematic viscosity of the medium. Significantly smaller than this value will result in energy being lost to heat through thermo-viscous boundary layer effects at the walls. The clear advantage of this solution over a typical matching layer is that it can be much smaller in thickness than






λ
4





(where λ is the wavelength) because this utilizes a mode that is not in parallel with the path of acoustic energy transfer to influence the transfer of the acoustic energy.


It need not, however, be small in z as in this example. If desired a tall, thin cavity can be designed with a high-pressure antinode occurring near the actuator. This may be beneficial in applications in which compacting larger numbers of transducers in a small surface area is required, but thickness restrictions are relaxed instead. For instance, take the mode shape l=0, m=0 and n=1 of the acoustic medium as before where in this case Lz=L. Here the angular frequency is instead given by






ω
=



c
0


π

L






and the acoustic pressure is given by






p
=

A






cos


(


π

z

L

)




e


j


c
0


π





t

L








which in this example has only dependence on z. Using a long actuator in the form of a strip that extends away from the aperture and bends with maximum displacement at the opposite location in z is advantageous here. This is because the high-pressure antinode and thus the most suitable instantaneous acoustic impedance must occur in this example at the furthest point where z=L.


Further examples may be constructed, especially in cases where there is at least one dimension that does not have length limiting requirements, as shown in FIG. 17 and FIG. 18.


To achieve even higher acoustic pressure, it may be reasonable to construct a cavity wherein the mode shape is defined by l=0, m=0 and n=3. In this case, there are two antinodes present in the along the length of the acoustic cavity. Unlike the above examples, these antinodes are out of phase and swap every half period of the progressive wave mode present in the cavity. By driving into both antinodes at their respective high-pressure points in the cycle, with two transducers transferring energy with each driven π radians out of phase, higher pressures and thus further increased acoustic impedances may be generated which would lead to more efficient energy transfer to the acoustic medium. In another embodiment, a single actuator could be situated such that during one phase of its motion it applies displacement into one antinode of the structure and during the opposite phase excites motion at the other antinode. This could be accomplished through mechanical coupling to a flexible surface at the second antinode location. Alternatively, a small pocket of gas could provide coupling to a flexible surface. In another arrangement, the actuator could be designed to operate in an ‘S’-shaped mode where half is moving into the structure and half is moving out during one polarity of drive which reverses at the other polarity. This would then be matched to a structure containing out-of-phase antinodes at the surfaces of maximum displacement.


The example cavities described in the previous two paragraphs describe tubular-shaped embodiments of the invention with one primary dimension extending longer than the other two. An advantage of this arrangement is that the cavity need not extend directly normal to the transducing element but can curve if necessary. This acts like a waveguide to direct and steer the acoustic wave while still developing the mode structure necessary to be an effective matching layer. The effective cavity cross-section which helps maintain the acoustic mode will follow the acoustic wave-front through the cavity. An estimate of the path of the cavity mode can be made by connecting an imaginary line from the center of the transducing element to center of the blocking plate through the cavity while maximizing the average distance at any point on the line to the side walls. Taking cross sections using this line as a normal can adequately estimate the mode structure. Bending and altering the cavity cross section can, for instance, enable shrinking the effective spacing in an array arrangement. This could be done by arranging a network of matching cavities from an array of transducers with a given pitch and reducing and skewing the opposite blocking plate side of the cavity so that the pitch is narrower on the aperture side. This embodiment could also be used to change the effective array arrangement from, for example, rectilinear to hexagonal packing.


A further variation on this theme may be considered if the transducer is required to have a wider spread of frequency variability. If there are two axes in which the mode numbers {l, m, n} are non-zero (such as the mode of the first example l=2, m=2, n=0), then the ω for each non-zero axis may be effectively perturbed to shift the peak of the resonant mode to different frequencies when each axis is considered as a separate resonant system. An embodiment of this perturbation of w may be realized by modifying the geometry internal cavity from a square prism to a rectangular prism, wherein the deviation from a square prism is indicative of the separation of the two resonant peaks. When these peaks are close together, they may be considered as a de facto single (but potentially broader) peak. When these w deviate, it has the effect of broadening the resonant peak of the output, enabling reduced manufacturing tolerances to be used or allowing the driven frequency to vary from the resonant frequency without experiencing sharp loss of output. This broader response is at the expense of reduced output at the peak frequency.


A similar analysis can be done for an arbitrary shaped structure or cavity. Some, like a cylindrical cavity, can be solved analytically in a way that is similar to the previous examples, while others will need the help of numerical simulations such as finite element analysis to predict where, when and how the appropriate high-pressure antinodes will form. The design goal is to have an acoustic mode which yields a pressure distribution that spatially mimics the displacement of the actuator mounted in the acoustic transducer structure at the desired frequency of oscillation.


If an enclosed cavity is designed to hold and maintain the resonant mode in place, apertures should ideally be added to the surface of the resonant cavity to allow a portion of the acoustic field in the cavity to escape into the bulk medium on every cycle. The exact shape and placement of the apertures does not lend itself to closed-form analytic analysis. In general, the size should be kept small compared to the larger length dimensions of the mode in the cavity so that they do not substantially disturb the cavity mode; apertures that are too large will cause a significant loss of acoustic pressure in the cavity and will cause the desired impedance effect to wane. Too small, however, and not enough acoustic pressure will escape per cycle therefore reducing the efficacy of the cavity as a matching layer. An aperture shape which substantially corresponds to an equiphasic portion of the acoustic mode shape will also help prevent significant disturbance of the mode shape. Some examples of apertures are given in FIGS. 8, 9, and 10. Simulation results for various apertures shapes will be discussed below.


II. Blocking Plate Matching Structures

A. Blocking Plate Structure Design



FIG. 7 shows a schematic 700 of a transducer coupled to a blocking plate in cross section, which serves to illustrate an embodiment of the invention. A blocking plate structure includes a blocking plate 770 with a side wall 780 and aperture(s) 797. This is situated spaced away from an acoustic transducing element 785 with a surrounding structure 790. The blocking plate is spaced a distance, hcavity 730, in the propagation direction away from the transducing element front face, where hcavity 730 is less than one quarter of the wavelength of acoustic waves in the surrounding medium at the operating frequency. The underside surface of the blocking plate 770 (i.e. on the transducing element side) forms one surface of a thin, planar acoustic cavity, with the spatial extent of the cavity formed by the propagation face of the transducing element 765, the blocking plate 755, and the side walls 790. Operation of the transducing element excites a substantially radial acoustic resonance in the cavity 795 travelling parallel to the blocking plate, which increases the pressure experienced by the front face of the transducing element during the compression phase of its operation as this pressure here is substantially the sum of the ambient pressure and the maximum pressure perturbation due to the resonant mode. (Radial is defined here as being a direction perpendicular to the propagation direction.) The cavity 795 has one or more apertures 797 positioned on the outer surface facing the bulk medium away from its centerline to allow acoustic pressure waves to propagate into the surrounding medium. The aperture(s) 797 is formed by the opening between the blocking plate 770 and the side wall 780. The nominal parameter values for 20 kHz, 65 kHz and 200 kHz embodiments of the transducer shown in FIG. 7 are set forth in Table 2.











TABLE 2









Example transducer dimensions (mm)











20 kHz
65 kHz
200 kHz
















ractuator
7.50
2.50
0.80



740



rcavity
7.50
2.50
0.80



750



woutlet
2.00
0.80
020



760



woffset
0.00
0.00
0.00



710



hcavity
0.25
0.20
0.10



730



hblocking
0.25
0.20
0.10



720










The blocking plate structure forms a cavity 795 positioned immediately next to the actuating face of the acoustic transducing element assembly which represents the primary transfer surface for moving kinetic energy into the acoustic medium. The acoustic resonant frequency of this cavity in this embodiment is chosen to match the substantially radial mode to increase the power radiated by the transducer into the propagation medium. This is possible because the small cavity 795 between the transducing element and the blocking front plate of FIG. 7 increases the amplitude of pressure oscillation generated within that cavity 795 by the motion of the transducer. This improves the coupling (and therefore efficiency of power transfer) between the higher acoustic impedance transducer and the lower acoustic impedance medium constrained within the structure (which is typically the same as the propagation medium). This acoustic power propagates into the surrounding medium via the one or more aperture(s) 797.


Aperture examples are shown in FIGS. 8, 9 and 10.



FIG. 8 shows a schematic 800 with a transducing element 810 coupled to an acoustic structure whose upper surface 820 has annular-shaped apertures 830.



FIG. 9 shows a schematic 900 with a transducing element 910 coupled to an acoustic structure whose upper surface 920 has non-annular-shaped apertures 930.



FIG. 10 shows a schematic 1000 with a transducing element 1010 coupled to an acoustic structure whose upper surface 1020 has circular apertures 1030 positioned on a circular pitch.



FIGS. 11 and 12 demonstrate with experimental data and numerical simulation respectively that, over a certain frequency range, both on-axis acoustic pressure and radiated acoustic power in this Lx≈Ly>>LZ design are greater with the use of the blocking plate structure that embodies the invention than without.



FIG. 11 shows a graph 1100 of the measured on-axis acoustic pressure with and without the embodied invention. The x-axis 1120 is frequency in Hz. The y-axis 1110 is the on-axis acoustic pressure at 30 cm in Pa. The plot shows the on-axis acoustic pressure measured 30 cm from the transducer as a function of frequency for a transducer with the acoustic structure which embodies the invention 1130 and without this structure 1140. The graph 1100 shows that, for almost all frequencies between 50 kHz and 80 kHz, the on-axis acoustic pressure at 30 cm is higher for a transducer with a blocking plate that embodies the invention than without. The on-axis acoustic pressure is significantly higher when the blocking plate structure in used between about 62 kHz to about 66 kHz in this embodiment.



FIG. 12 shows a graph 1200 of the simulated on-axis acoustic power with and without the blocking plate. The x-axis 1220 is frequency in Hz. The y-axis 1210 is radiated power in W. The plot shows radiated power as a function of frequency for a transducer with the blocking plate 1230 and without the blocking plate 1240. The graph 1200 shows that, for frequencies between about 60 kHz and about 90 kHz, the radiated power is significantly higher with the blocking plate than without.


Further, it is possible to tune the frequency of the acoustic resonance of the cavity that, when coupled to the transducing element that has its own operating frequency, may provide desirable characteristics of the acoustic output (e.g. broadband, high on-axis pressure, high radiated acoustic power). The transducing element operating frequency may be different from the acoustic resonant frequency. When the resonant frequency of the cavity and the operating frequency of the transducing element are closely matched, the radiated acoustic power is greatest. A further performance improvement may be realized if the transducing element and acoustic cavity resonance are mode-shape matched, i.e. the displacement profile of the transducing element oscillation is substantially similar to the pressure mode shape of the acoustic resonance excited in the medium.


It may also be advantageous to use a mix of a frequency that activates the impedance matching effect and one or more further frequencies that constitute the desired output (which may also be in conjunction with multiple transducing elements). Due to the impedance matching effect, this would not behave linearly when compared to each of the frequency components in isolation, and so in applications where design simplicity, small size and high output efficiency is important while the high ultrasonic frequencies may be disregarded, such as in small speaker units, this may be used to achieve more commercially viable designs.



FIG. 13 shows a graph 1300 of the magnitude of pressure oscillations at the propagation face of transducers with and without a blocking plate (which is part of a structure that is the embodiment) in an axisymmetric simulation. In this case the blocking plate and side walls are circularly symmetric. The x-axis 1320 is the distance in mm of the radial line on the transducer face starting from the center. The y-axis 1310 is the absolute acoustic pressure in Pa. The plot shows absolute acoustic pressure of the transducer as a function of the radial distance between the center (r=0 mm) and edge (r=2.5 mm) of the transducer with the blocking plate 1330 and without the blocking plate 1340. The graph 1300 shows that absolute acoustic pressure without the blocking plate is essentially constant at about 750 Pa. In contrast, absolute pressure with the blocking plate ranges from about 21000 Pa at r=0 mm and gradually falls to about 2000 Pa at r=2.5 mm. The data shown is taken from an axisymmetric pressure acoustics finite element model (COMSOL) for two otherwise identical piston mode actuators.


From this it can be seen that matching the displacement profile to the mode shape is not an absolute requirement for the blocking plate and surrounding structure to be effective, since the radiated power from a simple piston-mode actuator (e.g. piezoelectric actuator in thickness-mode) can be increased by the presence of the blocking plate with surrounding structure as shown in FIG. 12.


B. Blocking Plate Coupled to Bending-Mode Piezoelectric Actuator



FIG. 14A shows a schematic 1400 of a cross-section embodiment of a blocking plate when coupled to a bending-mode piezoelectric actuator. The blocking plate structure includes a blocking plate 1420, side walls 1450 and aperture(s) 1490, mounted using a supporting structure 1410a, 1410b, and spaced away from an acoustic actuator comprising a substrate 1430 and a piezoelectric transducing element 1440.



FIG. 14B is a graph 1492 showing the radial dependence of the pressure oscillation within the resonant acoustic cavity. FIG. 14C is a graph 1494 showing the radial dependence of the bending-mode actuator velocity.


In this embodiment, the displacement profile of the actuator is well-matched to the radial mode acoustic pressure distribution in the cavity. In addition, the blocking plate structure is used to define the motion of the actuator as well as the geometry of the cavity. The blocking plate structure heavily constrains motion of the actuator at the perimeter of the cavity where the structure becomes substantially stiffer, owing to the greater thickness of material in this region. The structure similarly does not constrain motion at the center of the actuator where the center of the cavity and thus the high-pressure antinode is located. This allows the displacement of the actuator to follow the desired bending shape when actuated, which is very similar in profile to the acoustic pressure distribution depicted in FIG. 13. Consequently, the blocking plate serves a dual function: providing mechanical support for the actuator and creating an acoustic matching structure. This further reduces the height of the whole system.


1. Tuning the Resonant Frequency


Returning to FIG. 7, the cavity resonance can be tuned by changing the cavity radius, rcavity 750. This can be different than the transducing element radius rtransducer 740, This allows the transducing element to be designed separately from the cavity, since the resonant frequency of the cavity, facoustic, varies as







f
acoustic




1

r
cavity


.





Table 3 below shows example dimensions to tune to cavity to 3 different frequencies of operation.


While not necessary, the transducing element radius and cavity radius are typically chosen to be the same. Table 3 shows that the rcavity 750 can be either sub-wavelength or greater than a wavelength, while still increasing the radiated acoustic power over a transducing element with no blocking plate.













TABLE 3







Frequency at
Corresponding



rcavity
waperture
peak output
wavelength


(mm)
(mm)
(Hz)
(mm)
Comment



















1.5
0.05
44,500
7.7
Sub-wavelength






cavity radius


5.0
4
100,500
3.4
Larger than






wavelength






cavity radius









Table 3 shows that, for a given blocking plate and supporting structure thickness hblocking 720 and cavity height hcavity 730 (both 0.2 mm), radiated power can be increased by a cavity with radius either substantially smaller than or greater than the target wavelength. Data is taken from a two-dimensional axisymmetric simulation about the centerline of the transducer using a pressure acoustics finite element model (COMSOL).


In addition to rcavity, the width of waperture 760 can be used to tune the resonant frequency of the cavity. FIG. 15 is a graph 1500 showing radiated power dependence on the width of waperture and frequency. The x-axis 1520 is frequency in Hz. The y-axis 1510 is radiated power in W. The plot shows radiated power of the transducer as a function of the frequency at a waperture=0.01 mm 1530, 0.05 mm 1535, 0.1 mm 1540, 0.5 mm 1545, 1 mm 1550, 1.5 mm 1555, and 2 mm 1560. A baseline 1525 without blocking plate is shown for comparison. The graph 1500 shows that a waperture of 0.1 mm produces the highest radiated power of 0.040 W at a frequency of about 50 kHz. No other waperture produces a radiated power greater than 0.020 W at any tested frequency. Data was taken from a two-dimensional axisymmetric simulation about the centerline of the transducer using a pressure acoustics finite element model (COMSOL) where the transducing element is considered to be a simple piston moving at a preset velocity at each frequency.


The central region must still be partially blocked by the blocking front plate, such that the width of the aperture, waperture<0.9rcavity. Yet there also exists a lower limit on the width of the outlet, relating to the oscillatory boundary layer thickness,






δ



v

π

f








(where v is the kinematic viscosity of the medium), at the operating frequency, f, such that waperture>2δ. Below this value, a significant proportion of the acoustic energy is lost via viscous dissipation at the outlet.


The resonant frequency of the radial acoustic mode excited is only weakly dependent on the cavity height, hcavity (730), as shown in FIG. 16. FIG. 16 is a graph 1600 of the effect of cavity height on the frequency response of the acoustic energy radiated through the blocking plate structure into the medium. The x-axis 1620 is frequency in Hz. The y-axis 1610 is radiated power in W. The plot shows radiated power of the transducer as a function of the frequency at hcavity of 50 μm 1630, 100 μm 1640, 150 μm 1650, and 200 μm 1660. The graph shows that the functions for hcavity of 100 μm 1640, 150 μm 1650, and 200 μm 1660 are quite similar. Data for FIG. 16 is modeled spectra from a two-dimensional axisymmetric simulation about the centerline of the transducer using a pressure acoustics finite element model of a piston transducer coupled with the blocking plate.


Taking an example from FIG. 16, when the cavity height hcavity, is increased from 100 μm to 200 μm, the simulated resonant frequency only changes by 5%. Therefore, its resonant frequency can be tuned relatively independently of the total thickness of the matching structure, unlike the previously attempted solutions described above. In addition, an improvement in transmission efficiency can be shown over a large frequency range with a fixed cavity height, as shown in Table 4.













TABLE 4






Baseline
Radiated

aperture


Frequency
radiated
power with
Power increase
width


(Hz)
power (mW)
blocking (mW)
(dB)
(mm)



















10,000
0.4
0.5
0.5
0.05


12,900
0.7
0.9
0.9
0.05


16,700
1.2
1.8
1.6
0.05


21,500
2.0
4.1
3.1
0.05


27,800
3.3
14.7
6.5
0.05


35,900
4.7
39.9
9.3
0.10


46,400
5.5
18.5
5.3
0.50


59,900
5.1
19.0
5.7
0.50


77,400
4.4
13.3
4.8
1.00


100,000
4.8
13.9
4.6
1.50


129,000
4.4
4.8
0.4
2.00


167,000
4.3
5.3
0.9
2.00


215,000
3.8
3.8
0.0
2.40









Table 4 shows that, for a given blocking plate thickness and cavity height (both=0.2 mm), radiated acoustic power can be increased by the blocking plate over a large range of frequencies. Aperture width is adjusted to maximize radiated power for each frequency. Data is taken from a two-dimensional axisymmetric simulation about the centerline of the transducer using a pressure acoustics finite element model (COMSOL).


A similarly lower limit on the cavity height exists as with the aperture channel width, namely that the viscous penetration depth places a rough lower limit on the cavity size, namely hcavity>2δ, for identical reasoning to before. An upper bound on the cavity height is also required to ensure the dominant acoustic resonant mode is the designed radial mode. This requires








h
cavity

<

λ
4


,





where λ is the acoustic wavelength at the transducer operating frequency.


These limitations on the cavity height hcavity also have bearing on other embodiments of this invention which may not be planar, may not have the same configuration of dimensions or may not even have a similar intended resonant mode. As before, the viscous penetration depth will limit the thinness of the thinnest dimension of the structure available, dissipating more of the energy as heat as the viscous penetration depth is reached as the minimal limit of the internal dimensions of the structure or cavity. Other thin modes generated will also require that their thinnest dimension has substantially similar limitations in order to achieve the correct mode constrained by the structure, as each mode intended will have specific dimensional requirements. Moving too far from these requirements may cause a jump in the resonant mode excited and thus deleteriously affect the efficiency obtained from the addition of the tuned structure as described previously in this document.



FIGS. 17 and 18 relate to transducers using an alternative longitudinal embodiment of the acoustic matching structure, in which the radius of the acoustic cavity is smaller than the height of the acoustic cavity. FIG. 17A shows an axisymmetric view of a transducer. An actuator, 1710, mates to one end of a hollow tube, 1750, at its perimeter. A blocking plate, 1720, then mates with the opposite end of the tube. An acoustic cavity, 1740, is formed by the combination of the actuator, tube, and blocking plate. There is a small aperture, 1730, in the blocking plate to allow pressure waves to radiate into the surrounding medium. Longitudinal oscillatory motion of the actuator (motion indicated by 1715) generates longitudinal pressure waves in the cavity. The frequency of these pressure oscillations can be adjusted so that a longitudinal acoustic resonance is excited in the cavity, increasing their amplitude. This resonant frequency will principally be dependent on the cavity's height, the radius of the cavity will have a smaller effect.



FIG. 17B shows an axisymmetric view of a transducer. A hollow cylindrical actuator, 1760, mates to a base, 1770, at one end. A blocking plate, 1720, then mates with the opposite end of the actuator. An acoustic cavity, 1740, is formed by the combination of the actuator, base, and blocking plate. There is a small aperture, 1730, in the blocking plate to allow pressure waves to radiate into the surrounding medium. Radial motion of the actuator indicated by 1765 generates longitudinal pressure waves in the cavity. The frequency of these pressure oscillations can be adjusted so that a longitudinal acoustic resonance is excited in the cavity, increasing their amplitude. This resonant frequency will principally be dependent on the cavity's height, the radius of the cavity will have a smaller effect. This configuration has the advantage of providing the actuator with a larger surface area which enables higher acoustic output than the configuration shown in FIG. 17A.



FIG. 17C shows how the amplitude of pressure oscillations 1784 in the cavity varies along the longitudinal axis 1782, from the actuator to the aperture, for two cases: (A) with the blocking plate present 1786 (B) without the blocking plate present 1788. In both cases a first-order acoustic resonance is excited where the amplitude of pressure oscillations reduces monotonically from the closed to the open end of the tube. However, the amplitude is materially higher for the case where the blocking plate is present, and notably so at the aperture where the pressure waves radiate into the surrounding medium. The actuator may be a thickness-mode piezoelectric actuator, where, once driven, its motion is approximately uniform and in-phase across its area. It is this motion that generates longitudinal pressure waves in the cavity.



FIG. 18A shows an axisymmetric view of a transducer. An actuator, 1810, mates to one end of a hollow tube, 1850, at its perimeter. A blocking plate, 1820, then mates with the opposite end of the tube. An acoustic cavity, 1840, is formed by the combination of the actuator, tube, and blocking plate. There are two small apertures, 1830 and 1860, in the blocking plate to allow pressure waves to radiate into the surrounding medium. In this case, and in contrast to FIG. 17, motion of the actuator excites a higher order acoustic resonance in the cavity.



FIG. 18B is a graph 1870 that shows how the phase of pressure oscillations varies along three parallel axes, A, B, and C. Along each axis, the pressure is highest close to the actuator but is out of phase with the pressure at the opposite end of the tube. There is no aperture positioned along axis B as pressure radiated from an aperture at this position would be out of phase with the pressure radiated from apertures 1830 and 1860, which would cause destructive interference and lower the transducer's total pressure output.


The phase of pressure oscillations varies in the longitudinal and radial directions. In the radial direction, at a given z height, the pressure at the center of the cavity is out of phase with the pressure close to the tube's inner circumference as shown in the graph 1880 of FIG. 18C.



FIG. 18D shows the velocity profile 1890 of an actuator that is mode-shape matched to the acoustic resonance described, where the phase of the actuator's oscillations varies across its radius; in-phase at its center, and out-of-phase close to its perimeter. In this instance, a bending-mode piezoelectric actuator could be used to generate such a velocity profile.



FIG. 19A shows a transducer comprising an actuator and a matching structure that is a combination of the blocking plate and thin film matching structures. The thin film, 1950, is spaced a short distance away from the actuator, 1910, to a form a sealed acoustic cavity, 1940. The blocking plate 1930 is spaced a short distance from the opposite side of the thin film, to form a separate acoustic cavity 1960 with aperture 1920. The combination of the two matching structures may improve the acoustic transmission efficiency of the transducer.


Similarly, FIG. 19B shows a transducer comprising an actuator and a matching structure that is a combination of the blocking plate 1930 and thin film 1950 matching structures. However, in this embodiment, the positions of the blocking plate 1930 and thin film 1950 are reversed, such that it is the blocking plate 1930 that is closest to the actuator, and the thin film 1950 radiates pressure directly into the surrounding medium. The thin film is positioned a short distance away from the blocking plate 1930 by a spacer element, 1970.



FIG. 19C shows two neighboring transducers 1992, 1194, each with the same configuration as in FIG. 19B, but with a continuous thin film 1950 shared between the two transducers. This may be advantageous if arrays of transducers are being manufactured as the thin film 1950 could be laminated to the transducer array as a final assembly without requiring further processing.



FIG. 20A shows a transducer comprising an actuator, 2010, and the blocking plate matching structure. The blocking plate, 2020, has a thickness that is approximately one quarter of a wavelength of the pressure oscillations in the acoustic medium. For example, this medium may be air. Therefore, the aperture, 2030, has a length equal to one quarter of a wavelength. A longitudinal acoustic resonance could be excited in the aperture, in addition to the radial resonance excited in the cavity, 2040, formed by the actuator and blocking plate. This additional longitudinal resonance could amplify the pressure output further.



FIG. 20B shows two transducers 2061, 2062, each comprising an actuator and a blocking plate matching structure, with a separate perforated plate, 2060, arranged in front of both transducers. The additional perforated plate may act as an additional matching structure and further improve the efficiency of acoustic transmission. It may also act as a protective barrier against, for example, accidental damage to the transducers, or dirt ingress into them.



FIG. 20C shows a transducer comprising an actuator and matching structure that is a combination of the blocking plate 2020 and perforated plate 2060 matching structures. The perforated plate 2060 is spaced a short distance from the actuator 2010. The blocking plate 2020 is spaced a short distance from the opposite side of the perforated plate, forming a cavity 2040 with an aperture 2030. The combination of the two matching structures may improve the acoustic transmission efficiency of the transducer.



FIG. 21 shows two actuators 2109, 2110, arranged close to one another, with a continuous thin film, 2150, positioned in front of them, and a continuous perforated plate, 2160, positioned in front of that. The combination of the two matching structures may improve the acoustic transmission efficiency of the transducer(s). Furthermore, as both the thin film and perforated plate are shared by multiple actuators, the ease of assembly of transducer arrays may be improved.


2. Advantages of the Blocking Plate


The frequency of operation of the blocking plate matching structure is dependent largely on the in-plane dimensions (rcavity, waperture) and is relatively invariant to the thickness dimensions (hcavity, hblocking). (For typical matching layers/structures, it is the thickness that is the critical parameter.) This allows the matching structure with the blocking plate to have a lower thickness and thus in this embodiment a lower profile than other matching layers across a wide frequency range. The matching structure with the blocking plate can be manufactured with conventional manufacturing techniques and to typical tolerances, again in contrast to other more conventional matching layers/structures. It is unintuitive that adding a blocking plate can improve acoustic output, given that a large fraction of the propagation area of the transducing element is blocked by the plate itself.


The advantages of the acoustic structure including the blocking plate relative to the alternative matching structures detailed above are described below.


1. Conventional matching layers are typically close to






λ
4





(where λ denotes the primary wavelength required of the acoustic transducer) thick, whereas the novel acoustic structure including the blocking plate described here can achieve improve transmission efficiency with a thinner structure. In addition, conventional impedance matching layers require complex manufacturing processes to produce the low acoustic impedance materials, whereas the novel acoustic structure described herein can be manufactured using conventional processes e.g. machining, injection molding, etching. Furthermore, low acoustic impedance materials typically lack robustness, whereas the required structure to implement this invention can be fabricated out of more rigid and robust engineering materials such as aluminum.


2. The blocking plate can achieve performance improvements with a thinner structure than a plate with a regular array of sub-wavelength holes as described in Toda, particularly at low ultrasonic frequencies.


3. In the case of the thin film matching layer described in Toda, performance depends strongly on dimensions parallel to the propagation direction. This may be limiting at high frequencies (>>80 kHz), where the spacing of the thin film from the transducing element requires tight tolerances that are not reasonably achievable. However, the blocking plate and supporting structure can be manufactured with typical industry tolerances in at least machining and etching. Moreover, thin polymer films lack robustness, whereas the blocking plate with its supporting structure can be fabricated out of a single piece of a more rigid and robust engineering materials such as aluminum.


4. The acoustic structure described can achieve the same or greater performance improvements with a thinner structure than an acoustic horn, particularly at low ultrasonic frequencies.


5. Helmholtz resonators are limited by the requirement that the dimensions of the resonator must be substantially smaller than the wavelength at the operating frequency. This requires a substantially sub-wavelength transducing element, which limits the power output and constrains what transducing elements can be used with this matching concept. The supporting structure and blocking plate that forms the cavity in this embodiment are not required to be substantially sub-wavelength in diameter so can accommodate larger transducing elements. One of the differences between the foregoing design and a Helmholtz resonator is that this design drives an acoustic resonance that does not have spatially uniform pressure (in the case of this invention it must harbor a chosen acoustic mode that has substantially non-uniform acoustic pressure with radial pressure variation) which then has an opening/pipe at the far end. This has been in previous sections shown to be generalizable to any structure with a non-uniform pressure (pipe, sphere, horn, etc.). This encompasses any enclosed volume with a mode structure and an opening.


III. Summary of Example Embodiments of the Invention

One embodiment of the invention is an acoustic matching structure comprising a cavity which, in use, contains a fluid, the cavity having a substantially planar shape. The cavity is defined by two end walls bounding the substantially planar dimension and a side wall bounding the cavity and substantially perpendicular to the end walls, with the cavity having an area Acavity given by the average cross-sectional area in the planar dimension in the cavity between the end walls. The side wall of the cavity may be circular or may have another shape in which case the effective side wall radius rcavity defined as: rcavity=(Acavity/π)1/2. At least one aperture is placed in at least one of the end walls and side walls; wherein the cavity height hcavity is defined as the average separation of the end walls, and rcavity and hcavity, satisfy the inequality: rcavity is greater than hcavity. In operation, a transducing element acting on one of the cavity end walls generates acoustic oscillations in the fluid in the cavity; and, in use, the acoustic oscillations in the fluid in the cavity cause pressure waves to propagate into a surrounding acoustic medium.


A further embodiment of the invention is an acoustic matching layer comprising: a cavity which, in operation, contains a fluid, the cavity having a substantially planar shape with two end walls bounding the substantially planar dimension and an area Acavity given by the average cross-sectional area in the planar dimension of the cavity between the end walls. One of the end walls may be formed by a transducing element and another may be formed by a blocking plate. The cavity has an effective side wall radius rcavity defined as: rcavity=(Acavity/π)1/2 and the cavity height hcavity is defined as the average separation of the end walls. In operation, the cavity supports a resonant frequency of acoustic oscillation in the fluid, wherein the frequency determines a wavelength defined by







λ
=

c
f


,





where c is the speed of sound in the fluid, wherein hcavity is substantially less than half a wavelength wherein rcavity is substantially equal to or greater than half a wavelength, and at least one aperture is placed in at least one of the end walls and side walls, at least one acoustic transducing element is located on at least one of the end walls and side walls. The resulting acoustic cavity constrains the acoustic medium in the cavity to induce a resonant mode that substantially improves the transfer of acoustic energy from the transducing element to the medium outside the aperture.


A further embodiment of the invention is an acoustic matching layer comprising: a cavity which, in operation, contains a fluid, the cavity having a substantially tubular shape, two end walls bounding the ends of the tubular dimension, wherein a centerline is defined as a line within the cavity which connects the geometric center of one end wall to the geometric center of the other end wall and traverses the cavity in such a way that it maximizes its distance from the nearest boundary excluding the end walls at each point along its length, an area Acavity given by the average cross-sectional area of the cavity between the end walls where the cross-sections are taken with a normal along the centerline, wherein the cavity has an effective side wall radius rcavity defined as: rcavity=(Acavity/π)1/2; wherein the cavity height hcavity is defined as the length of the centerline, wherein, in operation, the cavity supports a resonant frequency of acoustic oscillation in the fluid wherein the frequency determines a wavelength defined by







λ
=

c
f


,





where c is the speed of sound in the fluid wherein rcavity is substantially less than half a wavelength, wherein hcavity is substantially equal to or greater than half a wavelength. At least one aperture is placed in at least one of the end walls and side walls and at least one acoustic transducing element is located on at least one of the end walls and side walls. The resulting acoustic cavity constrains the acoustic medium in the cavity to induce a resonant mode that substantially improves the transfer of acoustic energy from the transducing element to the medium outside the aperture


A further embodiment of the invention is an acoustic matching layer comprising: a blocking plate present in the path of acoustic energy transfer into the bulk medium; wherein, in operation, the presence of the blocking plate excites an acoustic mode; wherein at least one axis has a dimension that is substantially less than half a wavelength at the resonant frequency in the cavity, and; wherein at least one axis has a dimension that is substantially equal to or greater than half a wavelength at the resonant frequency in the cavity.


In any of the above embodiments, the transducing element may be an actuator which causes oscillatory motion of one or both end walls in a direction substantially perpendicular to the planes of the end walls.


Embodiments below relate to longitudinal and other (not-radial) cavity modes.


One embodiment is acoustic matching structure comprising: a cavity which, in operation, contains a fluid, the cavity having a substantially tubular shape, two end walls bounding the ends of the tubular dimension, wherein a centerline is defined as a line within the cavity which connects the geometric center of one end wall to the geometric center of the other end wall and traverses the cavity in such a way that it maximizes its distance from the nearest boundary excluding the end walls at each point along its length.


The cavity area Acavity given by the average cross-sectional area of the cavity between the end walls where the cross-sections are taken with a normal along the centerline, wherein the cavity has an effective side wall radius rcavity defined as: rcavity=(Acavity/π)1/2; wherein the cavity height hcavity is defined as the length of the centerline, wherein, in operation, the cavity supports a resonant frequency of acoustic oscillation in the fluid; wherein the frequency determines a wavelength defined by







λ
=

c
f


,





where c is the speed of sound of sound in the fluid, rcavity is substantially less than half a wavelength, hcavity is substantially equal to or greater than half a wavelength. At least one aperture is placed in at least one of the end walls and side walls, and at least one acoustic transducing element is located on at least one of the end walls and side walls. The resulting acoustic cavity constrains the acoustic medium in the cavity to induce a resonant mode that substantially improves the transfer of acoustic energy from the transducing element to the medium outside the aperture.


A further embodiment is an acoustic matching structure comprising: a blocking plate present in the path of acoustic energy transfer into the bulk medium; wherein, in operation, the presence of the blocking plate excites an acoustic mode; wherein at least one axis has a dimension that is substantially less than half a wavelength at the resonant frequency in the cavity, and; wherein at least one axis has a dimension that is substantially equal to or greater than half a wavelength at the resonant frequency in the cavity.


IV. Additional Disclosure





    • 1. An acoustic matching structure for a transducer, the structure comprising:
      • a cavity which, in use, contains a fluid, the cavity having a substantially planar shape;
      • two end walls bounding the substantially planar shape of the cavity a side wall bounding the cavity and substantially perpendicular to the end walls;
      • the structure defining an area Acavity given by the average cross-sectional area in the planar dimension in the cavity between the end walls
      • wherein the cavity has an effective side wall radius rcavity defined as:

        rcavity=(Acavity/π)1/2; and
      • at least one aperture placed in at least one of the end walls and side walls;
      • wherein the cavity height hcavity is defined as the average separation of the end walls;
      • wherein rcavity and hcavity, satisfy the inequality:
      • rcavity is greater than hcavity;
      • wherein, in operation, a transducing element acting on one of the cavity end walls generates acoustic oscillations in the fluid in the cavity;
      • and whereby, in use, the acoustic oscillations in the fluid in the cavity cause pressure waves to propagate into a surrounding acoustic medium.

    • 2. An acoustic matching structure according to claim 1,
      • wherein, in operation, the cavity supports a resonant frequency of acoustic oscillation in the fluid, wherein: the resonant frequency determines a wavelength










λ
=

c
f


,








      •  where c is the speed of sound in the fluid; where hcavity is substantially less than half of said wavelength and

      • where rcavity is substantially equal to or greater than half of said wavelength;

      • at least one aperture is placed in at least one of the end walls and side walls; and

      • at least one acoustic transducing element is located on at least one of the end walls and side walls;

      • such that the resulting acoustic cavity constrains the acoustic medium in the cavity to induce a resonant mode that substantially improves the transfer of acoustic energy from the transducing element to the medium outside the aperture.



    • 3. An acoustic matching structure according to claim 1 or 2, wherein the transducer contains an actuator that causes oscillatory motion of at least one of the end walls in a direction substantially perpendicular to the planes of the end walls.

    • 4. An acoustic matching structure according any of the above claims wherein at least one aperture is located in an end wall within a distance less than rcavity/2 from the side wall.

    • 5. An acoustic matching structure according to any of the above claims wherein the shape is one of: circular, elliptical, square, polygonal shape, with an aspect ratio of less than 2.

    • 6. An acoustic matching structure according to any of the above claims wherein the sum of the areas of the aperture(s), Aaperture, and Acavity satisfy the inequality: Acavity/Aaperture is greater than 2, and preferably wherein Acavity/Aaperture is greater than 5.

    • 7. An acoustic matching structure according to any of the above claims wherein rcavity/hcavity is greater than 5.

    • 8. An acoustic matching structure according to any of the above claims wherein the fluid contained in the cavity is air and the speed of sound is between 300 m/s and 400 m/s.

    • 9. An acoustic matching structure according to any of the above claims wherein hcavity2/rcavity is greater than 10−8 meters.

    • 10. An acoustic matching structure according to any of the above claims, wherein, in use, lowest resonant frequency of radial pressure oscillations in the cavity is in the range 200 Hz-2 MHz, and preferably in the range 20 kHz-200 kHz.

    • 11. An acoustic transducer comprising an acoustic matching structure according to any of the above claims, and an actuator, wherein, in use, the frequency of oscillatory motion of the actuator is within 30% of the lowest resonant frequency of radial acoustic oscillations in the cavity.

    • 12. An acoustic transducer according to claim 11, wherein the end wall motion of the actuator is mode-shape matched to the pressure oscillation in the cavity.

    • 13. An acoustic transducer according to claim 11 or 12, wherein the actuator causes motion of an end-wall with a displacement profile approximating a Bessel function.

    • 14. An acoustic transducer according to any of claims 11 to 13, wherein, in use, the acoustic pressure oscillations in the cavity have a pressure antinode located within a distance of rcavity/4 of the centre of the cavity.

    • 15. An acoustic transducer according to any of claims 11 to 14, wherein aperture(s) in the cavity wall connect, in use, the internal cavity volume to a surrounding acoustic medium.

    • 16. An acoustic transducer according to any of claims 11 to 15, wherein the aperture(s) are located in an end wall formed by a blocking plate supported at its edge and spaced away from the transducing element by the side wall and located between the cavity and a surrounding acoustic medium.

    • 17. An acoustic transducer according to any of claims 11 to 16, wherein the actuator is located between the cavity and a surrounding acoustic medium and the aperture(s) are located in an end wall formed by one face of the actuator.

    • 18. An acoustic transducer according to any of claims 11 to 17, wherein the displacement of the actuator follows a bending shape when actuated.

    • 19. An acoustic transducer according to any of claims 11 to 18, wherein motion of edge of the actuator is constrained by the actuator support.

    • 20. An acoustic transducer according to any of claims 11 to 19, wherein motion of the center of the actuator is unconstrained.

    • 21. An acoustic transducer according to any of claims 11 to 20, wherein the transducing element is one of: a piezoelectric actuator, an electromagnetic actuator, an electrostatic actuator, a magnetostrictive actuator, a thermoacoustic transducing element.

    • 22. An acoustic transducer according to any of claims 11 to 21, wherein motion of the actuator support is constrained by a blocking plate.

    • 23. An acoustic transducer according to claim 22 further comprising a thin film matching structure positioned between the transducing element and the blocking plate.

    • 24. An acoustic transducer according to claim 22 or 23 further comprising a thin film matching structure positioned between the blocking plate and the external acoustic medium.

    • 25. An acoustic transducer according to claim 22, further comprising a perforated plate matching structure containing apertures of approximately λ/4 height positioned between the transducing element and the blocking plate.

    • 26. An acoustic according to claim 22 further comprising a perforated plate matching structure containing apertures of approximately λ/4 height positioned between the blocking plate and the external acoustic medium.

    • 27. An array of acoustic matching structures or transducers according to any of the above claims.





V. Conclusion

While the foregoing descriptions disclose specific values, any other specific values may be used to achieve similar results. Further, the various features of the foregoing embodiments may be selected and combined to produce numerous variations of improved haptic systems.


In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.


Moreover, in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way but may also be configured in ways that are not listed.


The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.

Claims
  • 1. An acoustic matching structure for a transducer, the structure comprising: a cavity which, in use, contains a fluid, the cavity having a substantially planar shape;two end walls bounding the substantially planar shape of the cavitya side wall bounding the cavity and substantially perpendicular to the end walls;the structure defining an area Acavity given by an average cross-sectional area in a planar dimension in the cavity between the end wallswherein the cavity has an effective side wall radius rcavity defined as: rcavity=(Acavity/π)1/2; andat least one aperture placed in at least one of the end walls and side walls, wherein at least one aperture is located in an end wall within a distance less than rcavity/2 from the side wall;wherein the cavity height hcavity is defined as the average separation of the end walls;wherein rcavity and hcavity, satisfy the inequality:rcavity is greater than hcavity;wherein an area of one of the at least one aperture (Aaperture), and Acavity satisfy the inequality:Acavity/Aaperture is greater than 2;wherein, in operation, a transducing element acting on one of the cavity end walls generates acoustic oscillations in the fluid in the cavity;and whereby, in use, the acoustic oscillations in the fluid in the cavity cause pressure waves to propagate into a surrounding acoustic medium.
  • 2. An acoustic matching structure according to claim 1, wherein, in operation, the cavity supports a resonant frequency of acoustic oscillation in the fluid, wherein: the resonant frequency determines a wavelength defined by
  • 3. An acoustic matching structure according to claim 1, wherein the transducer contains an actuator that causes oscillatory motion of at least one of the end walls in a direction substantially perpendicular to the planes of the end walls.
  • 4. An acoustic matching structure according to claim 1, wherein the shape is one of: circular, elliptical, square, polygonal shape, with an aspect ratio of less than 2.
  • 5. An acoustic matching structure according to claim 1, wherein rcavity/hcavity is greater than 5.
  • 6. An acoustic matching structure according to claim 1, wherein the fluid contained in the cavity is air and the speed of sound is between 300 m/s and 400 m/s.
  • 7. An acoustic matching structure according to claim 1, wherein hcavity2/rcavity is greater than 10−8 meters.
  • 8. An acoustic matching structure according to claim 1, wherein, in use, lowest resonant frequency of radial pressure oscillations in the cavity is in the range 200 Hz-2 MHz.
  • 9. An acoustic transducer comprising: 1) an acoustic matching structure for a transducer, the structure comprising:a cavity which, in use, contains a fluid, the cavity having a substantially planar shape;two end walls bounding the substantially planar shape of the cavitya side wall bounding the cavity and substantially perpendicular to the end walls;the structure defining an area Acavity given by an average cross-sectional area in a planar dimension in the cavity between the end wallswherein the cavity has an effective side wall radius rcavity defined as: rcavity=(Acavity/π)1/2; andat least one aperture placed in at least one of the end walls and side walls, wherein at least one aperture is located in an end wall within a distance less than rcavity/2 from the side wall;wherein the cavity height hcavity is defined as the average separation of the end walls;wherein rcavity and hcavity, satisfy the inequality:rcavity is greater than hcavity;wherein an area of one of the at least one aperture (Aaperture), and Acavity satisfy the inequality:Acavity/Aaperture is greater than 2;wherein, in operation, a transducing element acting on one of the cavity end walls generates acoustic oscillations in the fluid in the cavity;and whereby, in use, the acoustic oscillations in the fluid in the cavity cause pressure waves to propagate into a surrounding acoustic medium; and2) an actuator, wherein, in use, the frequency of oscillatory motion of the actuator is within 30% of the lowest resonant frequency of radial acoustic oscillations in the cavity.
  • 10. An acoustic transducer according to claim 9, wherein the end wall motion of the actuator is mode-shape matched to the pressure oscillation in the cavity.
  • 11. An acoustic transducer according to claim 9, wherein the actuator causes motion of an end-wall with a displacement profile approximating a Bessel function.
  • 12. An acoustic transducer according to claim 9, wherein, in use, the acoustic pressure oscillations in the cavity have a pressure antinode located within a distance of rcavity/4 of the center of the cavity.
  • 13. An acoustic transducer according to claim 9, wherein aperture(s) in the cavity wall connect, in use, the internal cavity volume to a surrounding acoustic medium.
  • 14. An acoustic transducer according to claim 9, wherein the aperture(s) are located in an end wall formed by a blocking plate supported at its edge and spaced away from the transducing element by the side wall and located between the cavity and a surrounding acoustic medium.
  • 15. An acoustic transducer according to claim 9, wherein the actuator is located between the cavity and a surrounding acoustic medium and the aperture(s) are located in an end wall formed by one face of the actuator.
  • 16. An acoustic transducer according to claim 9, wherein the displacement of the actuator follows a bending shape when actuated.
  • 17. An acoustic transducer according to claim 9, wherein motion of edge of the actuator is constrained by the actuator support.
  • 18. An acoustic transducer according to claim 9, wherein motion of the center of the actuator is unconstrained.
  • 19. An acoustic transducer according to claim 9, wherein the transducing element is one of: a piezoelectric actuator, an electromagnetic actuator, an electrostatic actuator, a magnetostrictive actuator, a thermoacoustic transducing element.
  • 20. An acoustic transducer according to claim 9, wherein motion of the actuator support is constrained by a blocking plate.
  • 21. An acoustic transducer according to claim 20, further comprising a thin film matching structure positioned between the transducing element and the blocking plate.
  • 22. An acoustic transducer according to claim 20, further comprising a thin film matching structure positioned between the blocking plate and the external acoustic medium.
  • 23. An acoustic transducer according to claim 20, further comprising a perforated plate matching structure containing apertures of approximately λ/4 height positioned between the transducing element and the blocking plate.
  • 24. An acoustic according to claim 20, further comprising a perforated plate matching structure containing apertures of approximately λ/4 height positioned between the blocking plate and the external acoustic medium.
PRIOR APPLICATIONS

This application claims benefit to the following two provisional applications: 1) U.S. Provisional Application Ser. No. 62/665,867, filed May 2, 2018; and 2) U.S. Provisional Application Ser. No. 62/789,261, filed Jan. 7, 2019.

US Referenced Citations (279)
Number Name Date Kind
4218921 Berge Aug 1980 A
4771205 Mequio Sep 1988 A
4881212 Takeuchi Nov 1989 A
5226000 Moses Jul 1993 A
5243344 Koulopoulos Sep 1993 A
5329682 Thurn Jul 1994 A
5422431 Ichiki Jun 1995 A
5426388 Flora Jun 1995 A
5477736 Lorraine Dec 1995 A
5511296 Dias Apr 1996 A
5859915 Norris Jan 1999 A
6029518 Oeftering Feb 2000 A
6193936 Gardner Feb 2001 B1
6503204 Sumanaweera Jan 2003 B1
6647359 Verplank Nov 2003 B1
6771294 Pulli Aug 2004 B1
6772490 Toda Aug 2004 B2
6800987 Toda Oct 2004 B2
7107159 German Sep 2006 B2
7109789 Spencer Sep 2006 B2
7182726 Williams Feb 2007 B2
7225404 Zilles May 2007 B1
7284027 Jennings, III Oct 2007 B2
7345600 Fedigan Mar 2008 B1
7487662 Schabron Feb 2009 B2
7577260 Hooley Aug 2009 B1
7692661 Cook Apr 2010 B2
RE42192 Schabron Mar 2011 E
7966134 German Jun 2011 B2
8000481 Nishikawa Aug 2011 B2
8123502 Blakey Feb 2012 B2
8269168 Axelrod Sep 2012 B1
8279193 Birnbaum Oct 2012 B1
8369973 Risbo Feb 2013 B2
8607922 Werner Dec 2013 B1
8833510 Koh Sep 2014 B2
8884927 Cheatham, III Nov 2014 B1
9208664 Peters Dec 2015 B1
9267735 Funayama Feb 2016 B2
9421291 Robert Aug 2016 B2
9612658 Subramanian Apr 2017 B2
9662680 Yamamoto May 2017 B2
9816757 Zielinski Nov 2017 B1
9841819 Carter Dec 2017 B2
9863699 Corbin, III Jan 2018 B2
9898089 Subramanian Feb 2018 B2
9945818 Ganti Apr 2018 B2
9958943 Long May 2018 B2
9977120 Carter May 2018 B2
10101811 Carter Oct 2018 B2
10101814 Carter Oct 2018 B2
10133353 Eid Nov 2018 B2
10140776 Schwarz Nov 2018 B2
10146353 Smith Dec 2018 B1
10268275 Carter Apr 2019 B2
10281567 Carter May 2019 B2
10444842 Long Oct 2019 B2
10469973 Hayashi Nov 2019 B2
10496175 Long Dec 2019 B2
10497358 Tester Dec 2019 B2
10510357 Kovesi Dec 2019 B2
10523159 Megretski Dec 2019 B2
10531212 Long Jan 2020 B2
10569300 Hoshi Feb 2020 B2
10685538 Carter Jun 2020 B2
10755538 Carter Aug 2020 B2
10818162 Carter Oct 2020 B2
10911861 Buckland Feb 2021 B2
10915177 Carter Feb 2021 B2
10921890 Subramanian Feb 2021 B2
10930123 Carter Feb 2021 B2
10943578 Long Mar 2021 B2
11048329 Lee Jun 2021 B1
11098951 Kappus Aug 2021 B2
11169610 Sarafianou Nov 2021 B2
11189140 Long Nov 2021 B2
11204644 Long Dec 2021 B2
11276281 Carter Mar 2022 B2
20010033124 Norris Oct 2001 A1
20020149570 Knowles Oct 2002 A1
20030024317 Miller Feb 2003 A1
20030144032 Brunner Jul 2003 A1
20030182647 Radeskog Sep 2003 A1
20040005715 Schabron Jan 2004 A1
20040014434 Haardt Jan 2004 A1
20040052387 Norris Mar 2004 A1
20040091119 Duraiswami May 2004 A1
20040210158 Organ Oct 2004 A1
20040226378 Oda Nov 2004 A1
20040264707 Yang Dec 2004 A1
20050052714 Klug Mar 2005 A1
20050056851 Althaus Mar 2005 A1
20050212760 Marvit Sep 2005 A1
20050267695 German Dec 2005 A1
20050273483 Dent Dec 2005 A1
20060085049 Cory Apr 2006 A1
20060090955 Cardas May 2006 A1
20060091301 Trisnadi May 2006 A1
20060164428 Cook Jul 2006 A1
20070036492 Lee Feb 2007 A1
20070094317 Wang Apr 2007 A1
20070177681 Choi Aug 2007 A1
20070263741 Erving Nov 2007 A1
20080012647 Risbo Jan 2008 A1
20080084789 Altman Apr 2008 A1
20080130906 Goldstein Jun 2008 A1
20080273723 Hartung Nov 2008 A1
20080300055 Lutnick Dec 2008 A1
20090093724 Pernot Apr 2009 A1
20090116660 Croft, III May 2009 A1
20090232684 Hirata Sep 2009 A1
20090251421 Bloebaum Oct 2009 A1
20090319065 Risbo Dec 2009 A1
20100013613 Weston Jan 2010 A1
20100030076 Vortman Feb 2010 A1
20100044120 Richter Feb 2010 A1
20100066512 Rank Mar 2010 A1
20100085168 Kyung Apr 2010 A1
20100103246 Schwerdtner Apr 2010 A1
20100109481 Buccafusca May 2010 A1
20100199232 Mistry Aug 2010 A1
20100231508 Cruz-Hernandez Sep 2010 A1
20100262008 Roundhill Oct 2010 A1
20100302015 Kipman Dec 2010 A1
20100321216 Jonsson Dec 2010 A1
20110006888 Bae Jan 2011 A1
20110010958 Clark Jan 2011 A1
20110051554 Varray Mar 2011 A1
20110066032 Vitek Mar 2011 A1
20110199342 Vartanian Aug 2011 A1
20110310028 Camp, Jr. Dec 2011 A1
20120057733 Morii Mar 2012 A1
20120063628 Rizzello Mar 2012 A1
20120066280 Tsutsui Mar 2012 A1
20120223880 Birnbaum Sep 2012 A1
20120229400 Birnbaum Sep 2012 A1
20120229401 Birnbaum Sep 2012 A1
20120236689 Brown Sep 2012 A1
20120243374 Dahl Sep 2012 A1
20120249409 Toney Oct 2012 A1
20120249474 Pratt Oct 2012 A1
20120299853 Dagar Nov 2012 A1
20120307649 Park Dec 2012 A1
20120315605 Cho Dec 2012 A1
20130035582 Radulescu Feb 2013 A1
20130079621 Shoham Mar 2013 A1
20130094678 Scholte Apr 2013 A1
20130100008 Marti Apr 2013 A1
20130101141 Mcelveen Apr 2013 A1
20130173658 Adelman Jul 2013 A1
20140027201 Islam Jan 2014 A1
20140104274 Hilliges Apr 2014 A1
20140139071 Yamamoto May 2014 A1
20140168091 Jones Jun 2014 A1
20140201666 Bedikian Jul 2014 A1
20140204002 Bennet Jul 2014 A1
20140265572 Siedenburg Sep 2014 A1
20140269207 Baym Sep 2014 A1
20140269208 Baym Sep 2014 A1
20150002477 Cheatham, III Jan 2015 A1
20150005039 Liu Jan 2015 A1
20150006645 Oh Jan 2015 A1
20150007025 Sassi Jan 2015 A1
20150013023 Wang Jan 2015 A1
20150029155 Lee Jan 2015 A1
20150066445 Lin Mar 2015 A1
20150070147 Cruz-Hernandez Mar 2015 A1
20150070245 Han Mar 2015 A1
20150078136 Sun Mar 2015 A1
20150081110 Houston Mar 2015 A1
20150084929 Lee Mar 2015 A1
20150110310 Minnaar Apr 2015 A1
20150130323 Harris May 2015 A1
20150168205 Lee Jun 2015 A1
20150192995 Subramanian Jul 2015 A1
20150220199 Wang Aug 2015 A1
20150226537 Schorre Aug 2015 A1
20150226831 Nakamura Aug 2015 A1
20150248787 Abovitz Sep 2015 A1
20150258431 Stafford Sep 2015 A1
20150277610 Kim Oct 2015 A1
20150304789 Babayoff Oct 2015 A1
20150323667 Przybyla Nov 2015 A1
20150331576 Piya Nov 2015 A1
20150332075 Burch Nov 2015 A1
20160019762 Levesque Jan 2016 A1
20160019879 Daley Jan 2016 A1
20160026253 Bradski Jan 2016 A1
20160044417 Clemen, Jr. Feb 2016 A1
20160124080 Carter May 2016 A1
20160138986 Carlin May 2016 A1
20160175701 Froy Jun 2016 A1
20160175709 Idris Jun 2016 A1
20160189702 Blanc Jun 2016 A1
20160242724 Lavallee Aug 2016 A1
20160246374 Carter Aug 2016 A1
20160249150 Carter Aug 2016 A1
20160291716 Boser Oct 2016 A1
20160306423 Uttermann Oct 2016 A1
20160320843 Long Nov 2016 A1
20160339132 Cosman Nov 2016 A1
20160374562 Vertikov Dec 2016 A1
20170002839 Bukland Jan 2017 A1
20170004819 Ochiai Jan 2017 A1
20170018171 Carter Jan 2017 A1
20170052148 Estevez Feb 2017 A1
20170123487 Hazra May 2017 A1
20170123499 Eid May 2017 A1
20170140552 Woo May 2017 A1
20170144190 Hoshi May 2017 A1
20170153707 Subramanian Jun 2017 A1
20170181725 Han Jun 2017 A1
20170193768 Long Jul 2017 A1
20170193823 Jiang Jul 2017 A1
20170211022 Reinke Jul 2017 A1
20170279951 Hwang Sep 2017 A1
20170336860 Smoot Nov 2017 A1
20170366908 Long Dec 2017 A1
20180039333 Carter Feb 2018 A1
20180047259 Carter Feb 2018 A1
20180074580 Hardee Mar 2018 A1
20180081439 Daniels Mar 2018 A1
20180101234 Carter Apr 2018 A1
20180139557 Ochiai May 2018 A1
20180146306 Benattar May 2018 A1
20180151035 Maalouf May 2018 A1
20180166063 Long Jun 2018 A1
20180181203 Subramanian Jun 2018 A1
20180182372 Tester Jun 2018 A1
20180190007 Panteleev Jul 2018 A1
20180246576 Long Aug 2018 A1
20180267156 Carter Sep 2018 A1
20180304310 Long Oct 2018 A1
20180309515 Murakowski Oct 2018 A1
20180310111 Kappus Oct 2018 A1
20180350339 Macours Dec 2018 A1
20180361174 Radulescu Dec 2018 A1
20190038496 Levesque Feb 2019 A1
20190091565 Nelson Mar 2019 A1
20190163275 Iodice May 2019 A1
20190175077 Zhang Jun 2019 A1
20190187244 Riccardi Jun 2019 A1
20190196578 Iodice Jun 2019 A1
20190196591 Long Jun 2019 A1
20190197840 Kappus Jun 2019 A1
20190197841 Carter Jun 2019 A1
20190197842 Long Jun 2019 A1
20190204925 Long Jul 2019 A1
20190206202 Carter Jul 2019 A1
20190235628 Lacroix Aug 2019 A1
20190257932 Carter Aug 2019 A1
20190310710 Deeley Oct 2019 A1
20190342654 Buckland Nov 2019 A1
20200042091 Long Feb 2020 A1
20200080776 Kappus Mar 2020 A1
20200082804 Kappus Mar 2020 A1
20200103974 Carter Apr 2020 A1
20200117229 Long Apr 2020 A1
20200218354 Beattie Jul 2020 A1
20200302760 Carter Sep 2020 A1
20200327418 Lyons Oct 2020 A1
20200380832 Carter Dec 2020 A1
20210037332 Kappus Feb 2021 A1
20210043070 Carter Feb 2021 A1
20210109712 Long Apr 2021 A1
20210111731 Long Apr 2021 A1
20210112353 Kappus Apr 2021 A1
20210141458 Sarafianou May 2021 A1
20210183215 Carter Jun 2021 A1
20210201884 Kappus Jul 2021 A1
20210225355 Long Jul 2021 A1
20210303072 Carter Sep 2021 A1
20210303758 Long Sep 2021 A1
20210381765 Kappus Dec 2021 A1
20210397261 Kappus Dec 2021 A1
20220083142 Brown Mar 2022 A1
20220095068 Kappus Mar 2022 A1
20220113806 Long Apr 2022 A1
20220155949 Ring May 2022 A1
Foreign Referenced Citations (53)
Number Date Country
2470115 Jun 2003 CA
101986787 Mar 2011 CN
102459900 May 2012 CN
102591512 Jul 2012 CN
103797379 May 2014 CN
103984414 Aug 2014 CN
107340871 Nov 2017 CN
309003 Mar 1989 EP
1875081 Jan 2008 EP
1911530 Apr 2008 EP
2271129 Jan 2011 EP
1461598 Apr 2014 EP
3207817 Aug 2017 EP
2464117 Apr 2010 GB
2513884 Nov 2014 GB
2513884 Nov 2014 GB
2530036 Mar 2016 GB
2008074075 Apr 2008 JP
2010109579 May 2010 JP
2011172074 Sep 2011 JP
2012048378 Mar 2012 JP
2012048378 Mar 2012 JP
2015035657 Feb 2015 JP
2016035646 Mar 2016 JP
20120065779 Jun 2012 KR
20130055972 May 2013 KR
20160008280 Jan 2016 KR
9118486 Nov 1991 WO
9639754 Dec 1996 WO
03050511 Jun 2003 WO
2005017965 Feb 2005 WO
2007144801 Dec 2007 WO
2009071746 Jun 2009 WO
2009112866 Sep 2009 WO
2010003836 Jan 2010 WO
2010139916 Dec 2010 WO
2011132012 Oct 2011 WO
2012023864 Feb 2012 WO
2012104648 Aug 2012 WO
2013179179 Dec 2013 WO
2014181084 Nov 2014 WO
2014181084 Nov 2014 WO
2015006467 Jan 2015 WO
2015039622 Mar 2015 WO
2015127335 Aug 2015 WO
2016007920 Jan 2016 WO
2016095033 Jun 2016 WO
2016099279 Jun 2016 WO
2016132144 Aug 2016 WO
2016137675 Sep 2016 WO
2016162058 Oct 2016 WO
2017172006 Oct 2017 WO
2020049321 Mar 2020 WO
Non-Patent Literature Citations (266)
Entry
“Welcome to Project Soli” video, https://atap.google.com/#project-soli Accessed Nov. 30, 2018, 2 pages.
A. Sand, Head-Mounted Display with Mid-Air Tactile Feedback, Proceedings of the 21st ACM Symposium on Virtual Reality Software and Technology, Nov. 13-15, 2015 (8 pages).
Alexander, J. et al. (2011), Adding Haptic Feedback to Mobile TV (6 pages).
Aoki et al., Sound location of stero reproduction with parametric loudspeakers, Applied Acoustics 73 (2012) 1289-1295 (7 pages).
Ashish Shrivastava et al., Learning from Simulated and Unsupervised Images through Adversarial Training, Jul. 19, 2017, pp. 1-16.
Bajard et al., BKM: A New Hardware Algorithm for Complex Elementary Functions, 8092 IEEE Transactions on Computers 43 (1994) (9 pages).
Bajard et al., Evaluation of Complex Elementary Functions / A New Version of BKM, SPIE Conference on Advanced Signal Processing, Jul. 1999 (8 pages).
Benjamin Long et al, “Rendering volumetric haptic shapes in mid-air using ultrasound”, ACM Transactions on Graphics (TOG), ACM, US, (Nov. 19, 2014), vol. 33, No. 6, ISSN 0730-0301, pp. 1-10.
Bortoff et al., Pseudolinearization of the Acrobot using Spline Functions, IEEE Proceedings of the 31st Conference on Decision and Control, Sep. 10, 1992 (6 pages).
Bozena Smagowska & Malgorzata Pawlaczyk-uszczyńska (2013) Effects of Ultrasonic Noise on the Human Body—A Bibliographic Review, International Journal of Occupational Safety and Ergonomics, 19:2, 195-202.
Canada Application 2,909,804 Office Action dated Oct. 18, 2019, 4 pages.
Casper et al., Realtime Control of Multiple-focus Phased Array Heating Patterns Based on Noninvasive Ultrasound Thermography, IEEE Trans Biomed Eng. Jan. 2012; 59(1): 95-105.
Christoper M. Bishop, Pattern Recognition and Machine Learning, 2006, pp. 1-758.
Colgan, A., “How Does the Leap Motion Controller Work?” Leap Motion, Aug. 9, 2014, 10 pages.
Corrected Notice of Allowability dated Jan. 14, 2021 for U.S. Appl. No. 15/897,804 (pp. 1-2).
Corrected Notice of Allowability dated Jun. 21, 2019 for U.S. Appl. No. 15/966,213 (2 pages).
Corrected Notice of Allowability dated Oct. 31, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-2).
Damn Geeky, “Virtual projection keyboard technology with haptic feedback on palm of your hand,” May 30, 2013, 4 pages.
David Joseph Tan et al., Fits like a Glove: Rapid and Reliable Hand Shape Personalization, 2016 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5610-5619.
Definition of “Interferometry”according to Wikipedia, 25 pages., Retrieved Nov. 2018.
Definition of “Multilateration” according to Wikipedia, 7 pages., Retrieved Nov. 2018.
Definition of “Trilateration” according to Wikipedia, 2 pages., Retrieved Nov. 2018.
Diederik P. Kingma et al., Adam: A Method for Stochastic Optimization, Jan. 30, 2017, pp. 1-15.
E. Bok, Metasurface for Water-to-Air Sound Transmission, Physical Review Letters 120, 044302 (2018) (6 pages).
E.S. Ebbini et al. (1991), Aspherical-section ultrasound phased array applicator for deep localized hyperthermia, Biomedical Engineering, IEEE Transactions on (vol. 38 Issue: 7), pp. 634-643.
EPO Office Action for EP16708440.9 dated Sep. 12, 2018 (7 pages).
EPSRC Grant summary EP/J004448/1 (2011) (1 page).
Eric Tzeng et al., Adversarial Discriminative Domain Adaptation, Feb. 17, 2017, pp. 1-10.
European Office Action for Application No. EP16750992.6, dated Oct. 2, 2019, 3 pages.
Ex Parte Quayle Action dated Dec. 28, 2018 for U.S. Appl. No. 15/966,213 (pp. 1-7).
Extended European Search Report for Application No. EP19169929.7, dated Aug. 6, 2019, 7 pages.
Freeman et al., Tactile Feedback for Above-Device Gesture Interfaces: Adding Touch to Touchless Interactions ICMI'14, Nov. 12-16, 2014, Istanbul, Turkey (8 pages).
Gavrilov L R et al. (2000) “A theoretical assessment of the relative performance of spherical phased arrays for ultrasound surgery” Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on (vol. 47, Issue: 1), pp. 125-139.
Gavrilov, L.R. (2008) “The Possibility of Generating Focal Regions of Complex Configurations in Application to the Problems of Stimulation of Human Receptor Structures by Focused Ultrasound” Acoustical Physics, vol. 54, No. 2, pp. 269-278.
Georgiou et al., Haptic In-Vehicle Gesture Controls, Adjunct Proceedings of the 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI '17), Sep. 24-27, 2017 (6 pages).
GitHub—danfis/libccd: Library for collision detection between two convex shapes, Mar. 26, 2020, pp. 1-6.
GitHub—IntelRealSense/hand_tracking_samples: researc codebase for depth-based hand pose estimation using dynamics based tracking and CNNs, Mar. 26, 2020, 3 pages.
Gokturk, et al., “A Time-of-Flight Depth Sensor-System Description, Issues and Solutions,” Published in: 2004 Conference on Computer Vision and Pattern Recognition Workshop, Date of Conference: Jun. 27-Jul. 2, 2004, 9 pages.
Hasegawa, K. and Shinoda, H. (2013) “Aerial Display of Vibrotactile Sensation with High Spatial-Temporal Resolution using Large Aperture Airbourne Ultrasound Phased Array”, University of Tokyo (6 pages).
Hilleges et al. Interactions in the air: adding further depth to interactive tabletops, UIST '09: Proceedings of the 22nd annual ACM symposium on User interface software and technologyOct. 2009 pp. 139-148.
Hoshi T et al., “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound”, IEEE Transactions on Haptics, IEEE, USA, (Jul. 1, 2010), vol. 3, No. 3, ISSN 1939-1412, pp. 155-165.
Hoshi, T., Development of Aerial-Input and Aerial-Tactile-Feedback System, IEEE World Haptics Conference 2011, p. 569-573.
Hoshi, T., Handwriting Transmission System Using Noncontact Tactile Display, IEEE Haptics Symposium 2012 pp. 399-401.
Hoshi, T., Non-contact Tactile Sensation Synthesized by Ultrasound Transducers, Third Joint Euro haptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 2009 (5 pages).
Hoshi, T., Touchable Holography, SIGGRAPH 2009, New Orleans, Louisiana, Aug. 3-7, 2009. (1 Page).
Hua J, Qin H., Haptics-based dynamic implicit solid modeling, IEEE Trans Vis Comput Graph. Sep.-Oct. 2004;10(5):574-86.
Iddan, et al., “3D Imaging in the Studio (And Elsewhwere . . . ” Apr. 2001, 3DV systems Ltd., Yokneam, Isreal, www.3dvsystems.com.il, 9 pages.
Imaginary Phone: Learning Imaginary Interfaces by Transferring Spatial Memory From a Familiar Device Sean Gustafson, Christian Holz and Patrick Baudisch. UIST 2011. (10 pages).
International Preliminary Report on Patentability and Written Opinion issued in corresponding PCT/US2017/035009, dated Dec. 4, 2018, 8 pages.
International Preliminary Report on Patentability for Application No. PCT/EP2017/069569 dated Feb. 5, 2019, 11 pages.
International Search Report and Written Opinion for Application No. PCT/GB2018/053738, dated Apr. 11, 2019, 14 pages.
International Search Report and Written Opinion for Application No. PCT/GB2018/053739, dated Jun. 4, 2019, 16 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/050969, dated Jun. 13, 2019, 15 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/051223, dated Aug. 8, 2019, 15 pages.
International Search Report and Written Opinion for Application No. PCT/GB2019/052510, dated Jan. 14, 2020, 25 pages.
ISR and WO for PCT/GB2020/050013 (Jul. 13, 2020) (20 pages).
ISR and WO for PCT/GB2020/050926 (Jun. 2, 2020) (16 pages).
ISR and WO for PCT/GB2020/052544 (Dec. 18, 2020) (14 pages).
ISR and WO for PCT/GB2020/052545 (Jan. 27, 2021) (14 pages).
ISR and WO for PCT/GB2020/052829 (Feb. 1, 2021) (15 pages).
Iwamoto et al. (2008), Non-contact Method for Producing Tactile Sensation Using Airborne Ultrasound, EuroHaptics, pp. 504-513.
Iwamoto et al., Airborne Ultrasound Tactile Display: Supplement, The University of Tokyo 2008 (2 pages).
Iwamoto T et al, “Two-dimensional Scanning Tactile Display using Ultrasound Radiation Pressure”, Haptic Interfaces for Virtual Environment and Teleoperator Systems, 20 06 14th Symposium on Alexandria, VA, USA Mar. 25-26, 2006, Piscataway, NJ, USA,IEEE, (Mar. 25, 2006), ISBN 978-1-4244-0226-7, pp. 57-61.
Jager et al., “Air-Coupled 40-KHZ Ultrasonic 2D-Phased Array Based on a 3D-Printed Waveguide Structure”, 2017 IEEE, 4 pages.
Japanese Office Action (with English language translation) for Application No. 2017-514569, dated Mar. 31, 3019, 10 pages.
Jonathan Taylor et al., Articulated Distance Fields for Ultra-Fast Tracking of Hands Interacting, ACM Transactions on Graphics, vol. 36, No. 4, Article 244, Publication Date: Nov. 2017, pp. 1-12.
Jonathan Taylor et al., Efficient and Precise Interactive Hand Tracking Through Joint, Continuous Optimization of Pose and Correspondences, SIGGRAPH '16 Technical Paper, Jul. 24-28, 2016, Anaheim, CA, ISBN: 978-1-4503-4279-87/16/07, pp. 1-12.
Jonathan Tompson et al., Real-Time Continuous Pose Recovery of Human Hands Using Convolutional Networks, ACM Trans. Graph. 33, 5, Article 169, Aug. 2014, pp. 1-10.
K. Jia, Dynamic properties of micro-particles in ultrasonic transportation using phase-controlled standing waves, J. Applied Physics 116, n. 16 (2014) (12 pages).
Kaiming He et al., Deep Residual Learning for Image Recognition, http://image-net.org/challenges/LSVRC/2015/ and http://mscoco.org/dataset/#detections-challenge2015, Dec. 10, 2015, pp. 1-12.
Kamakura, T. and Aoki, K. (2006) “A Highly Directional Audio System using a Parametric Array in Air” WESPAC IX 2006 (8 pages).
Kolb, et al., “Time-of-Flight Cameras in Computer Graphics,” Computer Graphics forum, vol. 29 (2010), No. 1, pp. 141-159.
Konstantinos Bousmalis et al., Domain Separation Networks, 29th Conference on Neural Information Processing Sysgtems (NIPS 2016), Barcelona, Spain. Aug. 22, 2016, pp. 1-15.
Krim, et al., “Two Decades of Array Signal Processing Research—The Parametric Approach”, IEEE Signal Processing Magazine, Jul. 1996, pp. 67-94.
Lang, Robert, “3D Time-of-Flight Distance Measurement with Custom Solid-State Image Sensors in CMOS/CCD—Technology”, A dissertation submitted to Department of EE and CS at Univ. of Siegen, dated Jun. 28, 2000, 223 pages.
Large et al.,Feel the noise: Mid-air ultrasound haptics as a novel human-vehicle interaction paradigm, Applied Ergonomics (2019) (10 pages).
Li, Larry, “Time-of-Flight Camera—An Introduction,” Texas Instruments, Technical White Paper, SLOA190B—Jan. 2014 Revised May 2014, 10 pages.
Light, E.D., Progress in Two Dimensional Arrays for Real Time Volumetric Imaging, 1998 (17 pages).
M. Barmatz et al, “Acoustic radiation potential on a sphere in plane, cylindrical, and spherical standing wave fields”, The Journal of the Acoustical Society of America, New York, NY, US, (Mar. 1, 1985), vol. 77, No. 3, pp. 928-945, XP055389249.
M. Toda, New Type of Matching Layer for Air-Coupled Ultrasonic Transducers, IEEE Transactions on Ultrasonics, Ferroelecthcs, and Frequency Control, vol. 49, No. 7, Jul. 2002 (8 pages).
Mahdi Rad et al., Feature Mapping for Learning Fast and Accurate 3D Pose Inference from Synthetic Images, Mar. 26, 2018, pp. 1-14.
Marco A B Andrade et al, “Matrix method for acoustic levitation simulation”, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, IEEE, US, (Aug. 1, 2011), vol. 58, No. 8, ISSN 0885-3010, pp. 1674-1683.
Marin, About LibHand, LibHand—A Hand Articulation Library, www.libhand.org/index.html, Mar. 26, 2020, pp. 1-2; www.libhand.org/download.html, 1 page; www.libhand.org/examples.html, pp. 1-2.
Markus Oberweger et al., DeepPrior++: Improving Fast and Accurate 3D Hand Pose Estimation, Aug. 28, 2017, pp. 1-10.
Markus Oberweger et al., Hands Deep in Deep Learning for Hand Pose Estimation, Dec. 2, 2016, pp. 1-10.
Marshall, M ., Carter, T., Alexander, J., & Subramanian, S. (2012). Ultratangibles: creating movable tangible objects on interactive tables. In Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems, (pp. 2185-2188).
Marzo et al., Holographic acoustic elements for manipulation of levitated objects, Nature Communications DOI: I0.1038/ncomms9661 (2015) (7 pages).
Meijster, A., et al., “A General Algorithm for Computing Distance Transforms in Linear Time,” Mathematical Morphology and its Applications to Image and Signal Processing, 2002, pp. 331-340.
Mingzhu Lu et al. (2006) Design and experiment of 256-element ultrasound phased array for noninvasive focused ultrasound surgery, Ultrasonics, vol. 44, Supplement, Dec. 22, 2006, pp. e325-e330.
Mueller, GANerated Hands for Real-Time 3D Hand Tracking from Monocular RGB, Eye in-Painting with Exemplar Generative Adverserial Networks, pp. 49-59 (Jun. 1, 2018).
Nina Gaissert, Christian Wallraven, and Heinrich H. Bulthoff, “Visual and Haptic Perceptual Spaces Show High Similarity in Humans”, published to Journal of Vision in 2010, available at http://www.journalofvision.org/content/10/11/2 and retrieved on Apr. 22, 2020 (Year: 2010), 20 pages.
Notice of Allowance dated Apr. 22, 2020 for U.S. Appl. No. 15/671,107 (pp. 1-5).
Notice of Allowance dated Dec. 19, 2018 for U.S. Appl. No. 15/665,629 (pp. 1-9).
Notice of Allowance dated Dec. 21, 2018 for U.S. Appl. No. 15/983,864 (pp. 1-7).
Notice of Allowance dated Feb. 10, 2020, for U.S. Appl. No. 16/160,862 (pp. 1-9).
Notice of Allowance dated Feb. 7, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-7).
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 15/851,214 (pp. 1-9).
Notice of Allowance dated Jul. 31, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-9).
Notice of Allowance dated Jun. 17, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-9).
Notice of Allowance dated May 30, 2019 for U.S. Appl. No. 15/966,213 (pp. 1-9).
Notice of Allowance dated Oct. 1, 2020 for U.S. Appl. No. 15/897,804 (pp. 1-9).
Notice of Allowance dated Oct. 16, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-7).
Notice of Allowance dated Oct. 30, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-9).
Notice of Allowance dated Oct. 6, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-8).
Notice of Allowance dated Sep. 30, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-10).
Notice of Allowance in U.S. Appl. No. 15/210,661 dated Jun. 17, 2020 (22 pages).
Obrist et al., Emotions Mediated Through Mid-Air Haptics, CHI 2015, Apr. 18-23, 2015, Seoul, Republic of Korea. (10 pages).
Obrist et al., Talking about Tactile Experiences, CHI 2013, Apr. 27-May 2, 2013 (10 pages).
Office Action dated Apr. 8, 2020, for U.S. Appl. No. 16/198,959 (pp. 1-17).
Office Action dated Apr. 16, 2020 for U.S. Appl. No. 15/839,184 (pp. 1-8).
Office Action dated Apr. 17, 2020 for U.S. Appl. No. 16/401,148 (pp. 1-15).
Office Action dated Apr. 18, 2019 for U.S. Appl. No. 16/296,127 (pp. 1-6).
Office Action dated Apr. 28, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-12).
Office Action dated Apr. 29, 2020 for U.S. Appl. No. 16/374,301 (pp. 1-18).
Office Action dated Apr. 4, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10).
Office Action dated Aug. 22, 2019 for U.S. Appl. No. 16/160,862 (pp. 1-5).
Office Action dated Dec. 11, 2019 for U.S. Appl. No. 15/959,266 (pp. 1-15).
Office Action dated Dec. 7, 2020 for U.S. Appl. No. 16/563,608 (pp. 1-8).
Office Action dated Feb. 20, 2019 for U.S. Appl. No. 15/623,516 (pp. 1-8).
Office Action dated Feb. 25, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-7).
Office Action dated Feb. 7, 2020 for U.S. Appl. No. 16/159,695 (pp. 1-8).
Office Action dated Jan. 10, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-6).
Office Action dated Jan. 29, 2020 for U.S. Appl. No. 16/198,959 (p. 1-6).
Office Action dated Jul. 10, 2019 for U.S. Appl. No. 15/210,661 (pp. 1-12).
Office Action dated Jul. 26, 2019 for U.S. Appl. No. 16/159,695 (pp. 1-8).
Office Action dated Jul. 9, 2020 for U.S. Appl. No. 16/228,760 (pp. 1-17).
Office Action dated Jun. 19, 2020 for U.S. Appl. No. 16/699,629 (pp. 1-12).
Office Action dated Jun. 25, 2020 for U.S. Appl. No. 16/228,767 (pp. 1-27).
Office Action dated Mar. 11, 2021 for U.S. Appl. No. 16/228,767 (pp. 1-23).
Office Action dated Mar. 20, 2020 for U.S. Appl. No. 15/210,661 (pp. 1-10).
Office Action dated May 16, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-7).
Office Action dated May 18, 2020 for U.S. Appl. No. 15/960,113 (pp. 1-21).
Office Action dated Oct. 17, 2019 for U.S. Appl. No. 15/897,804 (pp. 1-10).
Office Action dated Oct. 31, 2019 for U.S. Appl. No. 15/671,107 (pp. 1-6).
Office Action dated Oct. 7, 2019 for U.S. Appl. No. 15/396,851 (pp. 1-9).
Office Action dated Sep. 18, 2020 for U.S. Appl. No. 15/396,851 (pp. 1-14).
Office Action dated Sep. 21, 2020 for U.S. Appl. No. 16/198,959 (pp. 1-17).
OGRECave/ogre—GitHub: ogre/Samples/Media/materials at 7de80a7483f20b50f2b10d7ac6de9d9c6c87d364, Mar. 26, 2020, 1 page.
Optimal regularisation for acoustic source reconstruction by inverse methods, Y. Kim, P.A. Nelson, Institute of Sound and Vibration Research, University of Southampton, Southampton, SO17 1BJ, UK; 25 pages.
Oscar Martínez-Graullera et al, “2D array design based on Fermat spiral for ultrasound imaging”, Ultrasonics, (Feb. 1, 2010), vol. 50, No. 2, ISSN 0041-624X, pp. 280-289, XP055210119.
Partial International Search Report for Application No. PCT/GB2018/053735, dated Apr. 12, 2019, 14 pages.
Partial ISR for Application No. PCT/GB2020/050013 dated May 19, 2020 (16 pages).
PCT Partial International Search Report for Application No. PCT/GB2018/053404 dated Feb. 25, 2019, 13 pages.
Péter Tamás Kovács et al, “Tangible Holographic 3D Objects with Virtual Touch”, Interactive Tabletops & Surfaces, ACM, 2 Penn Plaza, Suite 701 New York NY 10121-0701 USA, (Nov. 15, 2015), ISBN 978-1-4503-3899-8, pp. 319-324.
Phys.org, Touchable Hologram Becomes Reality, Aug. 6, 2009, by Lisa Zyga (2 pages).
Pompei, F.J. (2002), “Sound from Ultrasound: The Parametric Array as an Audible Sound Source”, Massachusetts Institute of Technology (132 pages).
Rocchesso et al., Accessing and Selecting Menu Items by In-Air Touch, ACM CHItaly'19, Sep. 23-25, 2019, Padova, Italy (9 pages).
Schmidt, Ralph, “Multiple Emitter Location and Signal Parameter Estimation” IEEE Transactions of Antenna and Propagation, vol. AP-34, No. 3, Mar. 1986, pp. 276-280.
Sean Gustafson et al., “Imaginary Phone”, Proceedings of the 24th Annual ACM Symposium on User Interface Software and Techology: Oct. 16-19, 2011, Santa Barbara, CA, USA, ACM, New York, NY, Oct. 16, 2011, pp. 283-292, XP058006125, DOI: 10.1145/2047196.2047233, ISBN: 978-1-4503-0716-1.
Search report and Written Opinion of ISA for PCT/GB2015/050417 dated Jul. 8, 2016 (20 pages).
Search report and Written Opinion of ISA for PCT/GB2015/050421 dated Jul. 8, 2016 (15 pages).
Search report and Written Opinion of ISA for PCT/GB2017/050012 dated Jun. 8, 2017. (18 pages).
Search Report by EPO for EP 17748466 dated Jan. 13, 2021 (16 pages).
Search Report for GB1308274.8 dated Nov. 11, 2013. (2 pages).
Search Report for GB1415923.0 dated Mar. 11, 2015. (1 page).
Search Report for PCT/GB/2017/053729 dated Mar. 15, 2018 (16 pages).
Search Report for PCT/GB/2017/053880 dated Mar. 21, 2018. (13 pages).
Search report for PCT/GB2014/051319 dated Dec. 8, 2014 (4 pages).
Search report for PCT/GB2015/052507 dated Mar. 11, 2020 (19 pages).
Search report for PCT/GB2015/052578 dated Oct. 26, 2015 (12 pages).
Search report for PCT/GB2015/052916 dated Feb. 26, 2020 (18 pages).
Search Report for PCT/GB2017/052332 dated Oct. 10, 2017 (12 pages).
Search report for PCT/GB2018/051061 dated Sep. 26, 2018 (17 pages).
Search report for PCT/US2018/028966 dated Jul. 13, 2018 (43 pages).
Sergey Ioffe et al., Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariat Shift, Mar. 2, 2015, pp. 1-11.
Seungryul, Pushing the Envelope for RGB-based Dense 3D Hand Pose Estimation for RGB-based Desne 3D Hand Pose Estimation via Neural Rendering, arXiv:1904.04196v2 [cs.CV] Apr. 9, 2019 (5 pages).
Shakeri, G., Williamson, J. H. and Brewster, S. (2018) May the Force Be with You: Ultrasound Haptic Feedback for Mid-Air Gesture Interaction in Cars. In: 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI 2018) (11 pages).
Shanxin Yuan et al., BigHand2.2M Bechmark: Hand Pose Dataset and State of the Art Analysis, Dec. 9, 2017, pp. 1-9.
Shome Subhra Das, Detectioin of Self Intersection in Synthetic Hand Pose Generators, 2017 Fifteenth IAPR International Conference on Machine Vision Applications (MVA), Nagoya University, Nagoya, Japan, May 8-12, 2017, pp. 354-357.
Sixth Sense webpage, http://www.pranavmistry.com/projects/sixthsense/ Accessed Nov. 30, 2018, 7 pages.
Stan Melax et al., Dynamics Based 3D Skeletal Hand Tracking, May 22, 2017, pp. 1-8.
Steve Guest et al., “Audiotactile interactions in roughness perception”, Exp. Brain Res (2002) 146:161-171, DOI 10.1007/s00221-002-1164-z, /Accepted: May 16, 2002/Published online: Jul. 26, 2002, Springer-Verlag 2002, (11 pages).
Sylvia Gebhardt, Ultrasonic Transducer Arrays for Particle Manipulation (date unknown) (2 pages).
Takahashi Dean: “Ultrahaptics shows off sense of touch in virtual reality”, Dec. 10, 2016 (Dec. 10, 2016), XP055556416, Retrieved from the Internet: URL: https://venturebeat.com/2016/12/10/ultrahaptics-shows-off-sense-of-touch-in-virtual-reality/ [retrieved on Feb. 13, 2019] 4 pages.
Takahashi, M. et al., Large Aperture Airborne Ultrasound Tactile Display Using Distributed Array Units, SICE Annual Conference 2010 p. 359-62.
Takayuki et al., “Noncontact Tactile Display Based on Radiation Pressure of Airborne Ultrasound” IEEE Transactions on Haptics vol. 3, No. 3, p. 165 (2010).
Teixeira, et al., “A brief introduction to Microsoft's Kinect Sensor,” Kinect, 26 pages, retrieved Nov. 2018.
Toby Sharp et al., Accurate, Robust, and Flexible Real-time Hand Tracking, CHI '15, Apr. 18-23, 2015, Seoul, Republic of Korea, ACM 978-1-4503-3145-6/15/04, pp. 1-10.
Tom Carter et al, “UltraHaptics: Multi-Point Mid-Air Haptic Feedback for Touch Surfaces”, Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, UIST'13, New York, New York, USA, (Jan. 1, 2013), ISBN 978-1-45-032268-3, pp. 505-514.
Tom Nelligan and Dan Kass, Intro to Ultrasonic Phased Array (date unknown) (8 pages).
Vincent Lepetit et al., Model Based Augmentation and Testing of an Annotated Hand Pose Dataset, ResearchGate, https://www.researchgate.net/publication/307910344, Sep. 2016, 13 pages.
Wang et al., Device-Free Gesture Tracking Using Acoustic Signals, ACM MobiCom '16, pp. 82-94 (13 pages).
Wilson et al., Perception of Ultrasonic Haptic Feedback on the Hand: Localisation and Apparent Motion, CHI 2014, Apr. 26-May 1, 2014, Toronto, Ontario, Canada. (10 pages).
Wooh et al., “Optimum beam steering of linear phased arays,” Wave Motion 29 (1999) pp. 245-265, 21 pages.
Xin Cheng et al, “Computation of the acoustic radiation force on a sphere based on the 3-D FDTD method”, Piezoelectricity, Acoustic Waves and Device Applications (SPAWDA), 2010 Symposium on, IEEE, (Dec. 10, 2010), ISBN 978-1-4244-9822-2, pp. 236-239.
Xu Hongyi et al, “6-DoF Haptic Rendering Using Continuous Collision Detection between Points and Signed Distance Fields”, IEEE Transactions on Haptics, IEEE, USA, vol. 10, No. 2, ISSN 1939-1412, (Sep. 27, 2016), pp. 151-161, (Jun. 16, 2017).
Yang Ling et al, “Phase-coded approach for controllable generation of acoustical vortices”, Journal of Applied Physics, American Institute of Physics, US, vol. 113, No. 15, ISSN 0021-8979, (Apr. 21, 2013), pp. 154904-154904.
Yarin Gal et al., Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning, Oct. 4, 2016, pp. 1-12, Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 2016, JMLR: W&CP vol. 48.
Yaroslav Ganin et al., Domain-Adversarial Training of Neural Networks, Journal of Machine Learning Research 17 (2016) 1-35, submitted May 2015; published Apr. 2016.
Yaroslav Ganin et al., Unsupervised Domain Adaptataion by Backpropagation, Skolkovo Institute of Science and Technology (Skoltech), Moscow Region, Russia, Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015, JMLR: W&cp vol. 37, copyright 2015 by the author(s), 11 pages.
Yoshino, K. and Shinoda, H. (2013), “Visio Acoustic Screen for Contactless Touch Interface with Tactile Sensation”, University of Tokyo (5 pages).
Zeng, Wejun, “Microsoft Kinect Sensor and Its Effect,” IEEE Multimedia, Apr.-Jun. 2012, 7 pages.
Brian Kappus and Ben Long, Spatiotemporal Modulation for Mid-Air Haptic Feedback from an Ultrasonic Phased Array, ICSV25, Hiroshima, Jul. 8-12, 2018, 6 pages.
Hoshi et al.,Tactile Presentation by Airborne Ultrasonic Oscillator Array, Proceedings of Robotics and Mechatronics Lecture 2009, Japan Society of Mechanical Engineers; May 24, 2009 (5 pages).
ISR & WO for PCT/GB2020/052545 (Jan. 27, 2021) 14 pages.
ISR for PCT/GB2020/052546 (Feb. 23, 2021) (14 pages).
ISR for PCT/GB2020/053373 (Mar. 26, 2021) (16 pages).
Notice of Allowance dated Apr. 20, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-5).
Notice of Allowance dated Jun. 10, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-9).
Notice of Allowance dated Jun. 25, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-10).
Office Action dated Jun. 25, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-5).
Office Action dated Mar. 31, 2021 for U.S. Appl. No. 16/228,760 (pp. 1-21).
Office Action dated May 13, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9).
Office Action dated May 14, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-6).
EPO Communication for Application 18 811 906.9 (dated Nov. 29, 2021) (15 pages).
EPO Examination Report 17 748 4656.4 (dated Jan. 12, 2021) (16 pages).
Gareth Young et al.. Designing Mid-Air Haptic Gesture Controlled User Interfaces for Cars, PACM on Human-Computer Interactions, Jun. 2020 (24 pages).
ISR and WO for PCT/GB2020/052829 (Feb. 10, 2021) (15 pages).
ISR and WO for PCT/GB2021/052415 (Dec. 22, 2021) (16 pages).
Mohamed Yacine Tsalamlal, Non-Intrusive Haptic Interfaces: State-of-the Art Survey, HAID 2013, LNCS 7989, pp. 1-9, 2013.
Office Action (Non-Final Rejection) dated Jan. 21, 2022 for U.S. Appl. No. 17/068,834 (pp. 1-12).
Office Action (Non-Final Rejection) dated Jan. 24, 2022 for U.S. Appl. No. 16/228,767 (pp. 1-22).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Jan. 18, 2022 for U.S. Appl. No. 16/899,720 (pp. 1-2).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 11, 2022 for U.S. Appl. No. 16/228,760 (pp. 1-8).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Feb. 28, 2022 for U.S. Appl. No. 17/068,825 (pp. 1-7).
EPO Examination Search Report 17 702 910.5 (dated Jun. 23, 2021).
Office Action dated Oct. 29, 2021 for U.S. Appl. No. 16/198,959 (pp. 1-7).
Notice of Allowance dated Nov. 5, 2021 for U.S. Appl. No. 16/899,720 (pp. 1-9).
Corrected Notice of Allowability dated Nov. 24, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-5).
International Search Report and Written Opinion for App. No. PCT/GB2021/051590, dated Nov. 11, 2021, 20 pages.
Anonymous: “How does Ultrahaptics technology work?—Ultrahaptics Developer Information”, Jul. 31, 2018 (Jul. 31, 2018), XP055839320, Retrieved from the Internet: URL:https://developer.ultrahaptics.com/knowledgebase/haptics-overview/ [retrieved on Sep. 8, 2021].
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Dec. 14, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-8).
Office Action (Non-Final Rejection) dated Dec. 20, 2021 for U.S. Appl. No. 17/195,795 (pp. 1-7).
EPO Application 18 725 358.8 Examination Report dated Sep. 22, 2021.
EPO 21186570.4 Extended Search Report dated Oct. 29, 2021.
A. B. Vallbo, Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects, Journal of Physiology (1995), 483.3, pp. 783-795.
Amanda Zimmerman, The gentle touch receptors of mammalian skin, Science, Nov. 21, 2014, vol. 346 Issue 6212, p. 950.
Corrected Notice of Allowability dated Aug. 9, 2021 for U.S. Appl. No. 15/396,851 (pp. 1-6).
Henrik Bruus, Acoustofluidics 2: Perturbation theory and ultrasound resonance modes, Lab Chip, 2012, 12, 20-28.
Hyunjae Gil, Whiskers: Exploring the Use of Ultrasonic Haptic Cues on the Face, CHI 2018, Apr. 21-26, 2018, Montréal, QC, Canada.
India Morrison, The skin as a social organ, Exp Brain Res (2010) 204:305-314.
JonasChatel-Goldman, Touch increases autonomic coupling between romantic partners, Frontiers in Behavioral Neuroscience Mar. 2014, vol. 8, Article 95.
Kai Tsumoto, Presentation of Tactile Pleasantness Using Airborne Ultrasound, 2021 IEEE World Haptics Conference (WHC) Jul. 6-9, 2021. Montreal, Canada.
Keisuke Hasegawa, Electronically steerable ultrasound-driven long narrow airstream, Applied Physics Letters 111, 064104 (2017).
Keisuke Hasegawa, Midair Ultrasound Fragrance Rendering, IEEE Transactions on Visualization and Computer Graphics, vol. 24, No. 4, Apr. 2018 1477.
Keisuke Hasegawa,,Curved acceleration path of ultrasound-driven airflow, J. Appl. Phys. 125, 054902 (2019).
Line S Loken, Coding of pleasant touch by unmyelinated afferents in humans, Nature Neuroscience vol. 12 [ No. 5 [ May 2009 547.
Mariana von Mohr, The soothing function of touch: affective touch reduces feelings of social exclusion, Scientific Reports, 7: 13516, Oct. 18, 2017.
Mitsuru Nakajima, Remotely Displaying Cooling Sensation via Ultrasound-Driven Air Flow, Haptics Symposium 2018, San Francisco, USA p. 340.
Mohamed Yacine Tsalamlal, Affective Communication through Air Jet Stimulation: Evidence from Event-Related Potentials, International Journal of Human-Computer Interaction 2018.
Notice of Allowance dated Jul. 22, 2021 for U.S. Appl. No. 16/600,500 (pp. 1-9).
Office Action dated Aug. 10, 2021 for U.S. Appl. No. 16/564,016 (pp. 1-14).
Office Action dated Aug. 19, 2021 for U.S. Appl. No. 17/170,841 (pp. 1-9).
Office Action dated Aug. 9, 2021 for U.S. Appl. No. 17/068,825 (pp. 1-9).
Office Action dated Sep. 16, 2021 for U.S. Appl. No. 16/600,496 (pp. 1-8).
Office Action dated Sep. 24, 2021 for U.S. Appl. No. 17/080,840 (pp. 1-9).
Rochelle Ackerley, Human C-Tactile Afferents Are Tuned to the Temperature of a Skin-Stroking Caress, J. Neurosci., Feb. 19, 2014, 34(8):2879-2883.
Ryoko Takahashi, Tactile Stimulation by Repetitive Lateral Movement of Midair Ultrasound Focus, Journal of Latex Class Files, vol. 14, No. 8, Aug. 2015.
Stanley J. Bolanowski, Hairy Skin: Psychophysical Channels and Their Physiological Substrates, Somatosensory and Motor Research, vol. 11. No. 3, 1994, pp. 279-290.
Stefan G. Lechner, Hairy Sensation, Physiology 28: 142-150, 2013.
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 16/563,608 (pp. 1-2).
Supplemental Notice of Allowability dated Jul. 28, 2021 for U.S. Appl. No. 17/092,333 (pp. 1-2).
Takaaki Kamigaki, Noncontact Thermal and Vibrotactile Display Using Focused Airborne Ultrasound, EuroHaptics 2020, LNCS 12272, pp. 271-278, 2020.
Tomoo Kamakura, Acoustic streaming induced in focused Gaussian beams, J. Acoust. Soc. Am. 97 (5), Pt. 1, May 1995 p. 2740.
Uta Sailer, How Sensory and Affective Attributes Describe Touch Targeting C-Tactile Fibers, Experimental Psychology (2020), 67(4), 224-236.
Communication Pursuant to Article 94(3) EPC for EP 19723179.8 (dated Feb. 15, 2022), 10 pages.
EPO ISR and WO for PCT/GB2022/050204 (Apr. 7, 2022) (15 pages).
https://radiopaedia.org/articles/physical-principles-of-ultrasound-1?lang=gb (Accessed May 29, 2022).
IN 202047026493 Office Action dated Mar. 8, 2022, 6 pages.
ISR & WO For PCT/GB2021/052946, 15 pages.
Office Action (Final Rejection) dated Mar. 14, 2022 for U.S. Appl. No. 16/564,016 (pp. 1-12).
Office Action (Non-Final Rejection) dated Mar. 4, 2022 for U.S. Appl. No. 16/404,660 (pp. 1-5).
Office Action (Non-Final Rejection) dated Mar. 15, 2022 for U.S. Appl. No. 16/144,474 (pp. 1-13).
Office Action (Non-Final Rejection) dated Apr. 1, 2022 for U.S. Appl. No. 16/229,091 (pp. 1-10).
Office Action (Non-Final Rejection) dated May 2, 2022 for U.S. Appl. No. 17/068,831 (pp. 1-10).
Office Action (Notice of Allowance and Fees Due (PTOL-85)) dated Mar. 7, 2022 for U.S. Appl. No. 16/600,496 (pp. 1-5).
Related Publications (1)
Number Date Country
20210170447 A1 Jun 2021 US
Provisional Applications (2)
Number Date Country
62789261 Jan 2019 US
62665867 May 2018 US
Continuations (1)
Number Date Country
Parent 16401148 May 2019 US
Child 17164345 US