The present invention relates to a blood-based biomarker for cancer.
A biomarker for cancer is useful from the viewpoint of prognosis of cancer present in a human body, prediction of efficacy of an anticancer agent, and the like.
For example, a novel polypeptide that can be used as a cancer-specific biomarker and a specific partial peptide thereof are disclosed in Patent Literature 1. Furthermore, a biomarker for cancer using an expression amount of miRNA as an indicator is disclosed in Patent Literature 2. Furthermore, in Patent Literature 3, a biomarker for detecting liver cancer, consisting of a protein which differs in the present or absent, or the amount thereof between a healthy person and a patient with liver cancer is disclosed.
As described above, various biomarkers for cancer have been suggested. However, at the present moment, there is no reliable blood-based biomarker for determining a state of having cancer occurring in each organ or tissue of a human body, that is, a biomarker for determining a cancer-carrying state. Furthermore, like those of Patent Literatures 1 to 3, many biomarkers consist of a specific peptide or a specific nucleic acid, and thus it is not necessarily found to be easily measurable. Therefore, an object of the present invention is to provide a novel blood-based biomarker for cancer enabling reliable determination and simple measurement of a state of having cancer occurring in each organ or tissue of a human body.
The present invention (1) is a blood-based biomarker for cancer, comprising a specific amino acid group of at least seven kinds of amino acids which essentially include histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine.
The present invention (2) is the blood-based biomarker for cancer according to the present invention (1), wherein the specific amino acid group further includes phenylalanine.
The present invention (3) is the blood-based biomarker for cancer according to the present invention (1) or (2), wherein the cancer is at least one kind of cancer selected from the group consisting of liver cancer, colon cancer, lung cancer, gall bladder cancer, lymph node metastatic cancer (for example, porta hepatis and lymph node metastatic cancer), gastric cancer, and pancreas cancer.
The present invention (4) is a method for collecting data for diagnosing cancer in a subject, and the method includes a step of obtaining analysis results of concentration of each amino acid, which is related to the blood-based biomarker according to any one of the present inventions (1) to (3), in blood collected from the subject.
The present invention (5) is the method according to the present invention (4), further including a graphing step for establishing a radar graph of the concentration of each amino acid.
The present invention (6) is a system for collecting data for diagnosing cancer in a subject, and the system includes a means for obtaining analysis results of concentration of each amino acid, which is related to the blood-based biomarker according to any one of the present inventions (1) to (3), in blood collected from the subject.
The present invention (7) is the system according to the present invention (6), further including a graphing means for establishing a radar graph of the concentration of each amino acid.
The present invention (8) is a method for collecting data for evaluating efficacy of an anticancer agent in a subject, and the method includes a step of obtaining analysis results of concentration of each amino acid, which is related to the blood-based biomarker according to any one of the present inventions (1) to (3), in blood collected from the subject.
The present invention (9) is the method according to the present invention (8), further including a graphing step for establishing a radar graph of the concentration of each amino acid.
The present invention (10) is the method according to the present invention (8) or (9), wherein the anticancer agent is an LAT1 inhibitor agent.
The present invention (11) is a system for collecting data for evaluating efficacy of an anticancer agent in a subject, and the system includes a means for obtaining analysis results of concentration of each amino acid, which is related to the blood-based biomarker according to any one of the present inventions (1) to (3), in blood collected from the subject.
The present invention (12) is the system according to the present invention (11), further including a graphing means for establishing a radar graph of the concentration of each amino acid.
The present invention (13) is the system according to the present invention (11) or (12), wherein the anticancer agent is an LAT1 inhibitor agent.
The present invention (14) is a method for collecting data for determining at least one selected from the group consisting of initiating therapeutics with an anticancer agent, confirming a therapeutic effect, and continuation of therapeutics in a subject, and the method includes a step of obtaining analysis results of concentration of each amino acid, which is related to the blood-based biomarker according to any one of the present invention (1) to (3), in blood collected from the subject.
The present invention (15) is the method according to the present invention (14), further including a graphing step for establishing a radar graph of the concentration of each amino acid.
The present invention (16) is the method according to the present invention (14) or (15), wherein the anticancer agent is an LAT1 inhibitor agent.
The present invention (17) is a system for collecting data for determining at least one selected from the group consisting of initiating therapeutics with an anticancer agent, confirming a therapeutic effect, and continuation of therapeutics in a subject, and the system includes a means for obtaining analysis results of concentration of each amino acid, which is related to the blood-based biomarker according to any one of the present inventions (1) to (3), in blood collected from the subject.
The present invention (18) is the system according to the present invention (17), further including a graphing means for establishing a radar graph of the concentration of each amino acid.
The present invention (19) is the system according to the present invention (17) or (18), wherein the anticancer agent is an LAT1 inhibitor agent.
According to the present invention, it is possible to provide a novel blood-based biomarker for cancer enabling reliable determination and simple measurement of a state of having cancer occurring in each organ or tissue of a human body. Accordingly, based on the present invention, prognosis of cancer present in a human body can be performed with reliability, efficacy for a cancer patient of a pharmaceutical preparation administered to the cancer patient can be determined with reliability, and also prediction of efficacy of an anticancer agent can be effectively made so that development of new pharmaceuticals can be efficiently performed.
[
[
[
[
[
[
[
[
[
[
[
[
The blood-based biomarker for cancer according to the present invention is characterized in that the essential components for analysis consist of histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine (hereinbelow, they may be also referred to as “specific amino acids”). Here, in a cancer cell, neutral amino acid transporters (LAT1 and LAT3) for receiving neutral amino acids are specifically present. In this regard, the neutral amino acid transporter receives not only the aforementioned specific amino acids but also neutral amino acids such as arginine, glycine, alanine, serine, threonine, cysteine, asparagine, asparaginic acid, glutamine, glutamic acid, phenylalanine, lysine, proline, or L-DOPA. Thus, in theory, those amino acids can be also expected to function as a biomarker. However, as a result of repeating numerous tests and experiments, it was found that the combination including at least the aforementioned seven specific amino acids is truly effective as a biomarker for cancer, and it constitutes the gist of the present invention.
Here, the amino acids measured as a biomarker are seven kinds of amino acids, that is, histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine. However, as long as they are treated as an essential component, measurement of other amino acids is not excluded. For example, in addition to the aforementioned seven kinds of amino acids, phenylalanine may be taken as an object to be measured. Examples of candidate amino acids as other object to be measured include alanine, arginine, asparagine, asparaginic acid, cysteine, glutamine, glutamic acid, glycine, lysine, phenylalanine, praline, serine, and threonine.
The biomarker of the present invention is effective for cancer diagnosis in a subject. Here, the expression “cancer diagnosis” is a concept which includes not only the determination of a possibility of having cancer in a subject (testee) but also the determination of progress of cancer (progression and/or malignancy). As for the method for diagnosis of cancer in a subject, specific amino acids in blood collected from a subject (histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine) are first quantified as an essential component. Subsequently, as shown in
Herein, it is desirable that the radar graph is established by using a system equipped with a predetermined program. The system includes a graphing means for establishing a radar graph of the concentration of each amino acid based on the results of analyzing concentration of at least the aforementioned seven specific amino acids in blood, which is collected from a subject. Meanwhile, with the system, the concentration information of the aforementioned seven specific amino acids is obtained, for example, in accordance with input of the results of an analysis (including collecting the information from outside via the Internet or an exclusive line) which has been performed outside. Meanwhile, the system itself may be equipped with a means for analyzing blood, and in such a case, the concentration information of the aforementioned seven specific amino acids can be obtained within the system.
The biomarker of the present invention is effective for determination of pharmaceutical efficacy of an anticancer agent. Specifically, as an essential component, specific amino acids (histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine) present in blood, which is collected from a cancer patient who has been administered with a certain anticancer agent, are quantified. Subsequently, as described above in the section of (Cancer diagnosis in subject), the concentration of those specific amino acids is expressed as a radar graph (radar chart). This procedure is repeated over the elapse of time. As a result, determining of whether or not the size of the radar graph of the cancer patient increases over time enables to determine the compatibility of the administered anticancer agent for treating the cancer patient. Accordingly, the method of the present invention is a simple method allowing determination of the appropriateness of continuous administration of an anticancer agent to the cancer patient.
Furthermore, similarly to the section of (Cancer diagnosis in subject) described above, the pharmaceutical efficacy determination is preferably performed by using a system equipped with a predetermined program. The system includes a graphing means for establishing a radar graph of the concentration of each amino acid based on the results of analyzing concentration of at least the aforementioned seven specific amino acids in blood, which is collected from a cancer patient administered with a certain anticancer agent. Meanwhile, similarly to the section of (Cancer diagnosis in subject) described above, with the system, the concentration information of the aforementioned seven specific amino acids is obtained, for example, in accordance with input of the results of an analysis (including collecting the information from outside via the Internet or an exclusive line) which has been performed outside. Meanwhile, similarly to the section of (Cancer diagnosis in subject) described above, the system itself may be equipped with a means for analyzing blood, and in such a case, the concentration information of the aforementioned seven specific amino acids can be obtained within the system. Furthermore, instead of a single analysis after administering an anticancer agent, performing an analysis several times over the elapse of time after administering an anticancer agent is desirable in that the compatibility of the anticancer agent for treating the cancer patient can be appropriately determined. Thus, from this point of view, the system preferably has a recording means for recording the information over the elapse of time from the same person.
The biomarker of the present invention is effective for development of an anticancer agent. Specifically, as an essential component, specific amino acids (histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine) present in blood collected from a cancer patient who has been administered with a certain candidate anticancer agent component are first quantified in a clinical test. Subsequently, as described above in the section of (Cancer diagnosis in subject), the concentration of those specific amino acids is expressed as a radar graph (radar chart). This procedure is repeated over the elapse of time. As a result, determining of whether or not the size of the radar graph of the cancer patient increases over time enable to determine the efficacy of the administered candidate anticancer agent component.
Furthermore, similarly to the section of (Cancer diagnosis in subject) described above, the development of an anticancer agent is preferably performed by using a system equipped with a predetermined program. The system includes a graphing means for establishing a radar graph of the concentration of each amino acid based on the results of analyzing concentration of at least the aforementioned seven specific amino acids in blood, which is collected from a cancer patient administered with a candidate anticancer agent component. Meanwhile, similarly to the section of (Cancer diagnosis in subject) described above, with the system, the concentration information of the aforementioned seven specific amino acids is obtained, for example, in accordance with input of the results of an analysis (including collecting the information from outside via the Internet or an exclusive line) which has been performed outside. Meanwhile, similarly to the section of (Cancer diagnosis in subject) described above, the system itself may be equipped with a means for analyzing blood, and in such a case, the concentration information of the aforementioned seven specific amino acids can be obtained within the system. Furthermore, instead of a single analysis after administering a candidate component, performing an analysis several times over the elapse of time after administering a candidate component is desirable in that the efficacy of the candidate component can be appropriately determined. Thus, from this point of view, the system preferably has a recording means for recording the information over the elapse of time from the same person.
Immediately after collecting blood from patients having gastric cancer [100 samples, average age (lowest value-highest value) 66.1 (31 to 89 years old), sex ratio 72:28], pancreas cancer [27, 70.3 (56 to 81) 13:14], or bile duct cancer [6, 70.5 (68 to 75) 5:1] and healthy control with no cancer [12, 50.8 (29 to 73) 11:1], blood serum was isolated and stored in a deep freezer (−80° C.) during a period until determination. The concentration of seven types of amino acids (histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine) was measured by mass analysis, and the measurement result was compared to the value obtained from blood of a healthy control. The concentration of each amino acid was represented as relative value of each case, with the mean value from the healthy control being 100%. The percentage was compared between the cancer patient and healthy control.
Each of the cancer cell lines 44As3-11 (gastric cancer cell line), T3M-4 (pancreas cancer cell line), and MIAPaCa-2 (pancreas cancer cell line) was used. By using a 6 well plate, culture was performed at 37° C. with 5×104 cells in 3 mL (10% FBS, L-Glu+PS in RPMI1640). The culture medium was collected at 0, 24, 48, 72, and 97 hrs and centrifuged at 1,000 rpm. The supernatant (1.0 mL) was then stored in a deep freezer (−80° C.) during a period until determination. Eight kinds of amino acids (including phenylalanine in addition to the aforementioned histidine, isoleucine, leucine, methionine, tryptophan, valine, and tyrosine) were measured by mass analysis. Each culture was performed in triplet and, by measuring the sample, the concentration of each amino acid was represented as mean value±standard deviation, and then compared among the groups. Furthermore, after adding an anticancer agent (O-(5-amino-2-phenylbenzoxazol-7-yl)methyl-3,5-dichloro-L-tyrosine) at each concentration to the culture medium, the property of inhibiting the decrease in amino acid concentration in the culture medium was observed.
3) As for the statistical processing, Mann-Whitney U test was used for comparison between two groups, and those having a risk ratio of 0.05 or less were determined to be a significant difference.
Meanwhile, the LAT1 inhibitor agent described in the Examples (it may be also expressed as LAT1 inhibitor agent (or, simply inhibitor agent or inhibitor), or the like) indicates O-(5-amino-2-phenylbenzoxazol-7-yl)methyl-3,5-dichloro-L-tyrosine.
<<Analysis of Blood from Cancer Patient at Best Supportive Care (BSC) Stage>>
1) Analysis of Blood Serum from Patient at BSC Stage
A predetermined clinical test (test and experiment) was registered with an administration bureau, and after obtaining an approval of the institutional review board (IRB) of a site management organization, patients were selected and blood serum for analysis was collected, stored, and analyzed. The patient as a subject carried solid tumors for which standard treatments for cancer are ineffective or are intolerable, and they were in a state generally referred to as a BSC stage. The methods for collecting and analyzing blood serum are as described above in the section of <<Materials and Methods>>. The time point for collecting was as follows: (a) before the administration of an inhibitor agent (12 mg/m2/day), (b) 25.5 hours after the start of the initial single administration, (c) before the start of the repeated administration, (d) 25.5 hours after the repeated administration of an inhibitor agent, that is, every day for one week (12 mg/m2/day), and (e) 3 weeks after the end of the repeated administration. The results obtained from those five time points are shown in
2) The mean value±standard deviation of the relative concentration of each of the eight amino acids from the healthy control (64 people) and each patient was expressed by having a risk ratio of 0.05 or less as a significant difference, while the comparison between the two corresponding groups is made based on the statistical processing method of Student's t test.
1) Concentration of Free Amino Acids in Blood Serum from Patient at BSC Stage
For Patient numbers 101 to 104, primary sites and metastatic sites of cancer are as described below.
As described above, according to the present invention, it is possible to provide a simple method in which total concentration value (or, mean value) of specific amino acids from a healthy control is compared with the total concentration value (or, mean value) of specific amino acids from a subject by using seven kinds (or eight kinds) of specific amino acids as a blood biomarker to determine whether or not a state of having cancer occurring in each organ or tissue is seen. Furthermore, the present invention can be applied to cancer therapeutics of a cancer patient, in particular, a system or a method for enabling the feasibility of a personalized medical treatment (system or method for personalized medical treatment) by determining suitability of neutral amino acid transporter or LAT1 selective inhibitor (LAT1 inhibitor agent), or a system or a method (system or method for determination) for determining initiation of a treatment with an inhibitor agent, confirmation of a therapeutic effect, or determining treatment continuance.
Number | Date | Country | Kind |
---|---|---|---|
2014-258445 | Dec 2014 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/066645 | 6/9/2015 | WO | 00 |