1. Field of the Invention
The invention is in the field of fluid sample acquisition and testing. In particular, the invention is directed to an apparatus useful for acquisition of a blood sample from a site on a subject's body and testing the blood glucose content of the blood sample utilizing a test strip. The strip may be incorporated into a device adapted for both sampling and sensing in a single step. Methods of using the apparatus are also disclosed.
2. Description of the Related Art
Self monitoring of blood glucose generally requires the user to extract a volume of capillary blood and place it on a disposable element for analysis.
Devices for lancing a subject at an extraction site to obtain a small quantity of blood for testing on a test strip are known in the prior art. For example, U.S. Pat. No. 6,558,402 B1, which is hereby incorporated by reference, discloses a lancer having suitable mechanisms for piercing a subject's skin and obtaining a sample.
Generally, once an incision is made, the extraction site must be “milked” to express fluid from the site, and the fluid must then be transferred to a strip. The trend in test strip devices is toward using ever smaller sample volumes to obtain a measurement. However, even as the sample volume required to obtain a measurement has fallen to the sub-microliter range, it is still generally necessary to express the fluid from the extraction site and transfer the sample to the test strip. Devices and techniques for expressing blood from an incision made by a lancer are disclosed in the prior art, for example in U.S. Pat. Nos. 6,793,633 B2, 6,071,251, and 6,752,817 B2, which are incorporated by reference.
Test strip sensing elements using amperometric and other techniques for determining the concentration of blood glucose in a blood sample are known in the prior art. U.S. Pat. Nos. 6,258,229 B1, 6,143,164 and 5,437,999, incorporated by reference herein, each disclose examples of test strip construction for electrochemical measurement of blood glucose.
An integrated lancet/sensor is disclosed in U.S. Patent Application Publication No. U.S. 2004/0064068, incorporated herein by reference. However, it would be desirable, and would represent an advance over the current state of the art, to provide a more convenient apparatus to obtain a blood sample from an extraction site on a subject, express the blood from the site, and to transport the sample to a measurement site on a test strip without complicated interaction required from the user.
According to the present invention, a test strip is provided which can be integrated with a lancer so that sample acquisition and testing are facilitated in a single device. The test strip component of the invention is adapted to detect an adequate sample volume for testing, and for relative movement while in a bent state with respect to a blood sample, to facilitate the transport of the blood sample to a measurement site on the test strip.
Specifically, a sensor according to the invention comprises a test strip having conductive contacts positioned thereon defining a blood sample volume detection area. The test strip further has a blood transport channel having a mouth at one end in fluid communication with the blood sample volume detection area and a measurement site at an opposite end of the blood transport channel. The test strip is movable in a bending state between a first position in which the blood sample volume detection area is opposite the blood sample extraction site and a second position in which the mouth of the blood transport channel is opposite the blood sample extraction site. A blood sample bridging the contacts defining the blood sample volume detection area permits electrical communication between the contacts to detect a blood sample volume, and the detected blood sample volume is sufficiently large that the blood sample moves through the blood transport channel to contact the measurement site when the mouth of the blood transport channel is moved to the blood sample extraction site.
A method of using the sensor requires positioning a test strip having a bending portion in a first position over a blood sample extraction site on a subject's body, so that the bending portion of the test strip is opposite the blood sample extraction site. A lancet is passed through the test strip and into a subcutaneous space in the subject's body beneath the sample extraction site and a blood sample is extracted. Blood accumulates in a blood sample volume detection area defined by conductive contacts on the test strip such that contacting the conductive contacts with the blood sample generates a signal when a minimum blood sample volume is detected. As the strip moves, the blood sample is moved through a blood transport channel to a blood glucose measurement site while maintaining the blood transport channel in a bending state and blood glucose in the blood sample is measured at the measurement site.
Referring to
The blood sample detection area 12 is defined by contacts 16, such that when a blood sample bridges the contacts, an electrical current flows between the contacts sufficient to indicate that a blood sample of sufficient volume to obtain a measurement has been obtained. The dimensioning and positioning of contacts 16 with respect to the sample detection area 12 is such that only a blood sample of the desired minimum volume will cause electrical current (a volume detection current) to flow between the contacts. The contacts 16 are placed so that they are electrically insulated from one another when a blood sample volume is not present, so the contacts do not short. Further, instrument contacts (not shown) are adapted to receive the signal obtained from the volume detection current for processing. In embodiments, a blood sample sufficient to obtain a measurement is in a range of about 0.2 μL to about 3.0 μL, preferably between about 0.2 μL to about 1 μL, and more preferably in a range of about 0.2 μL to about 0.5 μL.
Blood transport channel 18 has a mouth at one end in fluid communication with the blood sample volume detection area 12. The blood transport channel 18 permits capillary movement of blood sample from the mouth of the channel to measurement site 20. The blood sample detection area 12, the blood transport channel 18 and the measurement site 20 are all located on a functional area 100 of the test strip.
In embodiments, functional areas 100 may be separated by neutral, or non-functional, areas 200, which permits successive functional areas to be located on a single continuous strip. Likewise, seals 24, 42 may be provided between functional areas, or between functional and non-functional areas, to isolate used portions of a strip, or to maintain unused functional areas in a desiccated state within a housing (not shown in
The strip is capable of moving to enable a blood sample to move from the blood sample volume detection area 12 to the blood transport channel 18 and thereafter, by capillary action, to the measurement site 20. In
To facilitate the movement of the blood sample 32 by capillary action in the blood transport channel 18, the strip 10 should be constructed of appropriate materials and size. Conveniently for this purpose, the test strip depicted in
As shown in
However, as explanation and not by way of limitation, a suitable electrochemical cell for measurement of blood glucose may be made using two relatively inert electrodes formed in areas 44 at the measurement site 20. In a sufficiently sensitive test strip device, the wells defining a working area of the electrodes may have an area of about 0.19 mm2 to about 1.8 mm2. On at least the working electrode, a glucose-responsive reagent is deposited: generally including glucose oxidase enzyme, a redox mediator, and components to permit the reagent to be effectively coated on the electrodes, such as a surfactant and binder. Various reagent chemistries are known in the art and will not be elaborated upon herein
When at least the working electrode and counter electrode are in contact with the sample, a reaction at the working electrode occurs involving the blood glucose analyte in the sample. A variable related to the reaction at the working electrode, and the relative potential of the counter or reference electrode with respect to the working electrode may be measured, and the resulting signal may be processed to obtain the glucose concentration. Various algorithms are known to obtain these values, and to correct the values obtained for environmental factors. It is not critical, for example, that current is the measured variable, how that signal is processed or what method of measurement is used in the apparatus, and any such method known in the art or hereafter developed may be employed.
An important aspect of the invention is that the test strip is held in a bent state as it contacts the blood sample, and the inflection 36 of the bend moves along the strip during use, causing the blood sample to move with it. To achieve this, several configurations are possible.
Roller 54 may serve as means for advancing the functional areas 100 on the test strip. As shown in
The drive mechanism is preferably in operative communication with a device for receiving the signal relating to the blood volume detection step and with a device for measuring, displaying and/or recording blood glucose measurements so that every aspect of the acquisition and sensing is integrated. For this purpose a suitable microprocessor may be used.
When a lancer and a strip are combined in a single device, or within a housing, as described above, the strip should be positioned with respect to the lancer so that the lancer is capable of piercing the test strip at a specified location, such as piercing hole 14, so that blood is accumulated in the blood sample detection area. It may be desirable to incorporate means for expressing fluid from the blood sample extraction site onto the strip.
Other bending surfaces may be used to support the bending portion of the test strip in the bending state.
The foregoing description of the explanatory embodiments is not to be considered as limiting the subject invention, which is defined by the claims appended hereto.
Number | Name | Date | Kind |
---|---|---|---|
5407554 | Saurer | Apr 1995 | A |
5437999 | Diebold et al. | Aug 1995 | A |
5741634 | Nozoe et al. | Apr 1998 | A |
6143164 | Heller et al. | Nov 2000 | A |
6338790 | Feldman et al. | Jan 2002 | B1 |
6558402 | Chelak et al. | May 2003 | B1 |
6878345 | Astle | Apr 2005 | B1 |
6881578 | Otake | Apr 2005 | B2 |
6893545 | Gotoh et al. | May 2005 | B2 |
7192405 | DeNuzzio et al. | Mar 2007 | B2 |
7378270 | Azarnia et al. | May 2008 | B2 |
7498132 | Yu et al. | Mar 2009 | B2 |
7572237 | Saikley et al. | Aug 2009 | B2 |
7731900 | Haar et al. | Jun 2010 | B2 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20070020143 | Seidenstricker et al. | Jan 2007 | A1 |
20110015546 | Mondro et al. | Jan 2011 | A1 |
20110174637 | Mondro et al. | Jul 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20110015546 A1 | Jan 2011 | US |