The present invention relates to a blood pressure measurement device, in particular, to a blood pressure measurement device with a MEMS pump. The present invention also relates to a control method of the blood pressure measurement device, in particular, to a control method for controlling the inflation speed of the MEMS pump in a predetermined range during the inflation process of the bladder.
In general, there are mainly two ways for the conventional blood pressure measurement device to measure blood pressure: deflation type measurement, and inflation type measurement. In a deflation type blood pressure measurement process, a pump is provided for inflating the bladder in the cuff wrapped around a user's arm or wrist, so that the bladder is inflated to a predetermined pressure to press the user's artery. When the air in the bladder is released, the bladder is deflated. During the deflation stage, a pressure sensor is provided for detecting pulse pressure caused by vasoconstriction, and such pulse pressure is converted into a blood pressure value. In the inflation type blood pressure measurement process, the blood pressure is measured during the inflation process.
Recently, the technology of micro-electromechanical systems (MEMS) pump is becoming more matured, and MEMS pumps are used extensively in blood pressure measurement devices. MEMS pump made of piezoelectric material with anti-piezoelectric effect has the features of low noise, high control precision, and stable output. Blood pressure measurement device comprising MEMS pump is capable of capturing the pulse pressure caused by vasoconstriction during the inflation process of the bladder, and obtaining a blood pressure value by analyzing, computing and converting the pulse pressure.
However, it is necessary to improve the accuracy of the blood pressure measurement device having the MEMS pump. It is also desirable to improve and the stability of the inflation in order to achieve a stable inflation speed. In the inflation process, it is necessary to control the drive voltage or drive frequency of the MEMS pump via a microcontroller to maintain slow and steady rise of the pressure in the bladder, so as to maintain a stable inflation speed. Therefore, a complicated control circuit is required, and a good effect is usually difficult to achieve.
In view of the aforementioned drawbacks, it is a primary objective of the present invention to overcome the drawbacks of the prior art by providing a blood pressure measurement device to control the drive voltage level of a MEMS pump, so that the inflation ability of the MEMS pump can be changed timely to maintain a stable pressurization speed for the inflation of the bladder, or to maintain a stable air flow in the bladder.
To achieve the aforementioned and other objectives, the present invention provides a blood pressure measurement device with a MEMS pump, and the device comprises a cuff having a bladder, a MEMS pump, and a microcontroller. The cuff is wrapped around an object to be measured. The MEMS pump is for inflating the bladder with air. The microcontroller controls the drive voltage level of the MEMS pump to control the air inflation speed of the MEMS pump within a predetermined inflation speed range.
The microcontroller of the blood pressure measurement device of the present invention controls the drive voltage level of the MEMS pump using a voltage regulator circuit through a motor driving control circuit.
The microcontroller of the blood pressure measurement device of the present invention emits a fixed-frequency signal to the motor driving control circuit to provide a fixed drive frequency of the MEMS pump.
The blood pressure measurement device of the present invention further comprises a motor driving control circuit for issuing a fixed-frequency signal to provide a fixed drive frequency of the MEMS pump.
In the blood pressure measurement device of the present invention, the predetermined inflation speed range is from 4 to 6 mmHg/sec.
The blood pressure measurement device of the present invention further comprises a pressure sensor for monitoring the pressure in the bladder during the process of inflating the bladder with air.
In the blood pressure measurement device of the present invention, the MEMS pump is further provided for releasing air from the bladder.
The present invention also provides a control method for the blood pressure measurement device having the MEMS pump, wherein the blood pressure measurement device comprises a cuff having a bladder, which wraps around an object to be measured; a MEMS pump coupled to the bladder for inflating the bladder with air; a pressure sensor coupled to the bladder for monitoring the pressure in the bladder; and a microcontroller for receiving a plurality of pressure signals from the pressure sensor during the inflation process of the MEMS pump; and the control method comprises the steps of: (a) providing a fixed drive frequency and a drive voltage level to the MEMS pump for continuously inflating the bladder with air; (b) determining an inflation speed of the MEMS pump by the microcontroller according to the plurality of pressure signals provided by the pressure sensor, and if the inflation speed is greater than a predetermined inflation speed range, then the microcontroller will lower the drive voltage level, so that the inflation speed is controlled to the predetermined inflation speed range; and (c) converting the plurality of pressure signals into a blood pressure value using the microcontroller.
The present invention also provides another control method for the blood pressure measurement device with the MEMS pump, wherein the blood pressure measurement device comprises a cuff having a bladder, which wraps around an object to be measured; a MEMS pump coupled to the bladder for inflating the bladder with air; a pressure sensor coupled to the bladder for monitoring the pressure in the bladder; and a microcontroller for receiving a plurality of pressure signals from the pressure sensor during an inflation process of the MEMS pump; and the control method comprises the steps of: (a) providing a fixed drive frequency and a drive voltage level to the MEMS pump for continuously inflating the bladder with air; (b) determining an inflation speed of the MEMS pump using the microcontroller according to the plurality of pressure signals provided by the pressure sensor, and if the inflation speed is smaller than a predetermined inflation speed range, then the microcontroller will increase the drive voltage level, so that the inflation speed is increased to the predetermined inflation speed range; and (c) converting the plurality of pressure signals into a blood pressure value using the microcontroller.
The aforementioned control method of the present invention further comprises the step of detecting the pulse provided by the pressure sensor by the microcontroller after Step (a), and deflating the bladder if there is no pulse.
To make it easier for our examiner to understand the objective, technical characteristics, structure, innovative features, and performance of the invention, we use preferred embodiments together with the attached drawings for the detailed description of the invention. For simplicity and clarity, the drawings are provided for showing the overall structure of the invention, and the characteristics of the prior art and their corresponding detailed description is omitted to avoid unnecessarily blurring the claims of the present invention. It is noteworthy that same numerals are used to represent the same elements in the drawings respectively.
With reference to
With reference to
The microcontroller 55 controls a voltage regulator circuit 57 to supply an initial voltage V0 (preferably 10 volts) to the motor driving control circuit 56 at an initialization stage; meanwhile the microcontroller 55 drives the motor driving control circuit 56 via the voltage regulator circuit 57 to carry out a constant-speed inflation of the MEMS pump 53. The microcontroller 55 also emits a pulse width modulation (PWM) fixed-frequency signal to the motor driving control circuit 56 to provide a fixed drive frequency to the MEMS pump 53. In other words, a constant frequency is maintained in the whole inflation process. It is noteworthy that the voltage regulator circuit 57 can adjust the drive voltage level of the MEMS pump by changing the resistance or current, so as to achieve the constant-speed inflation effect of the MEMS pump 53.
The MEMS pump 53 starts inflating the bladder 31 according to the predetermined values of the initial voltage V0 and the constant drive frequency. In the meantime, the pressure sensor 54 is controlled by the microcontroller 55, so that the pressure in the bladder is detected once for a certain period of time (preferably once for every 0.5 second) during the inflation process, and a plurality of pressure signals having the pressure values are sent continuously to the microcontroller 55.
The microcontroller 55 determine the inflation speed of the MEMS pump 53 based on the pressure values of the pressure signals at minimum of two different time, meanwhile the microcontroller 55 determines whether or not the current inflation speed is maintained within a predetermined inflation speed range (which is stored in a storage unit 51). When the current inflation speed is greater than the predetermined inflation speed range, the microcontroller 55 will adjust an input/output (I/O) pin of the voltage regulator circuit 57 and use the motor driving control circuit 56 to lower the drive voltage level of the MEMS pump 53, so as to control the inflation speed and return the current inflation speed to its predetermined inflation speed range. When the current inflation speed is smaller than the predetermined inflation speed range, the microcontroller 55 will adjust the input/output (I/O) pin of the voltage regulator circuit 57 and use the motor driving control circuit 56 to increase the drive voltage level of the MEMS pump 53, so as to increase the current inflation speed and allow the current inflation speed to reach its predetermined inflation speed range. In this preferred embodiment, the predetermined inflation speed range is from 2 to 7 mmHg/sec, preferably 4 to 6 mmHg/sec. In addition, the storage unit 51 is a memory, but the present invention is not limited to such arrangement only. The storage unit 51 is provided for storing at least one record of the blood pressure values. In another preferred embodiment, the storage unit 51 further stores user's related data, and a user interface is provided for switching and displaying the identity information or physiological information on the aforementioned display unit 21. People having ordinary skill in the art should understand that the user related data may be stored in the storage unit 51 by an external electronic device via a wireless or cable transmission.
The microcontroller 55 analyzes and computes a plurality of pressure signals obtained by the pressure sensor 54, converts the pressure signals into blood pressure values, and displays the blood pressure values on the display unit 21. Since such conversion process is well known, it will not be described here.
With reference to
With reference to
In another preferred embodiment of the present invention, the blood pressure measurement device further comprises a flow sensor for detecting the amount of inflation to replace the function of the pressure sensor for monitoring the pressure in the bladder. Therefore, the aforementioned flow sensor continuously transmits current flow signal to the microcontroller 55, so that the microcontroller 55 continuously adjusts the drive voltage level of the MEMS pump 53 to maintain the inflation speed in a predetermined inflation speed range.
With reference to
In details, the microcontroller 55 converts and computes the current inflation speed of the MEMS pump 53 according to the pressure values of the pressure signals at minimum of two different time, meanwhile the microcontroller 55 determines whether or not the current inflation speed is maintained in a predetermined inflation speed range (which is stored in the storage unit 51). When the current inflation speed is greater than a predetermined inflation speed range, the motor driving control circuit 56 provides a pulse width modulation (PWM) fixed-frequency signal. The microcontroller 55 adjusts and outputs the fixed-frequency duty ratio to the voltage regulator circuit 57. As a result, different duty ratios are outputted so that the voltage regulator circuit 57 produces different voltage levels; and the drive voltage of the MEMS pump 53 becomes smaller. In this way, the inflation speed can be controlled in the predetermined inflation speed range. When the current inflation speed is smaller than the predetermined inflation speed range, the adjusted drive voltage becomes greater to increase the inflation speed and return the current inflation speed to its predetermined inflation speed range.
With reference to
When a user presses a push button 22 to turn on the blood pressure measurement device 10 (Step S101), the MEMS pump 53 starts inflating the bladder 31 with air according to the predetermined values of the fixed drive frequency and the initial voltage level (Step S102). The microcontroller 55 determines whether or not the current inflation speed of the MEMS pump 53 falls within a predetermined inflation speed range (Step S103). If the current inflation speed is greater than the predetermined inflation speed range, then the drive voltage level of the MEMS pump 53 will be lowered to return the inflation speed to its predetermined inflation speed range (Step S103-1). On the other hand, if the current inflation speed is smaller than the predetermined inflation speed range, then the drive voltage of the MEMS pump 53 will be increased to return the inflation speed to its predetermined inflation speed range (Step S103-2).
As shown in
Although the control method of the present invention is illustrated by the first and second preferred embodiments, the control method may also be applied to another embodiment by using a flow sensor to replace the pressure, and their only difference resides on that the microcontroller of the first or second preferred embodiment monitors the pressure in the bladder to determine the inflation speed. The microcontroller also controls and regulates the voltage level of the MEMS pump. In the embodiment which the flow sensor is adapted, the microcontroller determines the inflation speed by monitoring the flow rate of the fluid during the inflation process so as to control and regulate the voltage level of the MEMS pump.
Number | Date | Country | Kind |
---|---|---|---|
105136775 | Nov 2016 | TW | national |
This application is a continuation of U.S. application Ser. No. 15/802,466 filed on Dec. 3, 2017, which is a non-provisional application claims priority under 35 U.S.C. § 119(a) on Patent Application No(s). 105136775 filed in Taiwan, R.O.C. on Nov. 11, 2016, the entire contents of which are hereby incorporated by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 15802466 | Nov 2017 | US |
Child | 16986375 | US |