Blood glucose sensing system

Information

  • Patent Grant
  • 12178572
  • Patent Number
    12,178,572
  • Date Filed
    Wednesday, January 31, 2024
    a year ago
  • Date Issued
    Tuesday, December 31, 2024
    a month ago
Abstract
A blood glucose sensing system includes a plurality of physiological sensors. The system can estimate blood glucose based on discrete invasive blood glucose estimates from a blood sample, discrete noninvasive blood glucose estimates derived from optical sensors, and continuously-calculated blood glucose estimates derived from a nonlinear state-space model of glucose and insulin reactions within a human body. The state-space model has user-entered values corresponding to their insulin and meal intake. The user's blood glucose is estimated from a combination of the discrete invasive blood glucose estimates, the discrete noninvasive blood glucose estimates and the continuously-calculated blood glucose estimate.
Description
BACKGROUND OF THE INVENTION

Noninvasive physiological monitoring systems for measuring constituents of circulating blood have advanced from basic pulse oximeters to monitors capable of measuring abnormal and total hemoglobin among other parameters. A basic pulse oximeter capable of measuring blood oxygen saturation typically includes an optical sensor, a monitor for processing sensor signals and displaying results and a cable electrically interconnecting the sensor and the monitor. A pulse oximetry sensor typically has a red wavelength light emitting diode (LED), an infrared (IR) wavelength LED and a photodiode detector. The LEDs and detector are attached to a patient tissue site, such as a finger. The cable transmits drive signals from the monitor to the LEDs, and the LEDs respond to the drive signals to transmit light into the tissue site. The detector generates a photoplethysmograph signal responsive to the emitted light after attenuation by pulsatile blood flow within the tissue site. The cable transmits the detector signal to the monitor, which processes the signal to provide a numerical readout of oxygen saturation (SpO2) and pulse rate, along with an audible pulse indication of the person's pulse. The photoplethysmograph waveform may also be displayed.


Conventional pulse oximetry assumes that arterial blood is the only pulsatile blood flow in the measurement site. During patient motion, venous blood also moves, which causes errors in conventional pulse oximetry. Advanced pulse oximetry processes the venous blood signal so as to report true arterial oxygen saturation and pulse rate under conditions of patient movement. Advanced pulse oximetry also functions under conditions of low perfusion (small signal amplitude), intense ambient light (artificial or sunlight) and electrosurgical instrument interference, which are scenarios where conventional pulse oximetry tends to fail.


Advanced pulse oximetry is described in at least U.S. Pat. Nos. 6,770,028; 6,658,276; 6,157,850; 6,002,952; 5,769,785 and 5,758,644, all assigned to Masimo Corporation (“Masimo”) of Irvine, California and all hereby incorporated in their entireties by reference herein. Corresponding low noise optical sensors are disclosed in at least U.S. Pat. Nos. 6,985,764; 6,813,511; 6,792,300; 6,256,523; 6,088,607; 5,782,757 and 5,638,818, which are all also assigned to Masimo and are also all hereby incorporated in their entireties by reference herein. Advanced pulse oximetry systems including Masimo SET® low noise optical sensors and read through motion pulse oximetry monitors for measuring SpO2, pulse rate (PR) and perfusion index (Pl) are available from Masimo. Optical sensors include any of Masimo LNOP®, LNCS®, SofTouch™ and Blue™ adhesive or reusable sensors. Pulse oximetry monitors include any of Masimo Rad-8®, Rad-5®, Rad®-5v or SatShare® monitors.


Advanced blood parameter measurement systems are described in at least U.S. Pat. No. 7,647,083, filed Mar. 1, 2006, titled Multiple Wavelength Sensor Equalization; U.S. Pat. No. 7,729,733, filed Mar. 1, 2006, titled Configurable Physiological Measurement System; U.S. Pat. Pub. No. 2006/0211925, filed Mar. 1, 2006, titled Physiological Parameter Confidence Measure and U.S. Pat. Pub. No. 2006/0238358, filed Mar. 1, 2006, titled Noninvasive Multi-Parameter Patient Monitor, which are all assigned to Cercacor Laboratories, Inc., Irvine, CA (Cercacor) and all hereby incorporated in their entireties by reference herein. An advanced parameter measurement system that includes acoustic monitoring is described in U.S. Pat. Pub. No. 2010/0274099, filed Dec. 21, 2009, titled Acoustic Sensor Assembly, assigned to Masimo and herby incorporated in its entirety by reference herein.


Advanced blood parameter measurement systems include Masimo Rainbow® SET, which provides measurements in addition to SpO2, such as total hemoglobin (SpHb™), oxygen content (SpOC™), methemoglobin (SpMet®), carboxyhemoglobin (SpCO®) and PVI®. Advanced blood parameter sensors include Masimo Rainbow® adhesive, ReSposable™ and reusable sensors. Advanced blood parameter monitors include Masimo Radical-7™, Rad-87™ and Rad-57™ monitors, all available from Masimo. Advanced parameter measurement systems may also include acoustic monitoring such as acoustic respiration rate (RRa™) using a Rainbow Acoustic Sensor™ and Rad-87™ monitor, available from Masimo. Such advanced pulse oximeters, low noise sensors and advanced parameter systems have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios. Such advanced pulse oximeters, low noise sensors and advanced blood parameter systems have gained rapid acceptance in a wide variety of medical applications, including surgical wards, intensive care and neonatal units, general wards, home care, physical training, and virtually all types of monitoring scenarios.


SUMMARY OF THE INVENTION


FIG. 1 generally illustrates a blood glucose measurement system 100 that advantageously combines relatively frequent noninvasive measurements of blood glucose interspersed with relatively infrequent invasive measurements of blood glucose so as to manage individual blood glucose levels. The blood glucose measurement system 100 has a blood glucose monitor 110, an optical sensor 120, a sensor cable 130 electrically and mechanically interconnecting the monitor 110 and sensor 120 and a monitor-integrated test strip reader that accepts test strips 150 via a test strip slot 140. In particular, the blood glucose measurement system 100 individually calibrates the noninvasive optical sensor 120 measurements with intermittent test strip measurements to provide the accuracy of individualized glucose test strip measurements at a much-reduced frequency of blood draws. Reduced blood draws are a substantial aid to persons who require frequent monitoring of blood glucose levels to manage diabetes and related diseases. In an embodiment, the monitor 110 has a handheld housing including an integrated touch screen 160 defining one or more input keys and providing a display of blood glucose levels among other features. An optical sensor is described in detail with respect to U.S. patent Ser. No. 13/646,659 titled Noninvasive Blood Analysis System, filed Oct. 5, 2012, assigned to Cercacor and hereby incorporated in its entirety by reference herein. A blood glucose monitor is described in detail with respect to U.S. patent Ser. No. 13/308,461 titled Handheld Processing Device Including Medical Applications for Minimally and Noninvasive Glucose Measurements, filed Nov. 30, 2011, assigned to Cercacor and hereby incorporated in its entirety by reference herein. A blood glucose monitor and sensor are described in U.S. Ser. No. 13/473,477 titled Personal Health Device, filed May 16, 2012, assigned to Cercacor and hereby incorporated in its entirety by reference herein.



FIGS. 2A-B illustrate a glucose monitor 200 having a optical sensor 210 input for generating noninvasive spot check estimates of blood glucose 252 and a test strip 220 input for generating invasive spot check estimates of blood glucose 252. As shown in FIG. 2A, a signal processor 230 analyzes the optical sensor 210 signals so as to generate the noninvasive spot check estimates. A strip reader 240 analyzes blood draw test strips 220 so as to generate the invasive spot check estimates. An output processor 250 integrates the noninvasive and invasive spot checks into a single blood glucose estimate custom character output 252. As shown in FIG. 2B, error measurements εi, εn are incorporated into the blood glucose spot check measurements. The invasive 260 glucose measurement error is substantially less than the noninvasive 270 glucose measurement error εn.


One aspect of a blood glucose estimator has discrete invasive blood glucose values derived from a blood sample, discrete noninvasive blood glucose values derived from optical sensor data and modeled blood glucose values derived from a nonlinear state-space model of glucose and insulin reactions within a human body. The state-space model has user-entered values corresponding to insulin and meal intake. A glucose estimate is derived from a combination of the discrete invasive blood glucose values, the discrete noninvasive blood glucose values and the modeled blood glucose values.


In various embodiment, the modeled blood glucose values provide an interval of blood glucose values based upon simulation of extreme values of derivates of the state variables in the state-space model. The interval of blood glucose values collapses to an error εi at the discrete invasive blood glucose values. The interval of blood glucose values collapses to an error εn at the discrete noninvasive blood glucose values. The parameters of the state-space model are dynamically optimized to minimize an error between calculated values of blood glucose and measured values of blood glucose. The values corresponding to insulin and meal intake are derived from weighted optical sensor data ratios. The weighted optical sensor data ratios are dynamically optimized to minimize an error between calculated values of blood glucose and measured values of blood glucose.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an illustration of a blood glucose measurement system;



FIGS. 2A-B are a block diagram of a glucose monitor and a corresponding graph of discrete glucose estimates versus time;



FIGS. 3A-B are graphical display embodiments of a glucose trend and corresponding glucose trend intervals versus time;



FIG. 4 is a general block diagram of a blood glucose estimator;



FIG. 5 is a general block diagram of a nonlinear state-space model governing glucose and insulin reactions in the human body;



FIGS. 6A-B are a general block diagram of a discrete nonlinear state-space model governing glucose and insulin reactions in the human body and a graph of a corresponding glucose interval estimate;



FIGS. 7A-B are graphs of blood glucose interval estimates incorporating and responsive to both invasive and noninvasive (optical sensor) blood glucose spot checks;



FIG. 8 is a block diagram of dynamic optimization of a blood glucose-insulin model that inputs insulin and meal intake data and outputs modeled blood glucose values;



FIG. 9 is a block diagram of dynamic optimization of a blood glucose-insulin model having optical-sensor-generated light absorption ratio inputs for estimating insulin and meal intakes;



FIG. 10 is a detailed block diagram of a nonlinear state space model for glucose and insulin reactions in the human body; and



FIG. 11 is a blood glucose versus time graph comparing glucose model predictions to blood glucose measurements.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT


FIGS. 3A-B graphically illustrate interpolation between the discrete invasive (260FIG. 2B) and noninvasive (270FIG. 2B) measures described with respect to FIGS. 2A-B, above. FIG. 3A illustrates a glucose monitor output (252FIG. 2A) embodiment 301 displaying a glucose trend 310 versus time. The trend 310 reflects, say, the rise and fall of glucose levels after breakfast (B), lunch (L) and dinner (D). An envelope 320 is generated to show trend accuracy. The envelope 320 generally coincides to the trend line 310 at invasive glucose spot checks (x) 330 and is reduced in breadth at noninvasive (optical) glucose spot checks (o) 340, reflecting the relative accuracy of these invasive and noninvasive measurements. FIG. 3B illustrates another glucose monitor output (252FIG. 2A) embodiment 302 where the trend 360 has various areas 370, 380, 390 that reflect measurement accuracy. Invasive spot checks are reflected at trend nodes 380. Noninvasive spot checks are reflected at reduced size trend areas 390. Other areas 370 reflect an interpolation between glucose spot checks and modeled (calculated) glucose values so as to generate an estimated blood glucose output, as described with respect to FIG. 4, below. Interpolation between invasive and noninvasive glucose spot checks is described in detail with respect to interval simulation embodiments, below.



FIG. 4 generally illustrates a blood glucose estimator 400 having an invasive subsystem 410 for generating relatively accurate spot checks 412 of blood glucose utilizing a test strip and test strip reader (not shown). In particular, the test strip collects a blood sample 401 and a test strip reader reads the test strip to yield an invasive measure of blood glucose custom characteri 412. The glucose estimator 400 also has an optical subsystem 420 for generating less accurate, but painless, spot checks 422 of blood glucose using an optical sensor 402. In particular, the optical sensor 402 transmits light into a tissue site and detects the light after tissue attenuation to yield a noninvasive (optical) measure of blood glucose custom charactero 422. These spot checks 412, 422 provide discrete glucose inputs to a glucose interpolator 440, which generates a blood glucose estimate custom character405 based upon custom characteri 412, custom charactero 422 and custom characterm 432, as described below.


As shown in FIG. 4, a glucose insulin model 430 advantageously generates a continuous estimate of blood glucose custom characterm 432 over time between the glucose spot checks 412, 422. Further, the glucose insulin model 430 advantageously generates continuous glucose estimates versus time, as described in detail with respect to FIGS. 5-11, below. The glucose insulin model 430 inputs user provided data including biographical data, such as age and weight, basal values (user initial conditions) and food and insulin intake data 403. Advantageously, optical data 424 derived from the optical sensor 402 is also utilized by the glucose insulin model 430 so as to detect physiological events, such as food intake and insulin injections, independent of user inputs 403.



FIG. 5 generally illustrates a nonlinear state-space model 500 that provides a modeled glucose output y(t) based upon glucose and insulin reactions in the human body. The state-space model 500 advantageously predicts blood glucose levels 509 based upon a subject's food and insulin intake 501. In particular, the state-space model 500 has a state equation block 510 that outputs the mathematical description 505 of the glucose and insulin reactions in the human body; a state vector block 520 that solves that mathematical description to generate state variables 507 and an output block 530 that generates a modeled blood glucose 509 output.


As shown in FIG. 5, in an embodiment, the state equation block 510 has an input vector u(t) 501 of insulin and food intake. The state equation block 510 generates an N-dimensional state equation {dot over (x)}(t) 505 from the input vector u(t) 501 and a state vector x(t) 507. The state vector block 520 solves the state equation {dot over (x)}(t) 505 to output the N-dimensional state vector x(t) 507. The output block 530 generates the modeled blood glucose y(t) 509 from the state vector x(t) 507. In an embodiment, the input vector u(t) 501 is a two-dimensional vector of insulin intake IIR(t) and glucose intake D(t) and the output y(t) 509 is a modeled blood glucose custom characterm, as described in detail with respect to FIGS. 10-11, below.



FIGS. 6A-B generally illustrate a discrete nonlinear state-space model 600 (FIG. 6A) and graphically illustrate corresponding interval estimates 650 (FIG. 6B) resulting from solutions to the state-space model differential equations. As shown in FIG. 6A, the discrete state-space model 600 has a state-space function block F 610 having an input vector uk-1 601 and a state vector xk 612 output. The state vector xk 612 is delayed one discrete time interval 620 to generate a delayed state vector xk-1 622 input to the function block F 610. An output block 630 inputs the state vector xk 612 and generates a modeled blood glucose level yk 609 output over discrete time k. State-space equations F 610 are a discrete time version of the state equation block 510 (FIG. 5) and state vector block 520 (FIG. 5) described above.


As shown in FIG. 6B, blood glucose interval estimates 650 derived from the state-space model 600 (FIG. 6A) are plotted on a blood glucose yk 651 axis versus a k (discrete time) axis 652. Numerical interval simulation (NIS) determines a glucose envelope 660, 670 for the glucose model state variable derivatives 612, which are described in further detail with respect to FIG. 10, below. In an embodiment, Runge-Kutta fourth order (RK4) NIS is used for calculating the envelope 660, 670.


The result are “fuzzy” blood glucose outputs yk 660, 670. The input vector uk-1 601 (FIG. 6A) includes food and insulin intakes 690. Also shown for reference are blood glucose spot checks 680, which can be invasive (test strip) or noninvasive (optical sensor).


Further shown in FIG. 6B are exemplar spot checks 680 and intakes 690. For example, the intervals 660, 670 each start from an initial blood glucose spot check, y0 681. Later in the day, breakfast is eaten 692. Sometime later, another spot check 682 is taken, showing a rise in blood glucose. A further spot check 683 at a later time reveals a relatively high blood glucose, prompting an insulin intake 694. Blood glucose drops 660, 670, as verified by an additional spot check 684.


Continuing with respect to FIG. 6B, lunch is eaten 696. A later spot check 685 shows a blood glucose rise, followed by a further spot check 686 showing a still higher blood glucose and prompting another insulin intake 698. A couple later spot checks 687, 688 show that blood glucose is decreasing in response. Dinner is eaten 699. The latest spot check 689 shows glucose rising once again. In an embodiment, blood glucose interval estimates 660, 670 are combined with the spot checks 680. For example, calculations of the interval estimates 660, 670 begin at a new initial condition for each spot check 680. In an embodiment, the new initial conditions are at the spot check value for invasive spot checks and are at an interval for noninvasive (less accurate) spot checks.



FIGS. 7A-B illustrate blood glucose interval estimates where the state-space model 600 (FIG. 6A) incorporates and is responsive to both invasive and noninvasive blood glucose spot checks. In an embodiment, blood glucose interval estimates 730, 740 are combined with the spot checks 790.


As shown in FIG. 7A, in an embodiment 701, calculations of the upper interval estimate 730 and lower interval estimate 740 begin at new (upper and lower) initial conditions for each spot check 790. In an embodiment, the interval for noninvasive (less accurate) spot checks 750 is larger than the interval for invasive (more accurate) spot checks 760. The result is a revised upper estimate 770 and revised lower estimate 780. In general, the interval between revised upper and lower estimates 770, 780 is less (more accurate) in view of the increased accuracy of the glucose-insulin model in view of the optical and invasive spot check measurements.


As shown in FIG. 7B, in an embodiment 702, the noninvasive spot checks 750 provide a spot check interval and the invasive spot checks 760 provide a spot check point. The result is a revised upper estimate 770 and revised lower estimate 780 for noninvasive spot checks 750 and a revised point estimate 760 for invasive spot checks.



FIG. 8 generally illustrates a dynamic optimizer 800 for a glucose-insulin model 801. The glucose-insulin model 801 has a state-space function (F) block 810, a delay block 820 and an output function block 830, as described with respect to FIGS. 6A-B, above. The glucose-insulin model 801 has insulin and meal 812 and state variable initialization x0 814 inputs and generates an a blood glucose model custom character832 output. The glucose-insulin model 801 is described generally with respect to FIGS. 4-5, above, and a glucose-insulin model embodiment is described in detail with respect to Appendix A, attached hereto.


As shown in FIG. 8, the state-space function block F 810 generates a xk 818 state variable output based upon a predetermined set of parameters P 816. State variable xk 818 is delayed to generate a delayed state variable xk-1 822 input. The output function h(xk) block 830 generates the blood glucose model output custom character832. Dynamic optimization repeatedly calculates a difference 840 of measured blood glucose Glu 842 and calculated blood glucose custom character832 so as to generate ΔGlu 844. The parameters P 816 are recursively adjusted so as to minimize ΔGlu 844. The resulting optimized parameters are then locked into the state-space function block F 810.



FIG. 9 generally illustrates an alternative dynamic optimizer 900 for a glucose-insulin model 901 that utilizes optical-sensor-derived light absorption ratios 952 in lieu of insulin and meal inputs 812 (FIG. 8). The glucose-insulin model 901 has a state-space functions (F) block 910, a delay block 920 and an output function block 930, as described with respect to FIG. 8, above. The glucose-insulin model 901 has estimated insulin and meal 912 inputs and state variable initialization x0 914 inputs and generates an a blood glucose model output custom character932. The glucose-insulin model 901 is described generally with respect to FIG. 8, above, and a glucose-insulin model embodiment is described in detail with respect to FIG. 10, below.


As shown in FIG. 9, insulin and meal 912 inputs are estimated by a weighted sum of optic sensor-derived ratios 952, where the where the weights are dynamically optimized to minimize the difference ΔGlu 944 between the model-derived glucose output custom character932 and measured blood glucose Glu 942. The resulting optimized weights 950 are then “locked-in” for estimating the insulin, meal inputs 912.



FIG. 10 illustrates a nonlinear state space model 1000 governing glucose and insulin reactions in the human body. The model advantageously predicts blood glucose levels 1009 based upon a subject's food and insulin intake 1001. In particular, the state space model 1000 has a state equation block 1010 that outputs the mathematical description 1005 of the glucose and insulin reactions in the human body; a state vector block 1020 that solves that mathematical description to generate state variables 1007 and an output block 1030 that generates a modeled blood glucose output 1009.


As shown in FIG. 10, in an embodiment, the state equation block 1010 has an input vector u(t) 1001 of insulin and food intake. The state equation block 1010 generates an N-dimensional state equation {dot over (x)}(t) 1005 from the input vector u(t) 1001 and a state vector x(t) 1007. The state vector block 1020 solves the state equation {dot over (x)}(t) 1005 to output the N-dimensional state vector x(t) 1007. The output block 1030 generates a modeled blood glucose y(t) output 1009 from the state vector x(t) 1007. In an embodiment, the input vector u(t) 1001 is a two-dimensional vector of insulin intake IIR(t) and glucose intake D(t) and the output y(t) 1009 is a blood glucose level G(t). Table I summarizes this glucose predictor model.










TABLE 1







Inputs (u ∈ custom character2)
Insulin intake IIR(t) and glucose intake D(t).


Parameters:
Patient body weight (kg), basal



insulin Ib (pmol/L) if insulin is



secreted and basal exogenous



insulin infusion rate IIRb



(pmol/kg) if insulin is injected,



basal blood glucose level Gb and basal



endogenous glucose production EGPb.


Output (y ∈ custom character  )
Blood glucose level G(t).









Also shown in FIG. 10, the state space model 1000 has a state equation block 1010 and a state vector block 1020. An input u(t) 1001 to the state equation block 1010 describes insulin bolus 1002 and meal 1003 intakes and models various body functions. The state equation block 1010 models the response of various body organs and fluids to the insulin 1002 and meal 1003 intakes. The state vector block 1020 solves the state equation block 1010 to generate the state x(t) 1007, which is also input to the state equation block 1010. In response to the input u(t) and state x(t), the state equation block 1010 generates an output y(t) 1009 of modeled blood glucose.


As shown in FIG. 10, the physiological compartments in the model 1000 include skin and adipose (fat) tissue 1030, the GI tract 1040, blood 1050, kidneys 1060, the pancreas 1070, the liver 1080 and the brain and muscles 1090. A meal intake 1003 is digested in the GI tract 1040, which transports glucose 1042 to the blood stream 1050, which provides a modeled blood glucose y(t) 1009 output. The kidneys 1060 filter out some blood glucose 1052, which is excreted 1062. The pancreas 1070 converts some blood glucose 1054 to glucagon 1072, which is stored in the liver 1080. The liver 1080 also regulates blood glucose 1082 via glucose production to and storage from the blood stream 1050. The muscles and brain 1090 use a substantial quantity 1094 of blood glucose, exchanging blood glucose 1092 with the blood stream 1050 in the process.


Further shown in FIG. 10, insulin 1002 is injected into the skin/adipose tissue 1030, which enters the blood stream 1050 after a transport delay 1032. The kidneys 1060 filter out some insulin 1054, which is excreted 1062. The blood stream 1050 exchanges insulin 1058 with the liver 1080 and muscle/brain 1090. In a diabetic 1074, insulin 1074 is exchanged between the pancreas 1070 and liver 1080.


The state equation {dot over (x)}(t) is slightly different between types of subjects, i.e. those who are normal, those who have type I diabetes and those who have type II diabetes. In particular, {dot over (x)}(t) distinguishes subjects who secrete insulin and inject insulin, as shown in Table 2, below.











TABLE 2






Insulin Secreted
Insulin Injected







Normal
Yes
No


Type I
No
Yes


Type II
Yes
Yes









EQS. 1-2 are the state variable x(t) and state equation {dot over (x)}(t) according to FIG. 10, described above. Table 3, below describes the individual elements of the state variable x(t).










x

(
t
)

=

[




Y

(
t
)







G

plasma



(
t
)







G
tissue

(
t
)






X

(
t
)







I
liver

(
t
)







I
plasma

(
t
)







I
portal

(
t
)







I
1

(
t
)







I
d

(
t
)







Q
solid

(
t
)







Q
liquid

(
t
)







Q
gut

(
t
)







I

poly

1


(
t
)







I

mono

1



(
t
)












I

poly

N


(
t
)







I

mono

N


(
t
)






GL

(
t
)






GLY

(
t
)







A
GL

(
t
)




]





EQ
.

1














=

[





x
.

(
t
)






-

α

(


Y

(
t
)

-

max

(


-

S
b


,

β

(




G
plasma

(
t
)


V
G


-
h

)


)


)








EGP

(
t
)

-

GLY
r

+

Ra

(
t
)

-


U
ii

(
t
)

-

E

(
t
)

-


k
1




G
plasma

(
t
)


+


k
2




G
tissue

(
t
)









-


U
id

(
t
)


+


k
1




G
plasma

(
t
)


-


k
2



G
tissue



(
t
)










-

p

2

U





X

(
t
)


+


p

2

U


(




I
plasma

(
t
)


V
1


-

I
b


)









-

(


m
1

+


m
3

(
t
)


)





I
liver

(
t
)


+


m
2




I
plasma

(
t
)


+

γ



I
portal

(
t
)










-

(


m
2

+

m
4


)





I
plasma

(
t
)


+


m
1




I
liver

(
t
)


+


R
i

(
t
)









-
γ




I
portal

(
t
)


+

Y

(
t
)

+

S
b

+

max
(

0
,

K




G
plasma

(
t
)


V
G




)









-

k
i





I
1

(
t
)


+



k
i


V
I





I
plasma

(
t
)










k
i




I
1

(
t
)


-


k
i




I
d

(
t
)










-

k
grind





Q
solid

(
t
)


+

D

(
t
)









k
grind

·


Q
solid

(
t
)


-



k
empty

(
t
)

·


Q
liquid

(
t
)











k
empty

(
t
)

·


Q
liquid

(
t
)


-


k
absorb

·


Q
gut

(
t
)










-

(


k
d

+

k

a

1



)





I

poly
[

brand

1

]


(
t
)


+


IIR

brand

1


(
t
)









k
d




I

poly
[

brand

1

]


(
t
)


-


k



a

2






I

mono
[

brand

1

]


(
t
)















-

(


k
d

+

k

a

1



)





I

poly
[

brand

N

]


(
t
)


+



IRR

[

brand

N

]


(
t
)



(
t
)










k
d




I

poly
[

brand

N

]


(
t
)


-


k

a

2





I

mono
[

brand

N

]


(
t
)










-

k
GL



GL

+


GL
b

(


t
INS



t
INS

+


I
L


V
I




)

+


GL

b
,
r




(

1

1
+


(

G

t
G


)


η
G




)

*


(

1

1
+


(


GL

(

t
-

t
delay


)


t
GL


)


η
GL




)

*

(


t
INS



t
INS

+


I
L


V
I




)









(


GLY
r

-

GLY
d


)


body


weight







k

GL
A


(




tanh


fun

(


GL
M

,

GL

GL
b



)


-
1

2

-

A
GL


)




]





EQ
.

2
















TABLE 3





State Variable
Meaning
Dimensions







Y
Insulin Secretion Rate
pmol/(kg*min)


Gplasma
Plasma Glucose
mg/kg


Gtissue
Tissue Glucose
mg/kg


X
Insulin in interstitial fluid
pmol/L


Iliver
Insulin in liver
pmol/kg


Iplasma
Insulin in plasma
pmol/kg


Iportal
Insulin in portal vein
pmol/kg


I1

pmol/L


Id
Delayed insulin signal
pmol/L


Qsolid
Glucose in stomach at solid phase
mg


Qliquid
Glucose in stomach at liquid phase
mg


Qgut
Glucose in intestine
mg


Ipoly
Non-monomeric insulin
pmol/kg



in subcutaneous space



Imono
Monomeric insulin in
pmol/kg



subcutaneous space



GL
Glucagon hormone
pg/ml


GLY
Pro-glycogen
mg


AGL
Glucagon rate affected
[ ]



endogenous glucose factor









GL accounts for diabetic I complications while satisfying normal patients in the glucagon system. GL is used in AGL. GLY has two separate paths to the liver. With the exception of Y and AGL, which are rates instead of physical quantities, all state variables must be non-negative. All basal quantities are marked by a subscript ‘b’ and are not time dependent.


Table 4, below, provides model parameters for the normal and the type 2 diabetic subject. Table 5, below, provides parameters of subcutaneous insulin kinetics, glucose sensor delay and PID controller. Table 6, below, provides additional constants.













TABLE 4








Type 2




Param-
Normal
Diabetic



Process
eter
Value
Value
Unit



















Glucose
VG
1.88
1.49
dl/kg


Kinetics
k1
0.065
0.042
min−1



k2
0.079
0.071
min−1


Insulin
Vi
0.05
0.04
l/kg


Kinetics
m1
0.190
0.379
min−1



m2
0.484
0.673
min−1



m4
0.194
0.269
min−1



m5
0.0364
0.0526
min kg/pmol



m6
0.6471
0.8118
dimensionless



HE
0.6
0.6
dimensionless


Rate of
kmax
0.0558
0.0465
min−1


Appearance
kmin
0.0080
0.0076
min−1



Kab1
0.057
0.023
min−1



k
0.558
0.0465
min−1



ƒ
0.90
0.90
dimensionless



α
0.00013
0.00006
mg−1



b
0.82
0.68
dimensionless



c
0.00236
0.00023
mg−1



d
0.010
0.09
dimensionless


Endogenous
kg1
2.70
3.09
mg/kg/min


Production
kg2
0.0021
0.0007
min−1



kg3
0.009
0.005
mg/kg/min per






pmol/l



kg1
0.0618
0.0786
mg/kg/min per






pmol/kg



k1
0.0079
0.0066
min−1


Utilization
F
1
1
mg/kg/min



V
2.50
4.65
mg/kg/min



V
0.047
0.034
mg/kg/min






per pmol/l



K
225.59
466.21
mg/kg



P
0.0331
0.0840
min−1


Secretion
K
2.30
0.99
pmol/kg per






(mg/dl)



α
0.050
0.013
min−1



β
0.11
0.05
pmol/kg/min






per (mg/dl)



γ
0.5
0.5
min−1


Renal
kc1
0.0005
0.0007
min−1


Excretion
kc2
339
269
mg/kg



















TABLE 5





Control
Parameter
Value
Unit


















Subcutaneous
ka
0.0164
min−1


insulin kinetics
ka1
0.0018
min−1



ka2
0.0182
min−1


Glucose sensor
Ta
10
pmol/kg/min


delay


per mg/dl


PID controller
Kp
0.032
min



TQ
66
min



Tl
450
min



















TABLE 6










ƒGLY = 0.25




GLYsynth = [0.2025927654630183 0.1865908261637011




0.0370319118341182 − 164.7045696728318700]




k1A = 1/25




IA = [1.21 − 1.14 1.66 − 0.88]




GM = [1.425 − 1.406 0.619 − 0.49]




KGLA = 1/65




GLM = [0.7 0.37 − 36]




ƒGNG resting = 0.25




GLYmax = 90000




tdelay = 3




GLYsoft = [0 1 − 1/1000 − GLYmax]











FIG. 11 is a blood glucose 1101 versus time 1102 graph 1100 comparing glucose model predictions 1120 (line) to invasive blood glucose measurements 1110 (dots). The graph also illustrates the impact of insulin injections 1130 and meal intakes 1140.


A glucose estimator has been disclosed in detail in connection with various embodiments. These embodiments are disclosed by way of examples only and are not to limit the scope of the claims herein. One of ordinary skill in art will appreciate many variations and modifications.

Claims
  • 1. A blood glucose sensing system comprising: a plurality of physiological sensors configured to provide sensor data associated with a user, the plurality of physiological sensors comprising an invasive sensor and an optical blood glucose sensor configured to generate blood glucose data of a user;an input for receiving a plurality of blood glucose values derived from the invasive sensor data;one or more hardware signal processors configured to: receive blood glucose data from the optical blood glucose sensor;receive a plurality of user-specific data, the user-specific data comprising food intake data and insulin intake data;detect physiological events to generate a plurality of physiological event data based at least in part on the optical sensor data and independent of user input;determine, using a glucose insulin estimator, a plurality of modeled blood glucose values over time between measurements by the blood glucose sensor, wherein the plurality of modeled blood glucose values are determined based on the blood glucose data and user-specific data, wherein the glucose insulin estimator comprises a nonlinear state-space model of glucose and insulin reactions within a human body and state variables associated with at least one of insulin secretion rate, plasma glucose, tissue glucose, insulin in interstitial fluid, insulin in liver, insulin in plasma, insulin in portal veins, delayed insulin signal, glucose in the stomach at solid phase, glucose in the stomach at liquid phase, glucose in the intestine, non-monomeric insulin in the subcutaneous space, monomeric insulin in the subcutaneous space, glucagon hormone, pro-glycogen, or glucagon rate affected endogenous factor, or parameters associated with at least one of glucose kinetics, insulin kinetics, rate of appearance of insulin, endogenous production of insulin, utilization of insulin, secretion of insulin, or renal excretion of insulin; anddynamically optimize the nonlinear state-space model to minimize an error between the plurality of modeled blood glucose values of the user and measured values of blood glucose, wherein the measured values of blood glucose comprise blood glucose values derived from the invasive sensor data and blood glucose values derived from the optical sensor data, wherein an input of the state-space model comprises the plurality of physiological event data of the user; anddetermine a continuous estimate of blood glucose over a period of monitoring time based on a combination of the plurality of blood glucose values and the plurality of modeled blood glucose values; anda display configured to display a glucose trend over time, the glucose trend based at least in part on the plurality of modeled blood glucose values.
  • 2. The blood glucose sensing system of claim 1, wherein the user-specific data further comprises one or more of biographical data and basal values.
  • 3. The blood glucose sensing system of claim 1, wherein user-specific data is manually inputted.
  • 4. The blood glucose sensing system of claim 1, wherein the one or more hardware signal processors are configured to generate a blood glucose estimate based at least in part on each of the plurality of modeled blood glucose values, a plurality of noninvasive sensor data and a plurality of invasive sensor data, andwherein the one or more hardware signal processors are configured to recursively adjust parameters of the state-space model to minimize an error between the plurality of modeled blood glucose values of the user and measured values of blood glucose, the blood glucose estimate based at least in part on the state-space model having parameters resulting in minimal error between the plurality of modeled blood glucose values of the user and measured values of blood glucose.
  • 5. The blood glucose sensing system of claim 4, the one or more hardware processors configured to determine a continuous blood glucose estimate over a period of monitoring time.
  • 6. The blood glucose sensing system of claim 4, wherein the state-space model comprises: an input vector comprising an insulin intake and food intake;a state vector comprising the state variables;a state equation comprising the parameters; andthe modeled blood glucose values.
  • 7. The blood glucose sensing system of claim 6, wherein the state equation comprises state variables associated with insulin secretion rate, plasma glucose, tissue glucose, insulin in interstitial fluid, insulin in liver, insulin in plasma, insulin in portal vein, delayed insulin signal, glucose in stomach at solid phase, glucose in stomach at liquid phase, glucose in intestine, non-monomeric insulin in subcutaneous space, monomeric insulin in subcutaneous space, glucagon hormone, pro-glycogen, and glucagon rate affected endogenous factor.
  • 8. The blood glucose sensing system of claim 1, wherein the one or more hardware signal processors is configured to detect physiological events to generate a plurality of physiological event data based at least in part on the sensor data and independent of user input.
  • 9. A method for blood glucose monitoring, the method comprising: generating, using an invasive blood glucose sensor and an optical blood glucose sensor, blood glucose data of a user;receiving, using one or more hardware processors, the blood glucose data;receiving, using the one or more hardware processors, a plurality of user-specific data, the user-specific data comprising food intake data and insulin intake data;determining, using the one or more hardware processors implementing a glucose insulin model, a plurality of modeled blood glucose values over time between measurements by the blood glucose sensor, wherein the plurality of modeled blood glucose values are determined based on the blood glucose data and user-specific data, wherein the glucose insulin model is a nonlinear state-space model of glucose and insulin reactions within a human body, and wherein the glucose insulin model comprises: state variables associated with at least one of insulin secretion rate, plasma glucose, tissue glucose, insulin in interstitial fluid, insulin in liver, insulin in plasma, insulin in portal vein, delayed insulin signal, glucose in stomach at solid phase, glucose in stomach at liquid phase, glucose in intestine, non-monomeric insulin in subcutaneous space, monomeric insulin in subcutaneous space, glucagon hormone, pro-glycogen, or glucagon rate affected endogenous factor, orparameters associated with at least one of glucose kinetics, insulin kinetics, rate of appearance of insulin, endogenous production of insulin, utilization of insulin, secretion of insulin, or renal excretion of insulin;dynamically optimizing the glucose insulin model to minimize an error between the plurality of modeled blood glucose values of the user and measured values of blood glucose based on the blood glucose data of the user; anddisplaying a glucose trend over time, the glucose trend based at least in part on the plurality of modeled blood glucose values.
  • 10. The method of claim 9, wherein the user-specific data comprises one or more of biographical data and basal values.
  • 11. The method of claim 9, comprising inputting a plurality of user-specific data.
  • 12. The method of claim 9, comprising: generating, using the one or more hardware processors, a blood glucose estimate based at least in part on each of the plurality of modeled blood glucose values, a plurality of noninvasive sensor data and a plurality of invasive sensor data, wherein, using the one or more hardware processors, the blood glucose estimate is generated at least in part by recursively adjusting parameters of a state-space model to minimize an error between the plurality of modeled blood glucose values of the user and measured values of blood glucose.
  • 13. The method of claim 12, generating the blood glucose estimate comprising generating a continuous blood glucose estimate over a period of monitoring time.
  • 14. The method of claim 12, wherein the nonlinear state-space model comprises: an input vector comprising an insulin intake and food intake;a state vector comprising the state variables;a state equation comprising the parameters; andthe modeled blood glucose values.
  • 15. The method of claim 14, wherein the nonlinear state-space model comprises state variables associated with insulin secretion rate, plasma glucose, tissue glucose, insulin in interstitial fluid, insulin in liver, insulin in plasma, insulin in portal vein, delayed insulin signal, glucose in stomach at solid phase, glucose in stomach at liquid phase, glucose in intestine, non-monomeric insulin in subcutaneous space, monomeric insulin in subcutaneous space, glucagon hormone, pro-glycogen, and glucagon rate affected endogenous factor.
  • 16. The method of claim 9, wherein the blood glucose sensor is a non-invasive blood glucose sensor.
  • 17. The method of claim 16, wherein the non-invasive blood glucose sensor is an optical sensor.
  • 18. The method of claim 9, comprising detecting physiological events to generate a plurality of physiological event data based at least in part on the sensor data and independent of user input.
PRIORITY CLAIM AND REFERENCE TO RELATED APPLICATIONS

The present application is a divisional of U.S. patent application Ser. No. 16/805,510, filed Feb. 28, 2020, entitled Blood Glucose Estimator, which itself is a continuation of U.S. patent application Ser. No. 14/302,417, filed Jun. 11, 2014, entitled Blood Glucose Estimator, which claims priority benefit under 35 U.S.C. § 119 (e) to U.S. Provisional Patent Application Ser. No. 61/833,515, filed Jun. 11, 2013, titled Blood Glucose Interpolator; U.S. Provisional Patent Application Ser. No. 61/898,483, filed Nov. 1, 2013, titled Glucose Predictor; and U.S. Provisional Patent Application Ser. No. 61/913,331, filed Dec. 8, 2013, titled Blood Glucose Interval Simulator. Each of the above-referenced provisional applications is hereby incorporated in its entirety by reference herein.

US Referenced Citations (1389)
Number Name Date Kind
4960128 Gordon et al. Oct 1990 A
4964408 Hink et al. Oct 1990 A
5041187 Hink et al. Aug 1991 A
5069213 Hink et al. Dec 1991 A
5163438 Gordon et al. Nov 1992 A
5319355 Russek Jun 1994 A
5337744 Branigan Aug 1994 A
5341805 Stavridi et al. Aug 1994 A
5377676 Vari et al. Jan 1995 A
5431170 Mathews Jul 1995 A
5436499 Namavar et al. Jul 1995 A
5452717 Branigan et al. Sep 1995 A
5456252 Vari et al. Oct 1995 A
5479934 Imran Jan 1996 A
5482036 Diab et al. Jan 1996 A
5490505 Diab et al. Feb 1996 A
5494043 O'Sullivan et al. Feb 1996 A
5533511 Kaspari et al. Jul 1996 A
5534851 Russek Jul 1996 A
5590649 Caro et al. Jan 1997 A
5602924 Durand et al. Feb 1997 A
5605152 Slate Feb 1997 A
5632272 Diab et al. May 1997 A
5638816 Kiani-Azarbayjany et al. Jun 1997 A
5638818 Diab et al. Jun 1997 A
5645440 Tobler et al. Jul 1997 A
5671914 Kalkhoran et al. Sep 1997 A
5685299 Diab et al. Nov 1997 A
5726440 Kalkhoran et al. Mar 1998 A
D393830 Tobler et al. Apr 1998 S
5743262 Lepper, Jr. et al. Apr 1998 A
5747806 Khalil et al. May 1998 A
5750994 Schlager May 1998 A
5758644 Diab et al. Jun 1998 A
5760910 Lepper, Jr. et al. Jun 1998 A
5769785 Diab et al. Jun 1998 A
5782757 Diab et al. Jul 1998 A
5785659 Caro et al. Jul 1998 A
5791347 Flaherty et al. Aug 1998 A
5810734 Caro et al. Sep 1998 A
5823950 Diab et al. Oct 1998 A
5830131 Caro et al. Nov 1998 A
5833618 Caro et al. Nov 1998 A
5860919 Kiani-Azarbayjany et al. Jan 1999 A
5890929 Mills et al. Apr 1999 A
5904654 Wohltmann et al. May 1999 A
5919134 Diab Jul 1999 A
5934925 Tobler et al. Aug 1999 A
5940182 Lepper, Jr. et al. Aug 1999 A
5987343 Kinast Nov 1999 A
5995855 Kiani et al. Nov 1999 A
5997343 Mills et al. Dec 1999 A
6002952 Diab et al. Dec 1999 A
6010937 Karam et al. Jan 2000 A
6011986 Diab et al. Jan 2000 A
6027452 Flaherty et al. Feb 2000 A
6036642 Diab et al. Mar 2000 A
6040578 Malin et al. Mar 2000 A
6045509 Caro et al. Apr 2000 A
6066204 Haven May 2000 A
6067462 Diab et al. May 2000 A
6081735 Diab et al. Jun 2000 A
6088607 Diab et al. Jul 2000 A
6110522 Lepper, Jr. et al. Aug 2000 A
6115673 Malin et al. Sep 2000 A
6124597 Shehada et al. Sep 2000 A
6128521 Marro et al. Oct 2000 A
6129675 Jay Oct 2000 A
6144868 Parker Nov 2000 A
6151516 Kiani-Azarbayjany et al. Nov 2000 A
6152754 Gerhardt et al. Nov 2000 A
6157850 Diab et al. Dec 2000 A
6165005 Mills et al. Dec 2000 A
6184521 Coffin, IV et al. Feb 2001 B1
6206830 Diab et al. Mar 2001 B1
6229856 Diab et al. May 2001 B1
6232609 Snyder et al. May 2001 B1
6236872 Diab et al. May 2001 B1
6241683 Macklem et al. Jun 2001 B1
6253097 Aronow et al. Jun 2001 B1
6255708 Sudharsanan et al. Jul 2001 B1
6256523 Diab et al. Jul 2001 B1
6263222 Diab et al. Jul 2001 B1
6278522 Lepper, Jr. et al. Aug 2001 B1
6280213 Tobler et al. Aug 2001 B1
6280381 Malin et al. Aug 2001 B1
6285896 Tobler et al. Sep 2001 B1
6301493 Marro et al. Oct 2001 B1
6308089 von der Ruhr et al. Oct 2001 B1
6317627 Ennen et al. Nov 2001 B1
6321100 Parker Nov 2001 B1
6325761 Jay Dec 2001 B1
6334065 Al-Ali et al. Dec 2001 B1
6343224 Parker Jan 2002 B1
6349228 Kiani et al. Feb 2002 B1
6360114 Diab et al. Mar 2002 B1
6368283 Xu et al. Apr 2002 B1
6371921 Caro et al. Apr 2002 B1
6377829 Al-Ali Apr 2002 B1
6388240 Schulz et al. May 2002 B2
6397091 Diab et al. May 2002 B2
6411373 Garside et al. Jun 2002 B1
6415167 Blank et al. Jul 2002 B1
6430437 Marro Aug 2002 B1
6430525 Weber et al. Aug 2002 B1
6463311 Diab Oct 2002 B1
6470199 Kopotic et al. Oct 2002 B1
6487429 Hockersmith et al. Nov 2002 B2
6501975 Diab et al. Dec 2002 B2
6505059 Kollias et al. Jan 2003 B1
6515273 Al-Ali Feb 2003 B2
6519487 Parker Feb 2003 B1
6525386 Mills et al. Feb 2003 B1
6526300 Kiani et al. Feb 2003 B1
6534012 Hazen et al. Mar 2003 B1
6541756 Schulz et al. Apr 2003 B2
6542764 Al-Ali et al. Apr 2003 B1
6580086 Schulz et al. Jun 2003 B1
6584336 Ali et al. Jun 2003 B1
6587196 Stippick et al. Jul 2003 B1
6587199 Luu Jul 2003 B1
6597932 Tian et al. Jul 2003 B2
6597933 Kiani et al. Jul 2003 B2
6606511 Ali et al. Aug 2003 B1
6632181 Flaherty et al. Oct 2003 B2
6635559 Greenwald et al. Oct 2003 B2
6639668 Trepagnier Oct 2003 B1
6640116 Diab Oct 2003 B2
6640117 Makarewicz et al. Oct 2003 B2
6643530 Diab et al. Nov 2003 B2
6650917 Diab et al. Nov 2003 B2
6654624 Diab et al. Nov 2003 B2
6658276 Kiani et al. Dec 2003 B2
6661161 Lanzo et al. Dec 2003 B1
6671531 Al-Ali Dec 2003 B2
6675030 Ciurczak et al. Jan 2004 B2
6678543 Diab et al. Jan 2004 B2
6684090 Ali et al. Jan 2004 B2
6684091 Parker Jan 2004 B2
6697656 Al-Ali Feb 2004 B1
6697657 Shehada et al. Feb 2004 B1
6697658 Al-Ali Feb 2004 B2
RE38476 Diab et al. Mar 2004 E
6699194 Diab et al. Mar 2004 B1
6714804 Al-Ali et al. Mar 2004 B2
RE38492 Diab et al. Apr 2004 E
6721582 Trepagnier et al. Apr 2004 B2
6721585 Parker Apr 2004 B1
6725075 Al-Ali Apr 2004 B2
6728560 Kollias et al. Apr 2004 B2
6735459 Parker May 2004 B2
6738652 Mattu et al. May 2004 B2
6745060 Diab et al. Jun 2004 B2
6760607 Al-Ali Jul 2004 B2
6770028 Ali et al. Aug 2004 B1
6771994 Kiani et al. Aug 2004 B2
6788965 Ruchti et al. Sep 2004 B2
6792300 Diab et al. Sep 2004 B1
6813511 Diab et al. Nov 2004 B2
6816241 Grubisic Nov 2004 B2
6816741 Diab Nov 2004 B2
6822564 Al-Ali Nov 2004 B2
6826419 Diab et al. Nov 2004 B2
6830711 Mills et al. Dec 2004 B2
6850787 Weber et al. Feb 2005 B2
6850788 Al-Ali Feb 2005 B2
6852083 Caro et al. Feb 2005 B2
6861639 Al-Ali Mar 2005 B2
6876931 Lorenz et al. Apr 2005 B2
6898452 Al-Ali et al. May 2005 B2
6920345 Al-Ali et al. Jul 2005 B2
6923763 Kovatchev Aug 2005 B1
6931268 Kiani-Azarbayjany et al. Aug 2005 B1
6934570 Kiani et al. Aug 2005 B2
6939305 Flaherty et al. Sep 2005 B2
6943348 Coffin IV Sep 2005 B1
6950687 Al-Ali Sep 2005 B2
6956649 Acosta et al. Oct 2005 B2
6961598 Diab Nov 2005 B2
6970792 Diab Nov 2005 B1
6979812 Al-Ali Dec 2005 B2
6985764 Mason et al. Jan 2006 B2
6990364 Ruchti et al. Jan 2006 B2
6993371 Kiani et al. Jan 2006 B2
6996427 Ali et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
6999904 Weber et al. Feb 2006 B2
7003338 Weber et al. Feb 2006 B2
7003339 Diab et al. Feb 2006 B2
7015451 Dalke et al. Mar 2006 B2
7024233 Ali et al. Apr 2006 B2
7027849 Al-Ali Apr 2006 B2
7030749 Al-Ali Apr 2006 B2
7039449 Al-Ali May 2006 B2
7041060 Flaherty et al. May 2006 B2
7044918 Diab May 2006 B2
7048687 Reuss et al. May 2006 B1
7067893 Mills et al. Jun 2006 B2
D526719 Richie, Jr. et al. Aug 2006 S
7096052 Mason et al. Aug 2006 B2
7096054 Abdul-Hafiz et al. Aug 2006 B2
D529616 Deros et al. Oct 2006 S
7132641 Schulz et al. Nov 2006 B2
7133710 Acosta et al. Nov 2006 B2
7142901 Kiani et al. Nov 2006 B2
7149561 Diab Dec 2006 B2
7186966 Al-Ali Mar 2007 B2
7190261 Al-Ali Mar 2007 B2
7215984 Diab et al. May 2007 B2
7215986 Diab et al. May 2007 B2
7221971 Diab et al. May 2007 B2
7225006 Al-Ali et al. May 2007 B2
7225007 Al-Ali et al. May 2007 B2
RE39672 Shehada et al. Jun 2007 E
7239905 Kiani-Azarbayjany et al. Jul 2007 B2
7245953 Parker Jul 2007 B1
7254429 Schurman et al. Aug 2007 B2
7254431 Al-Ali et al. Aug 2007 B2
7254433 Diab et al. Aug 2007 B2
7254434 Schulz et al. Aug 2007 B2
7272425 Al-Ali Sep 2007 B2
7274955 Kiani et al. Sep 2007 B2
D554263 Al-Ali et al. Oct 2007 S
7280858 Al-Ali et al. Oct 2007 B2
7289835 Mansfield et al. Oct 2007 B2
7292883 De Felice et al. Nov 2007 B2
7295866 Al-Ali Nov 2007 B2
7328053 Diab et al. Feb 2008 B1
7332784 Mills et al. Feb 2008 B2
7340287 Mason et al. Mar 2008 B2
7341559 Schulz et al. Mar 2008 B2
7343186 Lamego et al. Mar 2008 B2
D566282 Al-Ali et al. Apr 2008 S
7355512 Al-Ali Apr 2008 B1
7356365 Schurman et al. Apr 2008 B2
7371981 Abdul-Hafiz May 2008 B2
7373193 Al-Ali et al. May 2008 B2
7373194 Weber et al. May 2008 B2
7376453 Diab et al. May 2008 B1
7377794 Al-Ali et al. May 2008 B2
7377899 Weber et al. May 2008 B2
7383070 Diab et al. Jun 2008 B2
7395158 Monfre et al. Jul 2008 B2
7415297 Al-Ali et al. Aug 2008 B2
7428432 Ali et al. Sep 2008 B2
7438683 Al-Ali et al. Oct 2008 B2
7440787 Diab Oct 2008 B2
7454240 Diab et al. Nov 2008 B2
7467002 Weber et al. Dec 2008 B2
7469157 Diab et al. Dec 2008 B2
7471969 Diab et al. Dec 2008 B2
7471971 Diab et al. Dec 2008 B2
7483729 Al-Ali et al. Jan 2009 B2
7483730 Diab et al. Jan 2009 B2
7489958 Diab et al. Feb 2009 B2
7496391 Diab et al. Feb 2009 B2
7496393 Diab et al. Feb 2009 B2
D587657 Al-Ali et al. Mar 2009 S
7499741 Diab et al. Mar 2009 B2
7499835 Weber et al. Mar 2009 B2
7500950 Al-Ali et al. Mar 2009 B2
7509153 Blank et al. Mar 2009 B2
7509154 Diab et al. Mar 2009 B2
7509494 Al-Ali Mar 2009 B2
7510849 Schurman et al. Mar 2009 B2
7514725 Wojtczuk et al. Apr 2009 B2
7519406 Blank et al. Apr 2009 B2
7526328 Diab et al. Apr 2009 B2
D592507 Wachman et al. May 2009 S
7530942 Diab May 2009 B1
7530949 Al Ali et al. May 2009 B2
7530955 Diab et al. May 2009 B2
7563110 Al Ali et al. Jul 2009 B2
7593230 Abul-Haj et al. Sep 2009 B2
7596398 Al-Ali et al. Sep 2009 B2
7606608 Blank et al. Oct 2009 B2
7618375 Flaherty et al. Nov 2009 B2
7620674 Ruchti et al. Nov 2009 B2
D606659 Kiani et al. Dec 2009 S
7629039 Eckerbom et al. Dec 2009 B2
7640140 Ruchti et al. Dec 2009 B2
7647083 Al-Ali et al. Jan 2010 B2
D609193 Al-Ali et al. Feb 2010 S
D614305 Al-Ali et al. Apr 2010 S
7697966 Monfre et al. Apr 2010 B2
7698105 Ruchti et al. Apr 2010 B2
RE41317 Parker May 2010 E
RE41333 Blank et al. May 2010 E
7729733 Al-Ali et al. Jun 2010 B2
7734320 Al-Ali Jun 2010 B2
7761127 Al-Ali et al. Jul 2010 B2
7761128 Al-Ali et al. Jul 2010 B2
7764982 Dalke et al. Jul 2010 B2
D621516 Kiani et al. Aug 2010 S
7791155 Diab Sep 2010 B2
7801581 Diab Sep 2010 B2
7822452 Schurman et al. Oct 2010 B2
RE41912 Parker Nov 2010 E
7844313 Kiani et al. Nov 2010 B2
7844314 Al-Ali Nov 2010 B2
7844315 Al-Ali Nov 2010 B2
7865222 Weber et al. Jan 2011 B2
7873497 Weber et al. Jan 2011 B2
7880606 Al-Ali Feb 2011 B2
7880626 Al-Ali et al. Feb 2011 B2
7891355 Al-Ali et al. Feb 2011 B2
7894868 Al-Ali et al. Feb 2011 B2
7899507 Al-Ali et al. Mar 2011 B2
7904132 Weber et al. Mar 2011 B2
7909772 Popov et al. Mar 2011 B2
7910875 Al-Ali Mar 2011 B2
7919713 Al-Ali et al. Apr 2011 B2
7937128 Al-Ali May 2011 B2
7937129 Mason et al. May 2011 B2
7937130 Diab et al. May 2011 B2
7941199 Kiani May 2011 B2
7951086 Flaherty et al. May 2011 B2
7957780 Lamego et al. Jun 2011 B2
7962188 Kiani et al. Jun 2011 B2
7962190 Diab et al. Jun 2011 B1
7976472 Kiani Jul 2011 B2
7988637 Diab Aug 2011 B2
7990382 Kiani Aug 2011 B2
7991446 Ali et al. Aug 2011 B2
8000761 Al-Ali Aug 2011 B2
8008088 Bellott et al. Aug 2011 B2
RE42753 Kiani-Azarbayjany et al. Sep 2011 E
8019400 Diab et al. Sep 2011 B2
8028701 Al-Ali et al. Oct 2011 B2
8029765 Bellott et al. Oct 2011 B2
8036727 Schurman et al. Oct 2011 B2
8036728 Diab et al. Oct 2011 B2
8046040 Ali et al. Oct 2011 B2
8046041 Diab et al. Oct 2011 B2
8046042 Diab et al. Oct 2011 B2
8048040 Kiani Nov 2011 B2
8050728 Al-Ali et al. Nov 2011 B2
RE43169 Parker Feb 2012 E
8118620 Al-Ali et al. Feb 2012 B2
8126528 Diab et al. Feb 2012 B2
8128572 Diab et al. Mar 2012 B2
8130105 Al-Ali et al. Mar 2012 B2
8145287 Diab et al. Mar 2012 B2
8150487 Diab et al. Apr 2012 B2
8175672 Parker May 2012 B2
8180420 Diab et al. May 2012 B2
8182443 Kiani May 2012 B1
8185180 Diab et al. May 2012 B2
8190223 Al-Ali et al. May 2012 B2
8190227 Diab et al. May 2012 B2
8203438 Kiani et al. Jun 2012 B2
8203704 Merritt et al. Jun 2012 B2
8204566 Schurman et al. Jun 2012 B2
8219172 Schurman et al. Jul 2012 B2
8224411 Al-Ali et al. Jul 2012 B2
8228181 Al-Ali Jul 2012 B2
8229532 Davis Jul 2012 B2
8229533 Diab et al. Jul 2012 B2
8233955 Al-Ali et al. Jul 2012 B2
8244325 Al-Ali et al. Aug 2012 B2
8255026 Al-Ali Aug 2012 B1
8255027 Al-Ali et al. Aug 2012 B2
8255028 Al-Ali et al. Aug 2012 B2
8260577 Weber et al. Sep 2012 B2
8265723 McHale et al. Sep 2012 B1
8274360 Sampath et al. Sep 2012 B2
8280473 Al-Ali Oct 2012 B2
8301217 Al-Ali et al. Oct 2012 B2
8306596 Schurman et al. Nov 2012 B2
8310336 Muhsin et al. Nov 2012 B2
8315683 Al-Ali et al. Nov 2012 B2
RE43860 Parker Dec 2012 E
8337403 Al-Ali et al. Dec 2012 B2
8346330 Lamego Jan 2013 B2
8353842 Al-Ali et al. Jan 2013 B2
8355766 MacNeish, III et al. Jan 2013 B2
8359080 Diab et al. Jan 2013 B2
8364223 Al-Ali et al. Jan 2013 B2
8364226 Diab et al. Jan 2013 B2
8374665 Lamego Feb 2013 B2
8385995 Al-Ali et al. Feb 2013 B2
8385996 Smith et al. Feb 2013 B2
8388353 Kiani et al. Mar 2013 B2
8399822 Al-Ali Mar 2013 B2
8401602 Kiani Mar 2013 B2
8405608 Al-Ali et al. Mar 2013 B2
8414499 Al-Ali et al. Apr 2013 B2
8418524 Al-Ali Apr 2013 B2
8423106 Lamego et al. Apr 2013 B2
8428967 Olsen et al. Apr 2013 B2
8430817 Al-Ali et al. Apr 2013 B1
8437825 Dalvi et al. May 2013 B2
8455290 Siskavich Jun 2013 B2
8457703 Al-Ali Jun 2013 B2
8457707 Kiani Jun 2013 B2
8463349 Diab et al. Jun 2013 B2
8466286 Bellott et al. Jun 2013 B2
8471713 Poeze et al. Jun 2013 B2
8473020 Kiani et al. Jun 2013 B2
8483787 Al-Ali et al. Jul 2013 B2
8489364 Weber et al. Jul 2013 B2
8498684 Weber et al. Jul 2013 B2
8504128 Blank et al. Aug 2013 B2
8509867 Workman et al. Aug 2013 B2
8515509 Bruinsma et al. Aug 2013 B2
8523781 Al-Ali Sep 2013 B2
8529301 Al-Ali et al. Sep 2013 B2
8532727 Ali et al. Sep 2013 B2
8532728 Diab et al. Sep 2013 B2
D692145 Al-Ali et al. Oct 2013 S
8547209 Kiani et al. Oct 2013 B2
8548548 Al-Ali Oct 2013 B2
8548549 Schurman et al. Oct 2013 B2
8548550 Al-Ali et al. Oct 2013 B2
8560032 Al-Ali et al. Oct 2013 B2
8560034 Diab et al. Oct 2013 B1
8570167 Al-Ali Oct 2013 B2
8570503 Vo et al. Oct 2013 B2
8571617 Reichgott et al. Oct 2013 B2
8571618 Lamego et al. Oct 2013 B1
8571619 Al-Ali et al. Oct 2013 B2
8577431 Lamego et al. Nov 2013 B2
8581732 Al-Ali et al. Nov 2013 B2
8584345 Al-Ali et al. Nov 2013 B2
8588880 Abdul-Hafiz et al. Nov 2013 B2
8600467 Al-Ali et al. Dec 2013 B2
8606342 Diab Dec 2013 B2
8626255 Al-Ali et al. Jan 2014 B2
8630691 Lamego et al. Jan 2014 B2
8634889 Al-Ali et al. Jan 2014 B2
8641631 Sierra et al. Feb 2014 B2
8652060 Al-Ali Feb 2014 B2
8663107 Kiani Mar 2014 B2
8666468 Al-Ali Mar 2014 B1
8667967 Al-Ali et al. Mar 2014 B2
8670811 O'Reilly Mar 2014 B2
8670814 Diab et al. Mar 2014 B2
8676286 Weber et al. Mar 2014 B2
8682407 Al-Ali Mar 2014 B2
RE44823 Parker Apr 2014 E
RE44875 Kiani et al. Apr 2014 E
8688183 Bruinsma et al. Apr 2014 B2
8690799 Telfort et al. Apr 2014 B2
8700112 Kiani Apr 2014 B2
8702627 Telfort et al. Apr 2014 B2
8706179 Parker Apr 2014 B2
8712494 MacNeish, III et al. Apr 2014 B1
8715206 Telfort et al. May 2014 B2
8718735 Lamego et al. May 2014 B2
8718737 Diab et al. May 2014 B2
8718738 Blank et al. May 2014 B2
8720249 Al-Ali May 2014 B2
8721541 Al-Ali et al. May 2014 B2
8721542 Al-Ali et al. May 2014 B2
8723677 Kiani May 2014 B1
8740792 Kiani et al. Jun 2014 B1
8754776 Poeze et al. Jun 2014 B2
8755535 Telfort et al. Jun 2014 B2
8755856 Diab et al. Jun 2014 B2
8755872 Marinow Jun 2014 B1
8761850 Lamego Jun 2014 B2
8764671 Kiani Jul 2014 B2
8768423 Shakespeare et al. Jul 2014 B2
8771204 Telfort et al. Jul 2014 B2
8777634 Kiani et al. Jul 2014 B2
8781543 Diab et al. Jul 2014 B2
8781544 Al-Ali et al. Jul 2014 B2
8781549 Al-Ali et al. Jul 2014 B2
8788003 Schurman et al. Jul 2014 B2
8790268 Al-Ali Jul 2014 B2
8801613 Al-Ali et al. Aug 2014 B2
8821397 Al-Ali et al. Sep 2014 B2
8821415 Al-Ali et al. Sep 2014 B2
8830449 Lamego et al. Sep 2014 B1
8831700 Schurman et al. Sep 2014 B2
8840549 Al-Ali et al. Sep 2014 B2
8847740 Kiani et al. Sep 2014 B2
8849365 Smith et al. Sep 2014 B2
8852094 Al-Ali et al. Oct 2014 B2
8852994 Wojtczuk et al. Oct 2014 B2
8868147 Stippick et al. Oct 2014 B2
8868150 Al-Ali et al. Oct 2014 B2
8870792 Al-Ali et al. Oct 2014 B2
8886271 Kiani et al. Nov 2014 B2
8888539 Al-Ali et al. Nov 2014 B2
8888708 Diab et al. Nov 2014 B2
8892180 Weber et al. Nov 2014 B2
8897847 Al-Ali Nov 2014 B2
8909310 Lamego et al. Dec 2014 B2
8911377 Al-Ali Dec 2014 B2
8912909 Al-Ali et al. Dec 2014 B2
8920317 Al-Ali et al. Dec 2014 B2
8921699 Al-Ali et al. Dec 2014 B2
8922382 Al-Ali et al. Dec 2014 B2
8929964 Al-Ali et al. Jan 2015 B2
8942777 Diab et al. Jan 2015 B2
8948834 Diab et al. Feb 2015 B2
8948835 Diab Feb 2015 B2
8965471 Lamego Feb 2015 B2
8983564 Al-Ali Mar 2015 B2
8989831 Al-Ali et al. Mar 2015 B2
8996085 Kiani et al. Mar 2015 B2
8998809 Kiani Apr 2015 B2
9028429 Telfort et al. May 2015 B2
9037207 Al-Ali et al. May 2015 B2
9060721 Reichgott et al. Jun 2015 B2
9066666 Kiani Jun 2015 B2
9066680 Al-Ali et al. Jun 2015 B1
9072474 Al-Ali et al. Jul 2015 B2
9078560 Schurman et al. Jul 2015 B2
9084569 Weber et al. Jul 2015 B2
9095316 Welch et al. Aug 2015 B2
9106038 Telfort et al. Aug 2015 B2
9107625 Telfort et al. Aug 2015 B2
9107626 Al-Ali et al. Aug 2015 B2
9113831 Al-Ali Aug 2015 B2
9113832 Al-Ali Aug 2015 B2
9119595 Lamego Sep 2015 B2
9131881 Diab et al. Sep 2015 B2
9131882 Al-Ali et al. Sep 2015 B2
9131883 Al-Ali Sep 2015 B2
9131917 Telfort et al. Sep 2015 B2
9138180 Coverston et al. Sep 2015 B1
9138182 Al-Ali et al. Sep 2015 B2
9138192 Weber et al. Sep 2015 B2
9142117 Muhsin et al. Sep 2015 B2
9153112 Kiani et al. Oct 2015 B1
9153121 Kiani et al. Oct 2015 B2
9161696 Al-Ali et al. Oct 2015 B2
9161713 Al-Ali et al. Oct 2015 B2
9167995 Lamego et al. Oct 2015 B2
9176141 Al-Ali et al. Nov 2015 B2
9186102 Bruinsma et al. Nov 2015 B2
9192312 Al-Ali Nov 2015 B2
9192329 Al-Ali Nov 2015 B2
9192351 Telfort et al. Nov 2015 B1
9195385 Al-Ali et al. Nov 2015 B2
9211072 Kiani Dec 2015 B2
9211095 Kiani Dec 2015 B1
9218454 Kiani et al. Dec 2015 B2
9226696 Kiani Jan 2016 B2
9241662 Al-Ali et al. Jan 2016 B2
9245668 Vo et al. Jan 2016 B1
9259185 Abdul-Hafiz et al. Feb 2016 B2
9267572 Barker et al. Feb 2016 B2
9277880 Poeze et al. Mar 2016 B2
9289167 Diab et al. Mar 2016 B2
9295421 Kiani et al. Mar 2016 B2
9307928 Al-Ali et al. Apr 2016 B1
9323894 Kiani Apr 2016 B2
D755392 Hwang et al. May 2016 S
9326712 Kiani May 2016 B1
9333316 Kiani May 2016 B2
9339220 Lamego et al. May 2016 B2
9341565 Lamego et al. May 2016 B2
9351673 Diab et al. May 2016 B2
9351675 Al-Ali et al. May 2016 B2
9364181 Kiani et al. Jun 2016 B2
9368671 Wojtczuk et al. Jun 2016 B2
9370325 Al-Ali et al. Jun 2016 B2
9370326 McHale et al. Jun 2016 B2
9370335 Al-Ali et al. Jun 2016 B2
9375185 Ali et al. Jun 2016 B2
9386953 Al-Ali Jul 2016 B2
9386961 Al-Ali et al. Jul 2016 B2
9392945 Al-Ali et al. Jul 2016 B2
9397448 Al-Ali et al. Jul 2016 B2
9408542 Kinast et al. Aug 2016 B1
9436645 Al-Ali et al. Sep 2016 B2
9445759 Lamego et al. Sep 2016 B1
9466919 Kiani et al. Oct 2016 B2
9474474 Lamego et al. Oct 2016 B2
9480422 Al-Ali Nov 2016 B2
9480435 Olsen Nov 2016 B2
9492110 Al-Ali et al. Nov 2016 B2
9510779 Poeze et al. Dec 2016 B2
9517024 Kiani et al. Dec 2016 B2
9532722 Lamego et al. Jan 2017 B2
9538949 Al-Ali et al. Jan 2017 B2
9538980 Telfort et al. Jan 2017 B2
9549696 Lamego et al. Jan 2017 B2
9554737 Schurman et al. Jan 2017 B2
9560996 Kiani Feb 2017 B2
9560998 Al-Ali et al. Feb 2017 B2
9566019 Al-Ali et al. Feb 2017 B2
9579039 Jansen et al. Feb 2017 B2
9591975 Dalvi et al. Mar 2017 B2
9622692 Lamego et al. Apr 2017 B2
9622693 Diab Apr 2017 B2
D788312 Al-Ali et al. May 2017 S
9636055 Al Ali et al. May 2017 B2
9636056 Al-Ali May 2017 B2
9649054 Lamego et al. May 2017 B2
9662052 Al-Ali et al. May 2017 B2
9668679 Schurman et al. Jun 2017 B2
9668680 Bruinsma et al. Jun 2017 B2
9668703 Al-Ali Jun 2017 B2
9675286 Diab Jun 2017 B2
9687160 Kiani Jun 2017 B2
9693719 Al-Ali et al. Jul 2017 B2
9693737 Al-Ali Jul 2017 B2
9697928 Al-Ali et al. Jul 2017 B2
9717425 Kiani et al. Aug 2017 B2
9717458 Lamego et al. Aug 2017 B2
9724016 Al-Ali et al. Aug 2017 B1
9724024 Al-Ali Aug 2017 B2
9724025 Kiani et al. Aug 2017 B1
9730640 Diab et al. Aug 2017 B2
9743887 Al-Ali et al. Aug 2017 B2
9749232 Sampath et al. Aug 2017 B2
9750442 Olsen Sep 2017 B2
9750443 Smith et al. Sep 2017 B2
9750461 Telfort Sep 2017 B1
9775545 Al-Ali et al. Oct 2017 B2
9775546 Diab et al. Oct 2017 B2
9775570 Al-Ali Oct 2017 B2
9778079 Al-Ali et al. Oct 2017 B1
9782077 Lamego et al. Oct 2017 B2
9782110 Kiani Oct 2017 B2
9787568 Lamego et al. Oct 2017 B2
9788735 Al-Ali Oct 2017 B2
9788768 Al-Ali et al. Oct 2017 B2
9795300 Al-Ali Oct 2017 B2
9795310 Al-Ali Oct 2017 B2
9795358 Telfort et al. Oct 2017 B2
9795739 Al-Ali et al. Oct 2017 B2
9801556 Kiani Oct 2017 B2
9801588 Weber et al. Oct 2017 B2
9808188 Perea et al. Nov 2017 B1
9814418 Weber et al. Nov 2017 B2
9820691 Kiani Nov 2017 B2
9833152 Kiani et al. Dec 2017 B2
9833180 Shakespeare et al. Dec 2017 B2
9839379 Al-Ali et al. Dec 2017 B2
9839381 Weber et al. Dec 2017 B1
9847002 Kiani et al. Dec 2017 B2
9847749 Kiani et al. Dec 2017 B2
9848800 Lee et al. Dec 2017 B1
9848806 Al-Ali Dec 2017 B2
9848807 Lamego Dec 2017 B2
9861298 Eckerbom et al. Jan 2018 B2
9861304 Al-Ali et al. Jan 2018 B2
9861305 Weber et al. Jan 2018 B1
9867578 Al-Ali et al. Jan 2018 B2
9872623 Al-Ali Jan 2018 B2
9876320 Coverston et al. Jan 2018 B2
9877650 Muhsin et al. Jan 2018 B2
9877686 Al-Ali et al. Jan 2018 B2
9891079 Dalvi Feb 2018 B2
9895107 Al-Ali et al. Feb 2018 B2
9913617 Al-Ali et al. Mar 2018 B2
9924893 Schurman et al. Mar 2018 B2
9924897 Abdul-Hafiz Mar 2018 B1
9936917 Poeze et al. Apr 2018 B2
9943269 Muhsin et al. Apr 2018 B2
9949676 Al-Ali Apr 2018 B2
9955937 Telfort May 2018 B2
9965946 Al-Ali et al. May 2018 B2
9980667 Kiani et al. May 2018 B2
D820865 Muhsin et al. Jun 2018 S
9986919 Lamego et al. Jun 2018 B2
9986952 Dalvi et al. Jun 2018 B2
9989560 Poeze et al. Jun 2018 B2
9993207 Al-Ali et al. Jun 2018 B2
10007758 Al-Ali et al. Jun 2018 B2
D822215 Al-Ali et al. Jul 2018 S
D822216 Barker et al. Jul 2018 S
10010276 Al-Ali et al. Jul 2018 B2
10032002 Kiani et al. Jul 2018 B2
10039482 Al-Ali et al. Aug 2018 B2
10052037 Kinast et al. Aug 2018 B2
10058275 Al-Ali et al. Aug 2018 B2
10064562 Al-Ali Sep 2018 B2
10086138 Novak, Jr. Oct 2018 B1
10092200 Al-Ali et al. Oct 2018 B2
10092249 Kiani et al. Oct 2018 B2
10098550 Al-Ali et al. Oct 2018 B2
10098591 Al-Ali et al. Oct 2018 B2
10098610 Al-Ali et al. Oct 2018 B2
10111591 Dyell et al. Oct 2018 B2
D833624 DeJong et al. Nov 2018 S
10123726 Al-Ali et al. Nov 2018 B2
10123729 Dyell et al. Nov 2018 B2
10130289 Al-Ali et al. Nov 2018 B2
10130291 Schurman et al. Nov 2018 B2
D835282 Barker et al. Dec 2018 S
D835283 Barker et al. Dec 2018 S
D835284 Barker et al. Dec 2018 S
D835285 Barker et al. Dec 2018 S
10149616 Al-Ali et al. Dec 2018 B2
10154815 Al-Ali et al. Dec 2018 B2
10159412 Lamego et al. Dec 2018 B2
10188296 Al-Ali et al. Jan 2019 B2
10188331 Kiani et al. Jan 2019 B1
10188348 Al-Ali et al. Jan 2019 B2
RE47218 Al-Ali Feb 2019 E
RE47244 Kiani et al. Feb 2019 E
RE47249 Kiani et al. Feb 2019 E
10194847 Al-Ali Feb 2019 B2
10194848 Kiani et al. Feb 2019 B1
10201298 Al-Ali et al. Feb 2019 B2
10205272 Kiani et al. Feb 2019 B2
10205291 Scruggs et al. Feb 2019 B2
10213108 Al-Ali Feb 2019 B2
10219706 Al-Ali Mar 2019 B2
10219746 McHale et al. Mar 2019 B2
10226187 Al-Ali et al. Mar 2019 B2
10226576 Kiani Mar 2019 B2
10231657 Al-Ali et al. Mar 2019 B2
10231670 Blank et al. Mar 2019 B2
10231676 Al-Ali et al. Mar 2019 B2
RE47353 Kiani et al. Apr 2019 E
10251585 Al-Ali et al. Apr 2019 B2
10251586 Lamego Apr 2019 B2
10255994 Sampath et al. Apr 2019 B2
10258265 Poeze et al. Apr 2019 B1
10258266 Poeze et al. Apr 2019 B1
10271748 Al-Ali Apr 2019 B2
10278626 Schurman et al. May 2019 B2
10278648 Al-Ali et al. May 2019 B2
10279247 Kiani May 2019 B2
10292628 Poeze et al. May 2019 B1
10292657 Abdul-Hafiz et al. May 2019 B2
10292664 Al-Ali May 2019 B2
10299708 Poeze et al. May 2019 B1
10299709 Perea et al. May 2019 B2
10299720 Brown et al. May 2019 B2
10305775 Lamego et al. May 2019 B2
10307111 Muhsin et al. Jun 2019 B2
10325681 Sampath et al. Jun 2019 B2
10327337 Schmidt et al. Jun 2019 B2
10327713 Barker et al. Jun 2019 B2
10332630 Al-Ali Jun 2019 B2
10335033 Al-Ali Jul 2019 B2
10335068 Poeze et al. Jul 2019 B2
10335072 Al-Ali et al. Jul 2019 B2
10342470 Al-Ali et al. Jul 2019 B2
10342487 Al-Ali et al. Jul 2019 B2
10342497 Al-Ali et al. Jul 2019 B2
10349895 Telfort et al. Jul 2019 B2
10349898 Al-Ali et al. Jul 2019 B2
10354504 Kiani et al. Jul 2019 B2
10357206 Weber et al. Jul 2019 B2
10357209 Al-Ali Jul 2019 B2
10366787 Sampath et al. Jul 2019 B2
10368787 Reichgott et al. Aug 2019 B2
10376190 Poeze et al. Aug 2019 B1
10376191 Poeze et al. Aug 2019 B1
10383520 Wojtczuk et al. Aug 2019 B2
10383527 Al-Ali Aug 2019 B2
10388120 Muhsin et al. Aug 2019 B2
10398320 Kiani et al. Sep 2019 B2
10405804 Al-Ali Sep 2019 B2
10413666 Al-Ali et al. Sep 2019 B2
10420493 Al-Ali et al. Sep 2019 B2
D864120 Forrest et al. Oct 2019 S
10433776 Al-Ali Oct 2019 B2
10441181 Telfort et al. Oct 2019 B1
10441196 Eckerbom et al. Oct 2019 B2
10448844 Al-Ali et al. Oct 2019 B2
10448871 Al-Ali et al. Oct 2019 B2
10456038 Lamego et al. Oct 2019 B2
10463284 Al-Ali et al. Nov 2019 B2
10463340 Telfort et al. Nov 2019 B2
10470695 Al-Ali et al. Nov 2019 B2
10471159 Lapotko et al. Nov 2019 B1
10478107 Kiani et al. Nov 2019 B2
10503379 Al-Ali et al. Dec 2019 B2
10505311 Al-Ali et al. Dec 2019 B2
10512436 Muhsin et al. Dec 2019 B2
10524706 Telfort et al. Jan 2020 B2
10524738 Olsen Jan 2020 B2
10531811 Al-Ali et al. Jan 2020 B2
10531819 Diab et al. Jan 2020 B2
10531835 Al-Ali et al. Jan 2020 B2
10532174 Al-Ali Jan 2020 B2
10537285 Shreim et al. Jan 2020 B2
10542903 Al-Ali et al. Jan 2020 B2
10548561 Telfort et al. Feb 2020 B2
10555678 Dalvi et al. Feb 2020 B2
10568553 O'Neil et al. Feb 2020 B2
RE47882 Al-Ali Mar 2020 E
10575779 Poeze et al. Mar 2020 B2
10608817 Haider et al. Mar 2020 B2
D880477 Forrest et al. Apr 2020 S
10617302 Al-Ali et al. Apr 2020 B2
10617335 Al-Ali et al. Apr 2020 B2
10637181 Al-Ali et al. Apr 2020 B2
D886849 Muhsin et al. Jun 2020 S
D887548 Abdul-Hafiz et al. Jun 2020 S
D887549 Abdul-Hafiz et al. Jun 2020 S
10667764 Ahmed et al. Jun 2020 B2
D890708 Forrest et al. Jul 2020 S
10721785 Al-Ali Jul 2020 B2
10736518 Al-Ali et al. Aug 2020 B2
10750984 Pauley et al. Aug 2020 B2
D897098 Al-Ali Sep 2020 S
10779098 Iswanto et al. Sep 2020 B2
10827961 Iyengar et al. Nov 2020 B1
10828007 Telfort et al. Nov 2020 B1
10832818 Muhsin et al. Nov 2020 B2
10849554 Shreim et al. Dec 2020 B2
10856750 Indorf et al. Dec 2020 B2
D906970 Forrest et al. Jan 2021 S
D908213 Abdul-Hafiz et al. Jan 2021 S
10918281 Al-Ali et al. Feb 2021 B2
10932705 Muhsin et al. Mar 2021 B2
10932729 Kiani et al. Mar 2021 B2
10939878 Kiani et al. Mar 2021 B2
10956950 Al-Ali et al. Mar 2021 B2
D916135 Indorf et al. Apr 2021 S
D917046 Abdul-Hafiz et al. Apr 2021 S
D917550 Indorf et al. Apr 2021 S
D917564 Indorf et al. Apr 2021 S
D917704 Al-Ali et al. Apr 2021 S
10987066 Chandran et al. Apr 2021 B2
10991135 Al-Ali et al. Apr 2021 B2
D919094 Al-Ali et al. May 2021 S
D919100 Al-Ali et al. May 2021 S
11006867 Al-Ali May 2021 B2
D921202 Al-Ali et al. Jun 2021 S
11024064 Muhsin et al. Jun 2021 B2
11026604 Chen et al. Jun 2021 B2
D925597 Chandran et al. Jul 2021 S
D927699 Al-Ali et al. Aug 2021 S
11076777 Lee et al. Aug 2021 B2
11114188 Poeze et al. Sep 2021 B2
D933232 Al-Ali et al. Oct 2021 S
D933233 Al-Ali et al. Oct 2021 S
D933234 Al-Ali et al. Oct 2021 S
11145408 Sampath et al. Oct 2021 B2
11147518 Al-Ali et al. Oct 2021 B1
11185262 Al-Ali et al. Nov 2021 B2
11191484 Kiani et al. Dec 2021 B2
D946596 Ahmed Mar 2022 S
D946597 Ahmed Mar 2022 S
D946598 Ahmed Mar 2022 S
D946617 Ahmed Mar 2022 S
11272839 Al-Ali et al. Mar 2022 B2
11289199 Al-Ali Mar 2022 B2
RE49034 Al-Ali Apr 2022 E
11298021 Muhsin et al. Apr 2022 B2
D950580 Ahmed May 2022 S
D950599 Ahmed May 2022 S
D950738 Al-Ali et al. May 2022 S
D957648 Al-Ali Jul 2022 S
11382567 O'Brien et al. Jul 2022 B2
11389093 Triman et al. Jul 2022 B2
11406286 Al-Ali et al. Aug 2022 B2
11417426 Muhsin et al. Aug 2022 B2
11439329 Lamego Sep 2022 B2
11445948 Scruggs et al. Sep 2022 B2
D965789 Al-Ali et al. Oct 2022 S
D967433 Al-Ali et al. Oct 2022 S
11464410 Muhsin Oct 2022 B2
11504058 Sharma et al. Nov 2022 B1
11504066 Dalvi et al. Nov 2022 B1
D971933 Ahmed Dec 2022 S
D973072 Ahmed Dec 2022 S
D973685 Ahmed Dec 2022 S
D973686 Ahmed Dec 2022 S
D974193 Forrest et al. Jan 2023 S
D979516 Al-Ali et al. Feb 2023 S
D980091 Forrest et al. Mar 2023 S
11596363 Lamego Mar 2023 B2
11627919 Kiani et al. Apr 2023 B2
11637437 Al-Ali et al. Apr 2023 B2
D985498 Al-Ali et al. May 2023 S
11653862 Dalvi et al. May 2023 B2
D989112 Muhsin et al. Jun 2023 S
D989327 Al-Ali et al. Jun 2023 S
11678829 Al-Ali et al. Jun 2023 B2
11679579 Al-Ali Jun 2023 B2
11684296 Vo et al. Jun 2023 B2
11692934 Normand et al. Jul 2023 B2
11701043 Al-Ali et al. Jul 2023 B2
D997365 Hwang Aug 2023 S
11721105 Ranasinghe et al. Aug 2023 B2
11730379 Ahmed et al. Aug 2023 B2
D998625 Indorf et al. Sep 2023 S
D998630 Indorf et al. Sep 2023 S
D998631 Indorf et al. Sep 2023 S
D999244 Indorf et al. Sep 2023 S
D999245 Indorf et al. Sep 2023 S
D999246 Indorf et al. Sep 2023 S
11766198 Pauley et al. Sep 2023 B2
D1000975 Al-Ali et al. Oct 2023 S
11803623 Kiani et al. Oct 2023 B2
11832940 Diab et al. Dec 2023 B2
D1013179 Al-Ali et al. Jan 2024 S
11872156 Telfort et al. Jan 2024 B2
11879960 Ranasinghe et al. Jan 2024 B2
11883129 Olsen Jan 2024 B2
D1022729 Forrest et al. Apr 2024 S
11951186 Krishnamani et al. Apr 2024 B2
11974833 Forrest et al. May 2024 B2
11986067 Al-Ali et al. May 2024 B2
11986289 Dalvi et al. May 2024 B2
11986305 Al-Ali et al. May 2024 B2
20010034477 Mansfield et al. Oct 2001 A1
20010039483 Brand et al. Nov 2001 A1
20020010401 Bushmakin et al. Jan 2002 A1
20020038080 Makarewicz et al. Mar 2002 A1
20020058864 Mansfield et al. May 2002 A1
20020133080 Apruzzese et al. Sep 2002 A1
20030013975 Kiani Jan 2003 A1
20030018243 Gerhardt et al. Jan 2003 A1
20030144582 Cohen et al. Jul 2003 A1
20030156288 Barnum et al. Aug 2003 A1
20030212312 Coffin, IV et al. Nov 2003 A1
20040039271 Blank et al. Feb 2004 A1
20040106163 Workman et al. Jun 2004 A1
20050055276 Kiani et al. Mar 2005 A1
20050234317 Kiani Oct 2005 A1
20060073719 Kiani Apr 2006 A1
20060161054 Reuss et al. Jul 2006 A1
20060189871 Al-Ali et al. Aug 2006 A1
20070073116 Kiani et al. Mar 2007 A1
20070180140 Welch et al. Aug 2007 A1
20070244377 Cozad et al. Oct 2007 A1
20070282478 Al-Ali et al. Dec 2007 A1
20080064965 Jay et al. Mar 2008 A1
20080094228 Welch et al. Apr 2008 A1
20080103375 Kiani May 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080200783 Blank et al. Aug 2008 A9
20080221418 Al-Ali et al. Sep 2008 A1
20090036759 Ault et al. Feb 2009 A1
20090093687 Telfort et al. Apr 2009 A1
20090095926 MacNeish, III Apr 2009 A1
20090247984 Lamego et al. Oct 2009 A1
20090275813 Davis Nov 2009 A1
20090275844 Al-Ali Nov 2009 A1
20090312621 Verbitskiy Dec 2009 A1
20100004518 Vo et al. Jan 2010 A1
20100030040 Poeze et al. Feb 2010 A1
20100099964 O'Reilly et al. Apr 2010 A1
20100234718 Sampath et al. Sep 2010 A1
20100270257 Wachman et al. Oct 2010 A1
20110028806 Merritt et al. Feb 2011 A1
20110028809 Goodman Feb 2011 A1
20110040197 Welch et al. Feb 2011 A1
20110082711 Poeze et al. Apr 2011 A1
20110087081 Kiani et al. Apr 2011 A1
20110105854 Kiani et al. May 2011 A1
20110118561 Tari et al. May 2011 A1
20110125060 Telfort et al. May 2011 A1
20110137297 Kiani et al. Jun 2011 A1
20110172498 Olsen et al. Jul 2011 A1
20110208015 Welch et al. Aug 2011 A1
20110213212 Al-Ali Sep 2011 A1
20110230733 Al-Ali Sep 2011 A1
20110237969 Eckerbom et al. Sep 2011 A1
20110288383 Diab Nov 2011 A1
20120041316 Al Ali et al. Feb 2012 A1
20120046557 Kiani Feb 2012 A1
20120059267 Lamego et al. Mar 2012 A1
20120088984 Al-Ali et al. Apr 2012 A1
20120123231 O'Reilly May 2012 A1
20120165629 Merritt et al. Jun 2012 A1
20120209082 Al-Ali Aug 2012 A1
20120209084 Olsen et al. Aug 2012 A1
20120226117 Lamego et al. Sep 2012 A1
20120283524 Kiani et al. Nov 2012 A1
20120296178 Lamego et al. Nov 2012 A1
20120319816 Al-Ali Dec 2012 A1
20130023775 Lamego et al. Jan 2013 A1
20130041591 Lamego Feb 2013 A1
20130046204 Lamego et al. Feb 2013 A1
20130060147 Welch et al. Mar 2013 A1
20130096405 Garfio Apr 2013 A1
20130096936 Sampath et al. Apr 2013 A1
20130243021 Siskavich Sep 2013 A1
20130253334 Al-Ali et al. Sep 2013 A1
20130267804 Al-Ali Oct 2013 A1
20130274572 Al-Ali et al. Oct 2013 A1
20130296672 O'Neil et al. Nov 2013 A1
20130296713 Al-Ali et al. Nov 2013 A1
20130324808 Al-Ali et al. Dec 2013 A1
20130331660 Al-Ali et al. Dec 2013 A1
20130331670 Kiani Dec 2013 A1
20130345921 Al-Ali et al. Dec 2013 A1
20140012100 Al-Ali et al. Jan 2014 A1
20140034353 Al-Ali et al. Feb 2014 A1
20140051953 Lamego et al. Feb 2014 A1
20140066783 Kiani et al. Mar 2014 A1
20140077956 Sampath et al. Mar 2014 A1
20140081100 Muhsin et al. Mar 2014 A1
20140081175 Telfort Mar 2014 A1
20140100434 Diab et al. Apr 2014 A1
20140114199 Lamego et al. Apr 2014 A1
20140120564 Workman et al. May 2014 A1
20140121482 Merritt et al. May 2014 A1
20140127137 Bellott et al. May 2014 A1
20140129702 Lamego et al. May 2014 A1
20140135588 Al-Ali et al. May 2014 A1
20140142401 Al-Ali et al. May 2014 A1
20140163344 Al-Ali Jun 2014 A1
20140163402 Lamego et al. Jun 2014 A1
20140166076 Kiani et al. Jun 2014 A1
20140171763 Diab Jun 2014 A1
20140180038 Kiani Jun 2014 A1
20140180154 Sierra et al. Jun 2014 A1
20140180160 Brown et al. Jun 2014 A1
20140187973 Brown et al. Jul 2014 A1
20140213864 Abdul-Hafiz et al. Jul 2014 A1
20140266790 Al-Ali et al. Sep 2014 A1
20140275808 Poeze et al. Sep 2014 A1
20140275835 Lamego et al. Sep 2014 A1
20140275871 Lamego et al. Sep 2014 A1
20140275872 Merritt et al. Sep 2014 A1
20140276115 Dalvi et al. Sep 2014 A1
20140288400 Diab et al. Sep 2014 A1
20140316217 Purdon et al. Oct 2014 A1
20140316218 Purdon et al. Oct 2014 A1
20140316228 Blank et al. Oct 2014 A1
20140323825 Al-Ali et al. Oct 2014 A1
20140323897 Brown et al. Oct 2014 A1
20140323898 Purdon et al. Oct 2014 A1
20140330092 Al-Ali et al. Nov 2014 A1
20140330098 Merritt et al. Nov 2014 A1
20140330099 Al-Ali et al. Nov 2014 A1
20140336481 Shakespeare et al. Nov 2014 A1
20140357966 Al-Ali et al. Dec 2014 A1
20150005600 Blank et al. Jan 2015 A1
20150011907 Purdon et al. Jan 2015 A1
20150012231 Poeze et al. Jan 2015 A1
20150025406 Al-Ali Jan 2015 A1
20150032029 Al-Ali et al. Jan 2015 A1
20150038859 Dalvi et al. Feb 2015 A1
20150045637 Dalvi Feb 2015 A1
20150051462 Olsen Feb 2015 A1
20150073241 Lamego Mar 2015 A1
20150080754 Purdon et al. Mar 2015 A1
20150087936 Al-Ali et al. Mar 2015 A1
20150094546 Al-Ali Apr 2015 A1
20150097701 Al-Ali et al. Apr 2015 A1
20150099950 Al-Ali et al. Apr 2015 A1
20150099951 Al-Ali et al. Apr 2015 A1
20150099955 Al-Ali et al. Apr 2015 A1
20150101844 Al-Ali et al. Apr 2015 A1
20150106121 Muhsin et al. Apr 2015 A1
20150112151 Muhsin et al. Apr 2015 A1
20150116076 Al-Ali et al. Apr 2015 A1
20150126830 Schurman et al. May 2015 A1
20150133755 Smith et al. May 2015 A1
20150141781 Weber et al. May 2015 A1
20150165312 Kiani Jun 2015 A1
20150196237 Lamego Jul 2015 A1
20150196249 Brown et al. Jul 2015 A1
20150216459 Al-Ali et al. Aug 2015 A1
20150230755 Al-Ali et al. Aug 2015 A1
20150238722 Al-Ali Aug 2015 A1
20150245773 Lamego et al. Sep 2015 A1
20150245794 Al-Ali Sep 2015 A1
20150257689 Al-Ali et al. Sep 2015 A1
20150272514 Kiani et al. Oct 2015 A1
20150351697 Weber et al. Dec 2015 A1
20150351704 Kiani et al. Dec 2015 A1
20150359429 Al-Ali et al. Dec 2015 A1
20150366472 Kiani Dec 2015 A1
20150366507 Blank et al. Dec 2015 A1
20150374298 Al-Ali et al. Dec 2015 A1
20150380875 Coverston et al. Dec 2015 A1
20160000362 Diab et al. Jan 2016 A1
20160007930 Weber et al. Jan 2016 A1
20160029932 Al-Ali Feb 2016 A1
20160045118 Kiani Feb 2016 A1
20160051205 Al-Ali et al. Feb 2016 A1
20160058338 Schurman et al. Mar 2016 A1
20160058347 Reichgott et al. Mar 2016 A1
20160066823 Al-Ali et al. Mar 2016 A1
20160066824 Al-Ali et al. Mar 2016 A1
20160066879 Telfort et al. Mar 2016 A1
20160072429 Kiani et al. Mar 2016 A1
20160081552 Wojtczuk et al. Mar 2016 A1
20160095543 Telfort et al. Apr 2016 A1
20160095548 Al-Ali et al. Apr 2016 A1
20160103598 Al-Ali et al. Apr 2016 A1
20160113527 Al-Ali et al. Apr 2016 A1
20160143548 Al-Ali May 2016 A1
20160166182 Al-Ali et al. Jun 2016 A1
20160166183 Poeze et al. Jun 2016 A1
20160166188 Bruinsma et al. Jun 2016 A1
20160166210 Al-Ali Jun 2016 A1
20160192869 Kiani et al. Jul 2016 A1
20160196388 Lamego Jul 2016 A1
20160197436 Barker et al. Jul 2016 A1
20160213281 Eckerbom et al. Jul 2016 A1
20160228043 O'Neil et al. Aug 2016 A1
20160233632 Scruggs et al. Aug 2016 A1
20160234944 Schmidt et al. Aug 2016 A1
20160256087 Doyle, III et al. Sep 2016 A1
20160270735 Diab et al. Sep 2016 A1
20160283665 Sampath et al. Sep 2016 A1
20160287090 Al-Ali et al. Oct 2016 A1
20160287786 Kiani Oct 2016 A1
20160296169 McHale et al. Oct 2016 A1
20160310052 Al-Ali et al. Oct 2016 A1
20160314260 Kiani Oct 2016 A1
20160324486 Al-Ali et al. Nov 2016 A1
20160324488 Olsen Nov 2016 A1
20160327984 Al-Ali et al. Nov 2016 A1
20160328528 Al-Ali et al. Nov 2016 A1
20160331332 Al-Ali Nov 2016 A1
20160367173 Dalvi et al. Dec 2016 A1
20170000394 Al-Ali et al. Jan 2017 A1
20170007134 Al-Ali et al. Jan 2017 A1
20170007190 Al-Ali et al. Jan 2017 A1
20170007198 Al-Ali et al. Jan 2017 A1
20170014083 Diab et al. Jan 2017 A1
20170014084 Al-Ali et al. Jan 2017 A1
20170021099 Al-Ali et al. Jan 2017 A1
20170024748 Haider Jan 2017 A1
20170027456 Kinast et al. Feb 2017 A1
20170042488 Muhsin Feb 2017 A1
20170055847 Kiani et al. Mar 2017 A1
20170055851 Al-Ali Mar 2017 A1
20170055882 Al-Ali et al. Mar 2017 A1
20170055887 Al-Ali Mar 2017 A1
20170055896 Al-Ali Mar 2017 A1
20170079594 Telfort et al. Mar 2017 A1
20170086723 Al-Ali et al. Mar 2017 A1
20170143281 Olsen May 2017 A1
20170147774 Kiani May 2017 A1
20170156620 Al-Ali et al. Jun 2017 A1
20170173632 Al-Ali Jun 2017 A1
20170187146 Kiani et al. Jun 2017 A1
20170188919 Al-Ali et al. Jul 2017 A1
20170196464 Jansen et al. Jul 2017 A1
20170196470 Lamego et al. Jul 2017 A1
20170202490 Al-Ali et al. Jul 2017 A1
20170224231 Al-Ali Aug 2017 A1
20170224233 Al-Ali Aug 2017 A1
20170224262 Al-Ali Aug 2017 A1
20170228516 Sampath et al. Aug 2017 A1
20170245790 Al-Ali et al. Aug 2017 A1
20170251974 Shreim et al. Sep 2017 A1
20170251975 Shreim et al. Sep 2017 A1
20170258403 Abdul-Hafiz et al. Sep 2017 A1
20170311851 Schurman et al. Nov 2017 A1
20170311891 Kiani et al. Nov 2017 A1
20170325728 Al-Ali et al. Nov 2017 A1
20170332976 Al-Ali et al. Nov 2017 A1
20170340293 Al-Ali et al. Nov 2017 A1
20170360310 Kiani Dec 2017 A1
20170367632 Al-Ali et al. Dec 2017 A1
20180008146 Al-Ali et al. Jan 2018 A1
20180013562 Haider et al. Jan 2018 A1
20180014752 Al-Ali et al. Jan 2018 A1
20180028124 Al-Ali et al. Feb 2018 A1
20180055385 Al-Ali Mar 2018 A1
20180055390 Kiani et al. Mar 2018 A1
20180055430 Diab et al. Mar 2018 A1
20180064381 Shakespeare et al. Mar 2018 A1
20180069776 Lamego et al. Mar 2018 A1
20180070867 Smith et al. Mar 2018 A1
20180082767 Al-Ali et al. Mar 2018 A1
20180085068 Telfort Mar 2018 A1
20180087937 Al-Ali et al. Mar 2018 A1
20180103874 Lee et al. Apr 2018 A1
20180103905 Kiani Apr 2018 A1
20180110478 Al-Ali Apr 2018 A1
20180116575 Perea et al. May 2018 A1
20180125368 Lamego et al. May 2018 A1
20180125430 Al-Ali et al. May 2018 A1
20180125445 Telfort et al. May 2018 A1
20180130325 Kiani et al. May 2018 A1
20180132769 Weber et al. May 2018 A1
20180132770 Lamego May 2018 A1
20180146901 Al-Ali et al. May 2018 A1
20180146902 Kiani et al. May 2018 A1
20180153442 Eckerbom et al. Jun 2018 A1
20180153446 Kiani Jun 2018 A1
20180153447 Al-Ali et al. Jun 2018 A1
20180153448 Weber et al. Jun 2018 A1
20180161499 Al-Ali et al. Jun 2018 A1
20180168491 Al-Ali et al. Jun 2018 A1
20180174679 Sampath et al. Jun 2018 A1
20180174680 Sampath et al. Jun 2018 A1
20180182484 Sampath et al. Jun 2018 A1
20180184917 Kiani Jul 2018 A1
20180192924 Al-Ali Jul 2018 A1
20180192953 Shreim et al. Jul 2018 A1
20180192955 Al-Ali et al. Jul 2018 A1
20180199871 Pauley et al. Jul 2018 A1
20180206795 Al-Ali Jul 2018 A1
20180206815 Telfort Jul 2018 A1
20180213583 Al-Ali Jul 2018 A1
20180214031 Kiani et al. Aug 2018 A1
20180214090 Al-Ali et al. Aug 2018 A1
20180218792 Muhsin et al. Aug 2018 A1
20180225960 Al-Ali et al. Aug 2018 A1
20180238718 Dalvi Aug 2018 A1
20180242853 Al-Ali Aug 2018 A1
20180242921 Muhsin et al. Aug 2018 A1
20180242923 Al-Ali et al. Aug 2018 A1
20180242924 Barker et al. Aug 2018 A1
20180242926 Muhsin et al. Aug 2018 A1
20180247353 Al-Ali et al. Aug 2018 A1
20180247712 Muhsin et al. Aug 2018 A1
20180249933 Schurman et al. Sep 2018 A1
20180253947 Muhsin et al. Sep 2018 A1
20180256087 Al-Ali et al. Sep 2018 A1
20180256113 Weber et al. Sep 2018 A1
20180285094 Housel et al. Oct 2018 A1
20180289325 Poeze et al. Oct 2018 A1
20180289337 Al-Ali et al. Oct 2018 A1
20180296161 Shreim et al. Oct 2018 A1
20180300919 Muhsin et al. Oct 2018 A1
20180310822 Indorf et al. Nov 2018 A1
20180310823 Al-Ali et al. Nov 2018 A1
20180317826 Muhsin et al. Nov 2018 A1
20180317841 Novak, Jr. Nov 2018 A1
20180333055 Lamego et al. Nov 2018 A1
20180333087 Al-Ali Nov 2018 A1
20190000317 Muhsin et al. Jan 2019 A1
20190000362 Kiani et al. Jan 2019 A1
20190015023 Monfre Jan 2019 A1
20190021638 Al-Ali et al. Jan 2019 A1
20190029574 Schurman et al. Jan 2019 A1
20190029578 Al-Ali et al. Jan 2019 A1
20190038143 Al-Ali Feb 2019 A1
20190058280 Al-Ali et al. Feb 2019 A1
20190058281 Al-Ali et al. Feb 2019 A1
20190069813 Al-Ali Mar 2019 A1
20190069814 Al-Ali Mar 2019 A1
20190076028 Al-Ali et al. Mar 2019 A1
20190082979 Al-Ali et al. Mar 2019 A1
20190090748 Al-Ali Mar 2019 A1
20190090760 Kinast et al. Mar 2019 A1
20190090764 Al-Ali Mar 2019 A1
20190104973 Poeze et al. Apr 2019 A1
20190110719 Poeze et al. Apr 2019 A1
20190117070 Muhsin et al. Apr 2019 A1
20190117139 Al-Ali et al. Apr 2019 A1
20190117140 Al-Ali et al. Apr 2019 A1
20190117141 Al-Ali Apr 2019 A1
20190117930 Al-Ali Apr 2019 A1
20190122763 Sampath et al. Apr 2019 A1
20190133525 Al-Ali et al. May 2019 A1
20190142283 Lamego et al. May 2019 A1
20190142344 Telfort et al. May 2019 A1
20190150800 Poeze et al. May 2019 A1
20190150856 Kiani et al. May 2019 A1
20190167161 Al-Ali et al. Jun 2019 A1
20190175019 Al-Ali et al. Jun 2019 A1
20190192076 McHale et al. Jun 2019 A1
20190200941 Chandran et al. Jul 2019 A1
20190201623 Kiani Jul 2019 A1
20190209025 Al-Ali Jul 2019 A1
20190214778 Scruggs et al. Jul 2019 A1
20190216319 Poeze et al. Jul 2019 A1
20190216379 Al-Ali et al. Jul 2019 A1
20190221966 Kiani et al. Jul 2019 A1
20190223804 Blank et al. Jul 2019 A1
20190231199 Al-Ali et al. Aug 2019 A1
20190231241 Al-Ali et al. Aug 2019 A1
20190231270 Abdul-Hafiz et al. Aug 2019 A1
20190239787 Pauley et al. Aug 2019 A1
20190239824 Muhsin et al. Aug 2019 A1
20190254578 Lamego Aug 2019 A1
20190261857 Al-Ali Aug 2019 A1
20190269370 Al-Ali et al. Sep 2019 A1
20190274606 Kiani et al. Sep 2019 A1
20190274627 Al-Ali et al. Sep 2019 A1
20190274635 Al-Ali et al. Sep 2019 A1
20190290136 Dalvi et al. Sep 2019 A1
20190298270 Al-Ali et al. Oct 2019 A1
20190304601 Sampath et al. Oct 2019 A1
20190304605 Al-Ali Oct 2019 A1
20190307377 Perea et al. Oct 2019 A1
20190320906 Olsen Oct 2019 A1
20190320959 Al-Ali Oct 2019 A1
20190320988 Ahmed et al. Oct 2019 A1
20190325722 Kiani et al. Oct 2019 A1
20190350506 Al-Ali et al. Nov 2019 A1
20190357812 Poeze et al. Nov 2019 A1
20190357813 Poeze et al. Nov 2019 A1
20190357823 Reichgott et al. Nov 2019 A1
20190357824 Al-Ali et al. Nov 2019 A1
20190358524 Kiani Nov 2019 A1
20190365294 Poeze et al. Dec 2019 A1
20190365295 Poeze et al. Dec 2019 A1
20190374135 Poeze et al. Dec 2019 A1
20190374139 Kiani et al. Dec 2019 A1
20190374173 Kiani et al. Dec 2019 A1
20190374713 Kiani et al. Dec 2019 A1
20190386908 Lamego et al. Dec 2019 A1
20190388039 Al-Ali Dec 2019 A1
20200000338 Lamego et al. Jan 2020 A1
20200000340 Wojtczuk et al. Jan 2020 A1
20200000415 Barker et al. Jan 2020 A1
20200015716 Poeze et al. Jan 2020 A1
20200021930 Iswanto et al. Jan 2020 A1
20200029867 Poeze et al. Jan 2020 A1
20200037453 Triman et al. Jan 2020 A1
20200037891 Kiani et al. Feb 2020 A1
20200037966 Al-Ali Feb 2020 A1
20200046257 Eckerbom et al. Feb 2020 A1
20200054253 Al-Ali et al. Feb 2020 A1
20200060869 Telfort et al. Feb 2020 A1
20200111552 Ahmed Apr 2020 A1
20200113435 Muhsin Apr 2020 A1
20200113488 Al-Ali et al. Apr 2020 A1
20200113496 Scruggs et al. Apr 2020 A1
20200113497 Triman et al. Apr 2020 A1
20200113520 Abdul-Hafiz et al. Apr 2020 A1
20200138288 Al-Ali et al. May 2020 A1
20200138368 Kiani et al. May 2020 A1
20200163597 Dalvi et al. May 2020 A1
20200196877 Vo et al. Jun 2020 A1
20200253474 Muhsin et al. Aug 2020 A1
20200253544 Belur Nagaraj et al. Aug 2020 A1
20200275841 Telfort et al. Sep 2020 A1
20200288983 Telfort et al. Sep 2020 A1
20200321793 Al-Ali et al. Oct 2020 A1
20200329983 Al-Ali et al. Oct 2020 A1
20200329984 Al-Ali et al. Oct 2020 A1
20200329993 Al-Ali et al. Oct 2020 A1
20200330037 Al-Ali et al. Oct 2020 A1
20200375549 Wexler Dec 2020 A1
20210022628 Telfort et al. Jan 2021 A1
20210104173 Pauley et al. Apr 2021 A1
20210113121 Diab et al. Apr 2021 A1
20210117525 Kiani et al. Apr 2021 A1
20210118581 Kiani et al. Apr 2021 A1
20210121582 Krishnamani et al. Apr 2021 A1
20210161465 Barker et al. Jun 2021 A1
20210236729 Kiani et al. Aug 2021 A1
20210256267 Ranasinghe et al. Aug 2021 A1
20210256835 Ranasinghe et al. Aug 2021 A1
20210275101 Vo et al. Sep 2021 A1
20210290060 Ahmed Sep 2021 A1
20210290072 Forrest Sep 2021 A1
20210290080 Ahmed Sep 2021 A1
20210290120 Al-Ali Sep 2021 A1
20210290177 Novak, Jr. Sep 2021 A1
20210290184 Ahmed Sep 2021 A1
20210296008 Novak, Jr. Sep 2021 A1
20210330228 Olsen et al. Oct 2021 A1
20210386382 Olsen et al. Dec 2021 A1
20210402110 Pauley et al. Dec 2021 A1
20220026355 Normand et al. Jan 2022 A1
20220039707 Sharma et al. Feb 2022 A1
20220053892 Al-Ali et al. Feb 2022 A1
20220071562 Kiani Mar 2022 A1
20220096603 Kiani et al. Mar 2022 A1
20220151521 Krishnamani et al. May 2022 A1
20220218244 Kiani et al. Jul 2022 A1
20220287574 Telfort et al. Sep 2022 A1
20220296161 Al-Ali et al. Sep 2022 A1
20220361819 Al-Ali et al. Nov 2022 A1
20220379059 Yu et al. Dec 2022 A1
20220392610 Kiani et al. Dec 2022 A1
20230028745 Al-Ali Jan 2023 A1
20230038389 Vo Feb 2023 A1
20230045647 Vo Feb 2023 A1
20230058052 Al-Ali Feb 2023 A1
20230058342 Kiani Feb 2023 A1
20230069789 Koo et al. Mar 2023 A1
20230087671 Telfort et al. Mar 2023 A1
20230110152 Forrest et al. Apr 2023 A1
20230111198 Yu et al. Apr 2023 A1
20230115397 Vo et al. Apr 2023 A1
20230116371 Mills et al. Apr 2023 A1
20230135297 Kiani et al. May 2023 A1
20230138098 Telfort et al. May 2023 A1
20230145155 Krishnamani et al. May 2023 A1
20230147750 Barker et al. May 2023 A1
20230210417 Al-Ali et al. Jul 2023 A1
20230222805 Muhsin et al. Jul 2023 A1
20230222887 Muhsin et al. Jul 2023 A1
20230226331 Kiani et al. Jul 2023 A1
20230284916 Telfort Sep 2023 A1
20230284943 Scruggs et al. Sep 2023 A1
20230301562 Scruggs et al. Sep 2023 A1
20230346993 Kiani et al. Nov 2023 A1
20230368221 Haider Nov 2023 A1
20230371893 Al-Ali et al. Nov 2023 A1
20230389837 Krishnamani et al. Dec 2023 A1
20240016418 Devadoss et al. Jan 2024 A1
20240016419 Devadoss et al. Jan 2024 A1
20240047061 Al-Ali et al. Feb 2024 A1
20240049310 Al-Ali et al. Feb 2024 A1
20240049986 Al-Ali et al. Feb 2024 A1
20240081656 DeJong et al. Mar 2024 A1
20240122486 Kiani Apr 2024 A1
20240180456 Al-Ali Jun 2024 A1
Non-Patent Literature Citations (7)
Entry
US 2022/0192529 A1, 06/2022, Al-Ali et al. (withdrawn)
US 2024/0016391 A1, 01/2024, Lapotko et al. (withdrawn)
Briegel et al., “A Nonlinear State Space Model for the Blood Glucose Metabolism of a Diabetic”, Anwendungsaufsatz, May 2002, pp. 228-236.
Facchinetti et al., “An Online Failure Detection Method of the Glucose Sensor-Insulin Pump System: Improved Overnight Safety of Type-1 Diabetic Subjects”, Feb. 2013, IEEE Transactions on Biomedical Engineering, vol. 60, No. 2, pp. 406-416.
Hovorka et al., “Nonlinear Model Predictive Control of Glucose Concentration in Subjects with Type 1 Diabetes”, Physiological Measurement, Aug. 2004, vol. 4, pp. 905-920.
Vashist et al., “Non-invasive glucose monitoring technology in diabetes management: A review”, 2012, Analytica Chimica Acta, vol. 750, pp. 16-27.
Wang, PhD et al., “Personalized State-space Modeling of Glucose Dynamics for Type 1 Diabetes Using Continuously Monitored Glucose, Insulin Dose, and Meal Intake: An Extended Kalman Filter Approach”, 2014, Journal of Diabetes Science and Technology, vol. 8, No. 2, pp. 331-345.
Provisional Applications (3)
Number Date Country
61913331 Dec 2013 US
61898483 Nov 2013 US
61833515 Jun 2013 US
Divisions (1)
Number Date Country
Parent 16805510 Feb 2020 US
Child 18428921 US
Continuations (1)
Number Date Country
Parent 14302417 Jun 2014 US
Child 16805510 US