The present disclosure relates to a blood access device with integrated blood diagnostics.
Catheters are frequently utilized to administer fluids into and out of the body. Patients in a variety of settings, including in hospitals and in home care, receive fluids, pharmaceuticals, and blood products via a vascular access device inserted into a patient's vascular system. Catheters of various types and sizes have been used extensively in a variety of procedures including, but not limited to, treating an infection, providing anesthesia or analgesia, providing nutritional support, treating cancerous growths, maintaining blood pressure and heart rhythm, and many other clinical uses. A common vascular access device is a plastic catheter that is inserted into a patient's vein. The catheter length may vary from a few centimeters for peripheral access to many centimeters for central access. The catheter is commonly incorporated into a catheter adapter to aid in the ease of use, accessibility, and utility of the catheter. A catheter adapter may be adapted to house one end of the catheter such that one end of the catheter is supported by the catheter adapter and the body and tip of the catheter extends beyond a first end of the catheter adapter. A catheter adapter generally further includes a second end adapted to receive additional infusion components for use with the catheter. For example, the second end of a catheter adapter may include a set of threads for attaching an intravenous line or for coupling a syringe to the catheter adapter thereby providing access to the patient's vasculature via the attached catheter.
The catheter may be inserted transcutaneously. When inserted transcutaneously, the insertion of the catheter is commonly aided by an introducer needle. The introducer needle is commonly housed inside the lumen of the catheter such that the gauge of the needle approximates the inner diameter of the catheter. The needle is positioned within the catheter such that the needle tip extends beyond the tip of the catheter whereby the needle is used to penetrate the patient's vein and provide an opening for insertion of the catheter.
In order to verify proper placement of the introducer needle and/or the catheter in the blood vessel, a clinician generally confirms that there is “flashback” of blood in a flashback chamber of the catheter assembly. Once placement of the needle has been confirmed, the clinician may temporarily occlude flow in the vasculature and remove the needle, leaving the catheter in place for future blood withdrawal, fluid infusion, or probe access.
Recent developments in the peripheral intravenous catheter (PIVC) field have led to the emergence of technologies designed to facilitate blood draw and an in-dwelling PIVC. These devices have focused on the ability to reliably collect a high-quality blood sample and reduce hemolysis. The main method by which these devices work is by inserting a guide wire, probe, tube, or other instrument through the lumen of the catheter. This arrangement creates a fluid path through any thrombus or fibrin that may be occluding the tip of the catheter. A syringe or vacutainer may then be used to collect blood samples without needing to subject the patient to additional needle sticks.
Point-of-care (POC) testing includes the use of a portable testing system that can quickly deliver results using small volume blood samples, such as for glucose testing. Blood samples are typically collected via finger pricks or through existing vascular access. However, the majority of vascular access devices are not optimized for the collection of small blood samples. The current field is moving toward personalized healthcare with the goal of POC testing that can provide rapid diagnostic results with a smaller volume of blood. There is a current need to provide POC blood sample collection options from a PIVC in anticipation for increased POC diagnostic testing.
The subject matter claimed herein is not limited to embodiments that solve any disadvantages or that operate only in environments such as those described above. Rather, this background is only provided to illustrate one example technology area where some implementations described herein may be practiced.
In one aspect or embodiment, a blood sample collection system includes a blood access device having a fluid flow path and a diagnostic device configured to receive a sample of blood, where the diagnostic device is in fluid communication with the fluid flow path, and where the diagnostic device is configured to be detached from the blood access device.
The blood access device may include a housing, an instrument disposed within the housing, and an advancement element, where in response to movement of the advancement element with respect to the housing, the instrument is configured to advance beyond a distal end of the housing.
The diagnostic device may be configured to receive a sample volume of 0.3 to 500 microliters. The diagnostic device may be configured to receive a sample volume of 0.3 to 100 microliters. The blood access device may be a peripheral intravenous catheter. The blood access device may include extension tubing. The diagnostic device may be a diagnostic test cartridge.
The blood access device may include one of a cannula and septum, with the diagnostic test cartridge including the other of the cannula and the septum, and the cannula configured to extend through the septum to place the fluid flow path of the blood access device in fluid communication with the diagnostic test cartridge. A body of the diagnostic test cartridge may be cylindrical. A body of the diagnostic test cartridge may be planar.
The advancement element may include a cannula and the diagnostic device may include a septum, with the cannula configured to extend through the septum to place the fluid flow path of the blood access device in fluid communication with the diagnostic device. The housing of the blood access device may include a distal opening configured to receive at least a portion of the diagnostic device. The instrument may include a flow tube or a helical coil. The diagnostic device may be a diagnostic test strip, a lateral flow assay, or a visual indicator.
In a further aspect or embodiment, a blood sample collection system includes a medical connector having a fluid flow path and a diagnostic device configured to receive a sample of blood, where the diagnostic device is in fluid communication with the fluid flow path, and where the diagnostic device is configured to be detached from the medical connector.
The medical connector may include one of a male luer connector and female luer connector, with the diagnostic device including the other of the male luer connector and the female luer connector. The medical connector may be a needle-free medical connector. The diagnostic device may be a diagnostic test cartridge.
The above-mentioned and other features and advantages of this disclosure, and the manner of attaining them, will become more apparent, and the disclosure itself will be better understood by reference to the following descriptions of embodiments of the disclosure taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. The exemplifications set out herein illustrate exemplary embodiments of the disclosure, and such exemplifications are not to be construed as limiting the scope of the disclosure in any manner.
Spatial or directional terms, such as “left”, “right”, “inner”, “outer”, “above”, “below”, and the like, are not to be considered as limiting as the invention can assume various alternative orientations.
For purposes of the description hereinafter, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal”, and derivatives thereof shall relate to the invention as it is oriented in the drawing figures. However, it is to be understood that the invention may assume various alternative variations, except where expressly specified to the contrary. It is also to be understood that the specific devices illustrated in the attached drawings, and described in the following specification, are simply exemplary aspects of the invention.
Unless otherwise indicated, all ranges or ratios disclosed herein are to be understood to encompass the beginning and ending values and any and all subranges or subratios subsumed therein. For example, a stated range or ratio of “1 to 10” should be considered to include any and all subranges or subratios between (and inclusive of) the minimum value of 1 and the maximum value of 10; that is, all subranges or subratios beginning with a minimum value of 1 or more and ending with a maximum value of 10 or less.
The terms “first”, “second”, and the like are not intended to refer to any particular order or chronology, but refer to different conditions, properties, or elements.
As used herein, “at least one of” is synonymous with “one or more of”. For example, the phrase “at least one of A, B, and C” means any one of A, B, or C, or any combination of any two or more of A, B, or C. For example, “at least one of A, B, and C” includes one or more of A alone; or one or more of B alone; or one or more of C alone; or one or more of A and one or more of B; or one or more of A and one or more of C; or one or more of B and one or more of C; or one or more of all of A, B, and C.
Referring to
In one aspect or embodiment, the blood access device 12 includes a housing 16, an instrument 18 disposed within the housing 16, and an advancement element 20. In response to movement of the advancement element 20 with respect to the housing 16, the instrument 18 is configured to advance beyond a distal end of the housing 16. The instrument 18 may be a flow tube, although other suitable arrangements may be utilized. The blood access device 12 may be configured to be connected to a peripheral intravenous catheter, a peripherally-inserted central catheter, or a midline catheter. In one aspect or embodiment, the blood access device 12 is coupled to an indwelling catheter via a needleless connector (not shown). In some aspects or embodiments, the blood access device 12 may be the PIVO™ blood draw device commercially available from Velano Vascular. In one embodiment, the blood access device 12 is the same or similar to the blood draw device shown in U.S. Pat. No. 11,090,461, which is hereby incorporated by reference in its entirety.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In one aspect or embodiment, the diagnostic device 14 is configured to receive a blood sample volume of 0.3 to 500 microliters. In one aspect or embodiment, the diagnostic device 14 is configured to receive a blood sample volume of 0.3 to 100 microliters.
Although the invention has been described in detail for the purpose of illustration based on what is currently considered to be the most practical and preferred embodiments, it is to be understood that such detail is solely for that purpose and that the invention is not limited to the disclosed embodiments, but, on the contrary, is intended to cover modifications and equivalent arrangements that are within the spirit and scope of the appended claims. For example, it is to be understood that the present invention contemplates that, to the extent possible, one or more features of any embodiment can be combined with one or more features of any other embodiment.
The present application claims priority to U.S. Provisional Application No. 63/317,304, entitled “Blood Access Device with Integrated Blood Diagnostics” filed Mar. 7, 2022, the entire disclosure of which is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
63317304 | Mar 2022 | US |