Some applications of the present invention generally relate to medical apparatus. Specifically, some applications of the present invention relate to apparatus and methods associated with placing a pump in one or more of a subject's renal veins, and/or in the subject's vena cava.
It is common for cardiac dysfunction or congestive heart failure to develop into kidney dysfunction, which, in turn, causes congestive heart failure symptoms to develop or worsen. Typically, systolic and/or diastolic cardiac dysfunction causes systemic venous congestion, which gives rise to an increase in renal venous and interstitial pressure. The increase in the pressure causes fluid retention by the body to increase due both to kidney dysfunction and renal neurohormonal activation, both of which typically develop as a result of the increase in renal venous and interstitial pressure. The resulting fluid retention causes congestive heart failure to develop or worsen, by causing a blood volume overload at the heart and/or by increasing systemic resistance. Similarly, it is common for kidney dysfunction and/or renal neurohormonal activation to develop into cardiac dysfunction and/or congestive heart failure. This pathophysiological cycle, in which cardiac dysfunction and/or congestive heart failure leads to kidney dysfunction and/or renal neurohormonal activation, or in which kidney dysfunction and/or renal neurohormonal activation leads to cardiac dysfunction and/or congestive heart failure, each dysfunction leading to deterioration in the other dysfunction, is called the cardio-renal syndrome.
Increased renal venous pressure has been experimentally shown to cause azotemia, and a reduction in glomerular filtration rate, renal blood flow, urine output, and sodium excretion. It has also been shown to increase plasma renin and aldosterone, and protein excretion. Venous congestion may also contribute to anemia via three different pathways: A reduction in the kidney's erythropoietin production, hemodilution by fluid retention, and an inflammatory response leading to a reduced gastro-intestinal iron uptake.
Mechanistically, increased renal venous pressure may cause intracapsular pressure and, subsequently, interstitial peritubular pressure, to rise. A rise in peritubular pressure may impact tubular function (reduce sodium excretion), as well as diminish glomerular filtration, by raising the pressure in the Bowman capsule.
In heart failure patients, increased renal venous pressure may not only result from increased central venous (right atrial) pressure, but also from intraperitoneal fluid accumulations (ascites) exerting direct pressure on the renal veins. Reduction of intraabdominal pressure in heart failure patients by removal of fluid (e.g., via paracentesis, and/or ultrafiltration), has been shown to reduce plasma creatinine levels.
Increased venous return resulting from activation of the “leg muscle pump” during physical activity such as walking may raise systemic venous pressure, particularly in heart failure patients, and may result in reflux into the renal veins.
Typically, in patients suffering from acute heart failure, elevated systemic venous pressures cause increased renal parenchymal pressure and increased intraabdominal pressure, factors that can contribute to deterioration of renal perfusion and function. In addition, high systemic venous pressures may impede lymphatic drainage of pulmonary interstitial fluid resulting in aggravation and prolongation of pulmonary congestion in patients with acute pulmonary edema.
In accordance with some applications of the present invention, a blood pump is placed inside a blood vessel of a subject, the blood pump including (a) an impeller configured to pump blood by rotating, and (b) a support cage that is shaped to define (i) a narrow portion that is configured to be disposed around the impeller, and to maintain a separation between a wall of the blood vessel and the impeller, and (ii) a radial extension from the narrow portion of the support cage that extends radially outward with respect to the narrow portion of the support cage, the extension being configured to substantially maintain a longitudinal axis of the impeller in alignment with a local longitudinal axis of the blood vessel by contacting the wall of the blood vessel. For some applications, the narrow portion and the radial extension of the support cage are two separately-formed components. Alternatively, the narrow portion and the radial extension of the support cage are separate portions of a single integrated component. In accordance with respective applications, the radial extension includes radially-protruding support arms, a bulbous extension that constitutes a radial extension from the narrow portion of the cage, and/or a frustoconical support cage that constitutes a radial extension from the narrow portion of the cage.
Typically, such applications are used with an impeller that is undersized with respect to the vessel in which it is placed. Such an impeller may be used, for example, in cases in which a larger impeller would undergo a substantial amount of vibration while rotating. Alternatively or additionally, such an impeller may be used in cases in which, if the portion of the cage that is configured to separate between the impeller and the vessel wall was larger, there would be a risk that the portion of the cage would become radially compressed by the walls of the vessel, which may result in the impeller becoming deformed (e.g., by the upstream and downstream ends of the impeller axis becoming misaligned), and/or in the impeller becoming misaligned with the local longitudinal axis of the vessel. Typically, for such applications, a narrow portion of the cage surrounds the impeller and is configured to maintain a separation between a wall of the blood vessel and the impeller, for example, in case the vessel narrows, such that, in the absence of the narrow portion of the cage, the walls of the vessel would collapse onto the impeller. The radial extension is typically configured to anchor the blood pump within the vessel by exerting an outward radial force upon the vessel wall, and to substantially maintain a longitudinal axis of the impeller in alignment with a local longitudinal axis of the blood vessel by contacting the wall of the blood vessel. Typically, a stiffness of the narrow portion of the cage is greater than that of the radial extension, such that the narrow portion of the cage is configured to maintain the separation between the wall of the blood vessel and the impeller, even if the wall of the vessel exerts pressure upon the support cage that causes the radial extension to deform.
For some applications, material (e.g., blood-impermeable material) is disposed on the support cage. Typically, the material is coupled to the support cage such as to contact the vessel wall and to occlude the blood vessel in the region of the blood vessel that surrounds the impeller. The material typically defines a hole therethrough in a central region of the vessel, in a vicinity of the impeller. The material is configured to occlude backflow of blood around the outside of the impeller, but such as to allow antegrade blood flow in the central region of the vessel in the vicinity of the impeller.
For some applications, such a blood pump is configured to be placed within a subject's renal vein and to pump blood from the subject's renal vein into the subject's vena cava, e.g., as described herein with reference to
For some applications, an occlusion element and/or a blood pump is placed in a subject's infra-renal vena cava (i.e., within the vena cava, upstream of junctions of the vena cava with all of a subject's renal veins). Typically, the occlusion element and/or blood pump is inserted into the vena cava of a subject suffering from acute heart failure. Typically, in patients suffering from acute heart failure, elevated systemic venous pressures cause increased renal parenchymal pressure and increased intraabdominal pressure, factors that can contribute to deterioration of renal perfusion and function. In addition, high systemic venous pressures may impede lymphatic drainage of pulmonary interstitial fluid resulting in aggravation and prolongation of pulmonary congestion in patients with acute pulmonary edema. For some applications, the occlusion element is configured to cause partial occlusion of the infra-renal vena cava, and/or the blood pump is used to pump blood in a retrograde direction within the infra-renal vena cava. Typically, use of the occlusion element and/or the blood pump in this manner reduces cardiac preload, by causing lower body venous pooling. Typically, reducing cardiac preload ameliorates pulmonary congestion and/or improve cardiac loading conditions and function.
Typically, an indication of cardiac preload is measured, for example, by measuring central venous pressure, renal venous pressure, cardiac diameter and/or cardiac volume. Further typically, an indication of cardiac output and/or arterial pressure is measured, for example, by measuring arterial blood flow, minute flow, arterial flow velocity, and/or arterial blood pressure. For some applications, a control unit monitors the indication of cardiac preload, and modulates the extent to which the occlusion element occludes the infra-renal vena cava, and/or the rate at which the blood pump pumps blood, in response thereto. For some applications, the control unit sets the extent to which the occlusion element occludes the infra-renal vena cava, and/or the rate at which the blood pump pumps blood, by determining the highest degree of obstruction, or reverse blood flow, attainable without decreasing cardiac output and/or arterial pressure by more than a given threshold.
For some applications, a downstream pump is placed downstream of the junctions of the vena cava with all of the subject's renal veins, and pumps blood through the vena cava, in the downstream direction, away from the junctions of the vena cava with the renal veins. Furthermore, an occlusion element is placed upstream of the junctions of the vena cava with all of the subject's renal veins and is configured to partially occlude the subject's vena cava upstream of the junctions of the vena cava with the subject's renal veins. The occlusion element is configured to partially occlude the subject's vena cava such that, in response to the pumping of the downstream blood pump, there is not a substantial increase of blood flow from the subject's lower body toward the subject heart, but such that a region of low pressure within the vena cava is generated, between the occlusion element and the downstream blood pump, within which the blood pressure is lower than the subject's central venous pressure. Typically, by generating a region of low pressure, blood flow from the renal veins into the vena cava increases, thereby lowering renal blood pressure and enhancing renal perfusion. For some applications, the combination of the downstream pump and the upstream occlusion element is configured such that the overall effect of the downstream pump and the upstream occlusion element is that (a) central venous pressure is lowered relative to lower body venous pressure (e.g., by the pumping of the downstream pump not fully compensating for the reduction in pressure caused by the occlusion of the vena cava by the upstream occlusion element), and (b) renal venous pressure is lowered relative to lower body venous pressure and central venous pressure, due to the region of low pressure being generated within the vena cava, between the occlusion element and the downstream blood pump.
For some applications, a control unit controls the extent to which the occlusion element occludes the vena cava and the rate at which the pump pumps blood, responsively to one or more of the parameters detected by sensors. For example, based upon the parameters detected by the sensors, the control unit may control the extent to which the occlusion element occludes the vena cava and the rate at which the pump pumps blood, such that the ratio between renal venous pressure and lower body pressure is a first ratio, and such that the ratio between central venous pressure and lower body pressure is a second ratio, which is different from the first ratio. Typically, the first ratio is designated based upon the extent to which it is desirable to decrease the subject's renal venous pressure, such as to increase renal perfusion, in accordance with the techniques described herein. Further typically, the second ratio is designated based upon the extent to which it is desirable to decrease the subject's cardiac preload, in accordance with the techniques described herein.
In general, in the specification and in the claims of the present application, the term “proximal” and related terms, when used with reference to a device or a portion thereof, should be interpreted to mean an end of the device or the portion thereof that, when inserted into a subject's body, is typically closer to a location through which the device is inserted into the subject's body. The term “distal” and related terms, when used with reference to a device or a portion thereof, should be interpreted to mean an end of the device or the portion thereof that, when inserted into a subject's body, is typically further from the location through which the device is inserted into the subject's body.
In general, in the specification and in the claims of the present application, the term “downstream” and related terms, when used with reference to a blood vessel, or with reference to a portion of a device that is configured to be placed inside a blood vessel, should be interpreted to mean a location within the blood vessel, or a portion of the device that is intended for placement at a location within the blood vessel, that is downstream, with respect to the direction of antegrade blood flow through the blood vessel, relative to a different location within the blood vessel. The term “upstream” and related terms, when used with reference to a blood vessel, or with reference to a portion of a device that is configured to be placed inside a blood vessel, should be interpreted to mean a location within the blood vessel, or a portion of the device that is intended for placement at a location within the blood vessel, that is upstream with respect to the direction of antegrade blood flow through the blood vessel, relative to a different location within the blood vessel.
There is therefore provided, in accordance with some applications of the present invention, apparatus including:
a blood pump configured to be placed inside a blood vessel of a subject, the blood pump including:
For some applications, the narrow portion of the support cage and the radial extension include a single integrated component. For some applications, the narrow portion of the support cage and the radial extension include respective components that are formed separately from each other.
For some applications, the radial extension includes a plurality of radially-protruding support arms that protrude from the narrow portion of the support cage. For some applications, the radial extension includes a frustoconical cage that is disposed around the narrow portion of the support cage.
For some applications, a stiffness of the narrow portion of the support cage is greater than a stiffness of the radial extension, such that the narrow portion of the cage is configured to maintain the separation between the wall of the blood vessel and the impeller, even if the wall of the vessel exerts pressure upon the support cage that causes the radial extension to deform.
For some applications, the apparatus further includes a material coupled to the support cage, the material defining a hole therethrough in a vicinity of the impeller, the material being configured to occlude backflow of blood around an outside of the impeller, and to allow antegrade blood flow in the vicinity of the impeller.
For some applications, the blood pump is configured to be placed within a renal vein of the subject and to pump blood from the subject's renal vein into a vena cava of the subject.
For some applications, the blood pump is configured to be placed within a vena cava of the subject upstream of junctions of the vena cava with all renal veins of the subject, the pump being configured to pump blood through the vena cava in a retrograde direction.
For some applications, the blood pump is configured to be placed within a vena cava of the subject downstream of junctions of the vena cava with all renal veins of the subject, the pump being configured to pump blood through the vena cava in an antegrade direction.
For some applications, the apparatus further includes an additional blood pump, the additional blood pump being configured to be placed within the subject's vena cava upstream of junctions of the vena cava with all renal veins of the subject, the additional blood pump being configured to pump blood through the vena cava in a retrograde direction.
For some applications, the apparatus further includes an occlusion element configured to be placed within the subject's vena cava upstream of junctions of the vena cava with all renal veins of the subject, the occlusion element being configured to partially occlude blood flow through the vena cava upstream of junctions of the vena cava with all renal veins of the subject.
For some applications, the radial extension includes a bulbous extension that extends radially and distally from the narrow portion of the support cage. For some applications, a maximum diameter of the bulbous extension, when the bulbous extension is in a radially non-constrained configuration thereof, is at least 1.1 times greater than a maximum diameter of the narrow portion of the support cage, when the narrow portion is in a radially non-constrained configuration thereof.
There is further provided, in accordance with some applications of the present invention method including:
inserting a blood pump into a blood vessel of a subject, the blood pump including:
pumping blood through the blood vessel, by rotating the impeller, by operating the blood pump.
There is further provided, in accordance with some applications of the present invention, a method including:
identifying a subject as suffering from acute heart failure;
in response thereto, reducing cardiac preload of the subject by partially occluding a vena cava of the subject at an infra-renal location;
monitoring one or more physiological parameters of the subject selected from the group consisting of: lower body venous pressure, central venous pressure, central venous blood flow, renal venous pressure, cardiac diameter, cardiac volume, arterial pressure, and arterial blood flow; and
modulating an extent to which the vena cava is occluded at the infra-renal location, responsively to the one or more physiological parameters.
There is further provided, in accordance with some applications of the present invention, a method including:
identifying a subject as suffering from acute heart failure;
in response thereto, reducing cardiac preload of the subject by pumping blood in a retrograde direction at an infra-renal location within a vena cava of the subject;
monitoring one or more physiological parameters of the subject selected from the group consisting of: lower body venous pressure, central venous pressure, central venous blood flow, renal venous pressure, cardiac diameter, cardiac volume, arterial pressure, and arterial blood flow; and
modulating a rate at which the blood is pumped in the retrograde direction at the infra-renal location, responsively to the one or more physiological parameters.
There is further provided, in accordance with some applications of the present invention, apparatus including:
an occlusion element configured to reduce cardiac preload of a subject by being placed in a vena cava of the subject at an infra-renal location, and to partially occlude the subject's vena cava at the infra-renal location;
one or more sensors configured to monitor one or more physiological parameters of the subject selected from the group consisting of: lower body venous pressure, central venous pressure, central venous blood flow, renal venous pressure, cardiac diameter, cardiac volume, arterial pressure, and arterial blood flow; and
a computer processor configured to modulate an extent to which the occlusion element occludes the vena cava at the infra-renal location, responsively to the one or more physiological parameters.
For some applications, the occlusion element includes a balloon configured to be inflated at the infra-renal location, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location by modulating an extent to which the balloon is inflated.
For some applications, the occlusion element includes an expandable frame having material covered thereto, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location by modulating an extent to which the frame is expanded.
For some applications, the occlusion element includes a nozzle, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location by modulating a diameter of an opening of the nozzle.
For some applications, the one or more sensors are configured to monitor a parameter of the subject that is indicative of cardiac output of the subject, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location responsively to the parameter that is indicative of the cardiac output.
For some applications, the one or more sensors include a thermodilution catheter configured to monitor the parameter that is indicative of the cardiac output.
For some applications, the one or more sensors are further configured to monitor a parameter of the subject that is indicative of cardiac preload of the subject, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location responsively to the parameter that is indicative of the cardiac output in combination with the parameter that is indicative of the cardiac preload.
For some applications, the one or more sensors are configured to monitor a parameter of the subject that is indicative of arterial blood pressure of the subject, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location responsively to the parameter that is indicative of the arterial blood pressure.
For some applications, the one or more sensors are further configured to monitor a parameter of the subject that is indicative of cardiac preload of the subject, and the computer processor is configured to modulate the extent to which the occlusion element occludes the vena cava at the infra-renal location responsively to the parameter that is indicative of the arterial blood pressure in combination with the parameter that is indicative of the cardiac preload.
For some applications, the apparatus further includes a blood pump configured to be placed at a location within the vena cava that is downstream of junctions of the vena cava with all renal veins of the subject, the blood pump being configured to reduce the subject's renal venous pressure relative to the subject's central venous pressure by pumping blood in an antegrade direction through the vena cava from the location.
For some applications, the computer processor is further configured to modulate a rate at which the blood pump pumps blood in the antegrade direction, responsively to the one or more physiological parameters.
For some applications, the computer processor is configured to modulate the rate at which the blood pump pumps blood in the antegrade direction responsively to the one or more physiological parameters in coordination with modulating the extent to which the vena cava is occluded at the infra-renal location responsively to the one or more physiological parameters, such as to:
maintain a first ratio between the subject's renal venous pressure and the subject's lower body venous pressure, and
maintain a second ratio between the subject's central venous pressure and the subject's lower body venous pressure,
the second ratio being different from the first ratio.
There is further provided, in accordance with some applications of the present invention, apparatus including:
a blood pump configured to reduce cardiac preload of a subject by being placed at an infra-renal location within a vena cava of the subject, and pumping blood in a retrograde direction from the location;
one or more sensors configured to monitor one or more physiological parameters of the subject selected from the group consisting of: lower body venous pressure, central venous pressure, central venous blood flow, renal venous pressure, cardiac diameter, cardiac volume, arterial pressure, and arterial blood flow; and
a computer processor configured to modulate a rate at which the blood pump pumps blood in the retrograde direction, responsively to the one or more physiological parameters.
For some applications, the one or more sensors are configured to monitor a parameter of the subject that is indicative of cardiac output of the subject, and the computer processor is configured to modulate the rate at which the blood pump pumps blood in the retrograde direction responsively to the parameter that is indicative of the cardiac output.
For some applications, the one or more sensors include a thermodilution catheter configured to monitor the parameter that is indicative of the cardiac output.
For some applications, the one or more sensors are further configured to monitor a parameter of the subject that is indicative of cardiac preload of the subject, and the computer processor is configured to modulate at which the blood is pumped includes modulating the rate at which the blood pump pumps blood in the retrograde direction responsively to the parameter that is indicative of the cardiac output in combination with the parameter that is indicative of the cardiac preload.
For some applications, the one or more sensors are configured to monitor a parameter of the subject that is indicative of arterial blood pressure of the subject, and the computer processor is configured to modulate the rate at which the blood pump pumps blood in the retrograde direction responsively to the parameter that is indicative of the arterial blood pressure.
For some applications, the one or more sensors are further configured to monitor a parameter of the subject that is indicative of cardiac preload of the subject, and the computer processor is configured to modulate at which the blood is pumped includes modulating the rate at which the blood pump pumps blood in the retrograde direction responsively to the parameter that is indicative of the arterial blood pressure in combination with the parameter that is indicative of the cardiac preload.
For some applications, the apparatus further includes a second blood pump configured to be placed at a downstream location within the vena cava that is downstream of junctions of the vena cava with all renal veins of the subject, the second blood pump being configured to reduce the subject's renal venous pressure relative to the subject's central venous pressure by pumping blood in an antegrade direction through the vena cava from the location that is downstream of junctions of the vena cava with all renal veins of the subject.
For some applications, the computer processor is further configured to modulate a rate at which the second blood pump pumps blood in the antegrade direction from the downstream location, responsively to the one or more physiological parameters.
For some applications, the computer processor is configured to modulate the rate at which the second blood pump pumps blood in the antegrade direction from the downstream location responsively to the one or more physiological parameters by modulating the rate at which the blood is pumped in the antegrade direction through the vena cava from the downstream location in coordination with modulating the rate at which blood is pumped in the retrograde direction at the infra-renal location within the subject's vena cava, such as to:
maintain a first ratio between the subject's renal venous pressure and the subject's lower body venous pressure, and
maintain a second ratio between the subject's central venous pressure and the subject's lower body venous pressure,
the second ratio being different from the first ratio.
The present invention will be more fully understood from the following detailed description of embodiments thereof, taken together with the drawings, in which:
Reference is made to
Each of the upstream and downstream pumps 24U and 24D typically includes a radially-expandable impeller 28 disposed inside a radially-expandable impeller cage 30. Typically, impeller 28 and impeller cage 30 are shape-set such as to assume radially expanded configurations thereof in the absence of any radially constraining force acting upon the impeller and the cage. The blood pumps are inserted into the subject's vena cava, while the blood pumps are in radially constrained configurations inside the guide catheter, and are configured to assume substantially radially non-constrained configurations by being released from the guide catheter inside the subject's vena cava. (It is noted that, for some applications, in the vena cava, the blood pumps may not be fully radially non-constrained, due to the walls of the vena cava applying a radially compressive force to the blood pumps.) For some applications, an engagement mechanism engages the impeller and the cage with respect to one another, such that in response to the cage becoming radially constrained, the impeller becomes radially constrained, e.g., in accordance with apparatus and methods described in described in US 2016/0022890 to Schwammenthal, which is incorporated herein by reference.
It is noted that the term “impeller” is generally used herein to denote a bladed rotor, as shown in
It is noted that reference numeral 24 is generally used to denote a blood pump in the present application. When a pump that is placed upstream is being referred to, reference numeral 24U is used, and when a pump that is placed downstream is being referred to, reference numeral 24D is used. Similarly, reference numeral 28 is generally used to denote an impeller in the present application. When an impeller that is placed upstream is being referred to, reference numeral 28U is used, and when an impeller that is placed downstream is being referred to, reference numeral 28D is used.
Blood-pump catheter 20 is typically placed inside the subject's vena cava 22, and operated therein, in order to provide acute treatment of a subject suffering from cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, diabetes, and/or kidney dysfunction. For example, the blood-pump catheter may be placed inside the subject's vena cava, and operated therein, for a period of more than one hour (e.g., more than one day), less than one week (e.g., less than four days), and/or between one hour and one week (e.g., between one day and four days). For some applications, the blood-pump catheter is chronically placed inside the subject's vena cava in order to provide chronic treatment of a subject suffering from cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, diabetes, and/or kidney dysfunction. For some applications, a course of treatment is applied to a subject over several weeks, several months, or several years, during which the blood-pump catheter is intermittently placed inside the subject's vena cava, and the subject is intermittently treated in accordance with the techniques described herein. For example, the subject may be intermittently treated at intervals of several days, several weeks, or several months.
For some applications, blood-pump catheter 20 is inserted into vena cava 22, via the subject's subclavian vein 40, as shown in
The effect of both of pumps 24U and 24D pumping blood in the above-described manner is that, between the pumps, and adjacent to the junctions of the vena cava with the renal veins, there is a low-pressure region of the vena cava, within which blood pressure is lower than the subject's central venous pressure. Functionally, this region may be viewed as a compartment within the vena cava within which blood pressure is controlled (by controlling pumps 24U and 24D), regardless of the blood pressure elsewhere within the vena cava. This typically increases blood flow from the renal veins into the vena cava, lowers pressure within the subject's renal veins, and causes renal perfusion to increase. The effect of pumps 24U and 24D on blood flow through the renal veins and the vena cava is indicated by arrows 44 in
As described hereinabove, the effect of operating blood pumps 24U and 24D is that between the pumps there is a low-pressure region of the vena cava. However, typically, the pumps are operated simultaneously such that the pressure within other portions of the vena cava is substantially unchanged relative to when blood-pump catheter 20 is not in operation. For example, the pumps are typically operated simultaneously such that the pressure within the vena cava downstream of downstream pump 24D is not substantially increased relative to when blood-pump catheter 20 is not in operation. Similarly, the pumps are typically operated simultaneously such that the pressure within the vena cava upstream of upstream pump 24U is not substantially increased relative to when blood-pump catheter 20 is not in operation. This is because the pumps are typically operated simultaneously such that outside of the region between the two pumps, the effects of the pumping by the upstream and downstream pumps cancel each other with respect to pressure. It is noted that there is likely to be some increase in the pressure within the vena cava downstream of downstream pump and upstream of upstream pump due to the increased blood flow from the renal veins into the vena cava.
Similarly, the pumps are typically operated simultaneously such that venous return to the vena cava from regions upstream of the upstream pump and downstream from the downstream pump is substantially unchanged relative to when blood-pump catheter 20 is not in operation. In this manner, the pumps are typically operated simultaneously such as to have a generally synergistic effect on pressure and flow in the region between the pumps, but to have an antagonistic effect on pressure and flow outside of the region, such that, outside of the region, the effects of the two pumps typically substantially cancel each other out.
Typically, blood-pump catheter 20 pumps blood in a manner that enhances the rate of blood flow through the renal veins and into the vena cava, but does not cause a substantial change in the direction of the blood flow relative to the natural direction of flow through the renal veins, or from the renal veins to the vena cava (i.e., relative to blood flow in the absence of pumping by the blood-pump catheter). That is to say, the blood-pump catheter pumps blood in the downstream direction through the renal veins and then directly into the portion of the vena cava that is adjacent to the renal veins, rather than, for example, pumping the blood from the renal veins into a different portion of the subject's veins (such as, an upstream location within the vena cava). It is noted that, due to the pumping of the downstream pump in the downstream direction, there is likely to be some blood flow from the renal veins to the portion of the vena cava that is below the renal veins. Further typically, blood-pump catheter 20 enhances blood flow through the renal veins without removing blood from the subject's venous system into a non-venous receptacle, such as an artificial lumen of a blood pump.
As described hereinabove, typically blood-pump catheter 20 is placed inside the vena cava of a subject suffering from cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, diabetes, and/or kidney dysfunction. Typically, operating the blood-pump catheter in the vena cava of such a subject causes a lowering and flattening of the subject's renal vein pressure profile, even though the subject's central venous pressure is elevated and has additional effects, e.g., as described with reference to FIG. 4B of US 2016/0022890 to Schwammenthal, which is incorporated herein by reference.
Typically, each of upstream and downstream pumps 24U and 24D includes an impeller 28, for example, any one of the impellers described in US 2016/0022890 to Schwammenthal, which is incorporated herein by reference. In accordance with respective applications, impeller 28 may have a single blade, two blades (e.g., as described in US 2016/0022890 to Schwammenthal, which is incorporated herein by reference), three blades (e.g., as described in US 2016/0022890 to Schwammenthal), or more than three blades. For some applications, one or both of blood pumps 24U and 24D includes more than one impeller. Typically, ceteris paribus, by using more than one impeller in at least one of the pumps, in order to generate a given flow of blood with the pump, the force that impacts each of the impellers within the pump is smaller than if a single impeller were to be used in the pump.
For some applications, one or both of the pumps includes radially expandable impeller cage 30. For some applications, impeller cage 30 is configured to hold open the inner wall of the vena cava and to separate the inner wall of the vena cava from the impeller, such that the vena cava does not become injured by the impeller. Alternatively, the impeller cage is sized such that the cage is not used to hold open the inner wall of the vena cava (the diameter of the cage being less than that of the vena cava, at least in some subjects). Even in such cases, the cage typically functions to separate the inner wall of the vena cava from the impeller, for example, in case the walls of the vena cava at least partially collapse inwardly, such that the vena cava does not become injured by the impeller. Such applications are described with reference to
As described hereinabove, typically, impeller 28 and cage 30 are shape-set such as to assume radially expanded configurations thereof in the absence of any radially constraining force acting upon the impeller and/or the cage. For some applications, an engagement mechanism engages the impeller and the cage with respect to one another, such that in response to the cage becoming radially constrained the impeller becomes radially constrained, e.g., in accordance with apparatus and methods described in described in US 2016/0022890 to Schwammenthal, which is incorporated herein by reference. For some applications, the stiffness of cage 30 is sufficiently great that pressure exerted upon the cage by the inner wall of the vena cava does not deform the cage. The cage thereby protects the impeller from being deformed by pressure from the inner wall of the vena cava. Such applications are described hereinbelow, with reference to
Referring now to
For some applications, impeller cage 30 is configured such that in its radially non-constrained configuration, the cage has a diameter that is less than that of the vena cava at least in some subjects, for example, as described hereinbelow with reference to
For some applications, impellers 28 of upstream and downstream pumps 24U and 24D are rotated at respective rotation rates, in order to cause the pumping of blood in the upstream and downstream directions to be performed at respective rates. Alternatively, the impellers are rotated at the same rotation rate (and, typically, in the same direction), but the impellers are sized, shaped, and/or oriented such that the rate at which blood is pumped, respectively, in the upstream and downstream directions, by the respective impellers, is not equal.
Typically, a control unit 52 and a user interface 54 are disposed outside the subject's body. Further typically, the control unit receives inputs from one or more pressure sensors 56, 58, and/or 60, e.g., as shown in
In accordance with some applications:
(a) a pressure sensor 56 is disposed on the upstream side of upstream blood pump 24U and is configured to measure pressure within the vena cava upstream of the low-pressure region of the vena cava, which is typically indicative of venous pressure within the subject's lower body;
(b) a pressure sensor 58 disposed between the two blood pumps, and is configured to measure pressure within the low-pressure region of the vena cava between the two blood pumps, which is typically indicative of blood pressure within the subject's renal veins; and/or
(c) a pressure sensor 60 is disposed on the downstream side of downstream blood pump 24D and is configured to measure pressure within the vena cava downstream of the low-pressure region of the vena cava, which is typically indicative of the subject's central venous pressure close to the subject's right heart.
For some applications, blood-pump catheter 20 includes pressure sensor 58 disposed between the two blood pumps, and is configured to measure pressure within the low-pressure region of the vena cava between the two blood pumps, which is typically indicative of blood pressure within the subject's renal veins, and the blood-pump catheter does not include pressure sensor 56, or pressure sensor 60.
For some applications, control unit 52 controls pumps 24U and 24D, e.g., by controlling rotation of impellers 28, responsively to one or more of the above-described inputs. Typically, user interface 54 displays the subject's current lower-body venous pressure, renal venous pressure, and/or central venous pressure, based upon the signals generated by sensors 56, 58, and/or 60. Typically, based upon the current values of the subject's lower-body venous pressure, renal venous pressure, and/or central venous pressure, a user (such as a healthcare professional) inputs a target value for the subject's renal venous pressure, via the user interface. In response thereto, control unit 52 controls the speed of the rotation of the impellers, such that the impellers pump blood away from the renal veins at a flow rate that is such as to reduce the renal venous pressure toward the target level, as indicated by the user. For some applications, in response to a signal received from sensor 60 indicating that the central venous pressure is at the target renal venous pressure, the control unit stops the impellers rotating. For some applications, the control unit receives an input from an additional sensor (such as a flow sensor and/or an oxygen-saturation sensor, and/or a thermal flow sensor, e.g., as described with reference to FIGS. 22Ai-22Cii of US 2016/0022890 to Schwammenthal, which is incorporated herein by reference), and the control unit controls the speed of the rotation of the impellers responsively to an input from the additional sensor.
It is noted that control unit 52 typically includes a computer processor that comprises circuitry and that is configured to execute the actions described herein. Typically, the operations described herein that are performed by the computer processor transform the physical state of a memory, which is a real physical article that is in communication with the computer processor, to have a different magnetic polarity, electrical charge, or the like, depending on the technology of the memory that is used. Control unit 52 is typically a hardware device programmed with computer program instructions to produce a special-purpose computer. For example, when programmed to perform the techniques described herein, control unit 52 typically acts as a special-purpose, renal-venous-pressure-modulating computer processor.
It is further noted that user interface 54 typically includes any type of user interface configured to receive inputs from a user and/or to provide outputs to the user. For example, the user interface may include one or more input devices (such as a keyboard, a mouse, a trackball, a joystick, a touchscreen monitor, a touchpad, a voice-command interface, a smartphone, a tablet computer, and/or other types of input devices that are known in the art), and/or one or more output devices (such as a monitor, an audio output device, a smartphone, a tablet computer, and/or other types of output devices that are known in the art).
Reference is now made to
Typically, impellers of pumps 24U and 24D are coupled to one or more motors 46 (
Referring now to
Typically, for such applications, a single motor is used to rotate both of the impellers. A shaft 50 is used to impart the rotational motion from the motor to the proximal impeller. An additional shaft 51, which is in series with shaft 50, couples the proximal impeller to the distal impeller and imparts the rotational motion from the proximal impeller to the distal impeller. For some applications, by using a single series of shafts to impart rotation to impellers 28 of both upstream and downstream pumps 24U and 24D, the diameter of blood-pump catheter 20 is reduced relative to if parallel shafts were used, in order to impart rotation to the upstream and downstream impellers.
For some applications, the angles and/or orientations of the impeller blades of impellers 28 of upstream and downstream pumps 24U and 24D may be such as to cause the impellers to pump blood in respective, opposite directions. For some applications, as shown in
Typically, the blades of the downstream impeller are oriented such that, as the downstream impeller rotates in the direction of arrow 48, the downstream impeller pumps in the downstream direction. The blades of the upstream impeller are oriented such that, as the upstream impeller rotates in the direction of arrow 48, the upstream impeller pumps in the upstream direction.
Referring now to
For some applications, it is advantageous to rotate the downstream impeller in the opposite direction from the upstream impeller (e.g., as shown in
Referring now to
Referring now to
Reference is now made to
For applications in which the upstream and downstream blood pumps include impellers, typically, respective motors 46 and 75 (e.g., as shown
For some applications, the impellers of the upstream and downstream pumps are configured to pump blood in the same direction as one another, e.g., in the antegrade direction to enhance blood flow through a vessel.
Reference is now made to
Reference is now made to
Reference is now made to
When blood-pump catheter 20 is used to enhance blood flow from the renal veins into the subject's vena cava, as described herein, a longitudinal distance D2 between the longitudinal center of the impeller of the downstream pump and the longitudinal center of the occlusion element, measured along the longitudinal axis of the catheter, is typically more than 3 cm (e.g., more than 6 cm), and/or less than 18 cm (e.g., less than 14 cm), e.g., 3-18 cm, or 6-14 cm.
For some applications, the occlusion element is balloon 80, as shown in
As described hereinabove, typically, the occlusion element is configured to partially occlude the vena cava upstream of the junctions of the vena cava with the subject's renal veins. For some applications, the diameter to which the occlusion element is expanded is controllable. For example, inflation of the balloon may be controllable, or the frame may be expandable (e.g., by heating the frame, or by applying an electrical current to the frame). For some applications, the extent to which the occlusion element occludes the vena cava is controlled by a control unit (e.g., control unit 52) responsively to the blood pressure detected by blood pressure sensor 56, 58, and/or 60, in response to an input from a different sensor (such as a flow sensor and/or an oxygen-saturation sensor, and/or a thermal flow sensor, e.g., as described with reference to FIGS. 22Ai-Cii of US 2016/0022890 to Schwammenthal, which is incorporated herein by reference), and/or in response to an input from a user. For some applications, the rate at which pump 24D pumps blood away from the renal veins (e.g., the rate at which impeller 28 of the pump is rotated), and/or the extent to which the occlusion element occludes the vena cava, is controlled by a control unit responsively to the blood pressure detected by blood pressure sensor 56, 58, and/or 60, in response to an input from a different sensor (such as a flow sensor and/or an oxygen-saturation sensor, and/or a thermal flow sensor, e.g., as described with reference to FIGS. 22Ai-Cii of US 2016/0022890 to Schwammenthal, which is incorporated herein by reference), and/or in response to an input from a user.
Although
As described hereinabove, for some applications, using impellers that rotate in the same direction as one another for upstream and downstream pumps causes blood flow that impacts the downstream impeller to already be undergoing rotational motion in the same direction as the downstream impeller, which, in turn, may cause the effect of the rotational motion of the downstream impeller upon the blood to be less than if the blood flow had not been undergoing the rotational motion in the same direction as the downstream impeller. For some applications, an occlusion element, such as a balloon 80 (
For some applications, an occlusion element is placed within the vena cava upstream of junctions of the vena cava with all of the renal veins even in the absence of a downstream blood pump, for example, as described in further detail hereinbelow with reference to
Reference is now made to
For some applications, stent 160 has a generally similar shape to cage 30. Although
Reference is now made to
As described hereinabove, typically during operation of pumps 24U and 24D, a region of low pressure is generated within the vena cava between the two pumps. Typically, support cage 170 is configured to support the walls of the vena cava at the low-pressure region, such that the vena cava does not become obstructed at the low-pressure region, due to the walls of the vena cava collapsing. For example, if, due to the pumping of the upstream and downstream pumps, the pressure within the vena cava in the region between the pumps falls below the subject's intraabdominal pressure, then the walls of the vena cava may collapse in the absence of a support structure, such as support cage 170.
Typically, the support cage is radially expandable and is shaped to assume a radially expanded configuration thereof in the absence of any radially constraining force acting upon the support cage. For example, the support cage may be made of a shape memory material, e.g., a shape memory metal or alloy (such as, nitinol). Typically, the support cage is configured to extend longitudinally along more than 50 percent of a region between the first and second impellers, the support cage being configured to thereby support the inner wall of the vena cava in an open configuration in the region between the first and second impellers. For some applications, support cage is configured to extend at least from the longitudinal center of the downstream impeller to the longitudinal center of the upstream impeller. For some applications, a length L1 (
For some applications, as shown in
For some applications, as shown in
For some applications, support cage 170 is shaped to define individual impeller cages 174, one or more of which are formed as a single integrated structure together with the support cage, as shown in
Alternatively, individual impeller cages 30 may be formed separately from support cage 170, as shown in
In general,
Reference is now made to
In the experiments, a model of the vena cava and renal veins was used. The model was made of flexible silicone filled with saline. Upstream and downstream pumps as described herein were placed inside the vena cava, respectively below and above the renal veins. The pumps were activated to pump the saline through the vena cava in the manner described herein, and the drop in pressure in left and right renal veins was measured relative to the pressure in the left and right renal veins before the pumps were activated.
As may be observed in
Therefore, the results shown in
Reference is now made to
For some applications, impellers 28 are disposed inside respective impeller cages 30, and the impeller cages are not sized such as to hold open the inner wall of the vena cava under normal conditions, the diameter of the cages being less than that of the vena cava, as shown in
Typically, support cage 180 is configured to extend longitudinally along more than 50 percent of a region between the first and second impellers, the support cage being configured to thereby support the inner wall of the vena cava in an open configuration in the region between the first and second impellers, e.g., as described hereinabove with reference to support cage 170. For some applications, support cage extends at least from the longitudinal center of the downstream impeller to the longitudinal center of the upstream impeller. For some applications, the support cage extends from the upstream end of the upstream impeller cage to the downstream end of the downstream impeller cage.
Typically, the dimensions of support cage 180 are generally similar to those described hereinabove with reference to support cage 170. Further typically, the maximum diameter of the support cage (i.e., the diameter of the support cage at the longitudinal location(s) at which the diameter of the support cage is at its maximum) when the support cage is in a non-constrained configuration thereof is at least 1.1 times (and, for some applications, at least 1.3 times) greater than maximum diameters of each of the impeller cages 30 (i.e., the diameters of each of the impeller cages at the longitudinal location(s) at which the diameter of each of the impeller cages is at its maximum) when the impeller cages are in non-constrained configurations thereof. For some applications, the maximum diameter of the support cage is approximately 30 mm (e.g., 30 mm plus/minus 3 mm), and the maximum diameter of each of the impeller cages is approximately 20 mm (e.g., 20 mm plus/minus 3 mm).
Typically, for applications as shown in
Reference is now made to
Typically, support sleeve 190 is configured to be disposed around a first one of the impeller cages and to extend longitudinally along more than 50 percent of the region between the first and second impellers, the support sleeve being configured to thereby support the inner wall of the vena cava in an open configuration in the region between the first and second impellers, e.g., as described hereinabove with reference to support cage 170. For some applications, the support sleeve extends at least from the longitudinal center of the downstream impeller to the longitudinal center of the upstream impeller. For some applications, the support sleeve extends from the upstream end of the upstream impeller cage to the downstream end of the downstream impeller cage, e.g., as shown in
For some applications, support sleeve 190 is released into the subject's vena cava prior to impellers 28 and impeller cages 30 being released into the vena cava. Subsequent to the support sleeve being released and radially expanding inside the vena cava, impellers 28 and impeller cages 30 are released into the vena cava. For some applications, support sleeve 190 is crimped inside guide catheter 23 without the impellers and the impeller cages disposed inside the support sleeve. Alternatively, the impellers and impeller cages are disposed inside the support sleeve when the support sleeve is crimped inside the guide catheter during insertion. As described hereinabove, the open end of the support sleeve is not fixedly coupled to the impeller cage or to the impeller that are disposed toward the open end of the support sleeve. The open end of the support sleeve is thereby able to move longitudinally with respect to the impeller cage and the impeller that are disposed toward the open end of the support sleeve, thereby allowing the support sleeve to become more longitudinally extended (e.g., during crimping) than if the end of the support sleeve were to be fixedly coupled to the impeller and/or to the impeller cage that are disposed toward the open end of the support sleeve.
Reference is now made to
For some applications, an impeller cage 30 and support sleeve 200 are formed from a single tube of a shape-memory metal or alloy (such as nitinol), by cutting both the impeller cage and the support sleeve to have one open end. Subsequent to cutting the tube, the open end of the impeller cage is closed using a cage assembly element 202, which may, for example be a ring-shaped fastening element, as shown, and/or a clip, a suture, a tie, adhesive, etc.
For some applications, as described with reference to
For some applications, at one end of support sleeve 200, one of the impellers is fixedly coupled to the support sleeve, by virtue of the impeller and the support sleeve having been formed from a single tube of shape-memory alloy, as described hereinabove. For some applications, at the other end of the support sleeve, the support sleeve is open, and the open end of the support sleeve is not fixedly coupled to the impeller cage or to the impeller that are disposed toward the open end of the support sleeve. Typically, by virtue of having an open end, the impeller cage and the impeller that are disposed toward the open end of the support sleeve are able to pass through the end of the support sleeve even when the impeller cage and the impeller are in radially non-constrained configurations thereof.
For some applications, the impeller and impeller cage that are disposed toward the open end of the support sleeve are disposed inside the support sleeve when the support sleeve is crimped inside the guide catheter. As described hereinabove, the open end of the support sleeve is typically not fixedly coupled to the impeller cage or to the impeller that are disposed toward the open end of the support sleeve. The open end of the support sleeve is thereby able to move longitudinally with respect to the impeller cage and the impeller that are disposed toward the open end of the support sleeve, thereby allowing the support sleeve to become more longitudinally extended (e.g., during crimping) than if the end of the support sleeve were to be fixedly coupled to the impeller and/or to the impeller cage that are disposed toward the open end of the support sleeve.
Typically, support sleeve 200 is configured to extend longitudinally from the first impeller and impeller cage along more than 50 percent of the region between the first and second impellers, the support sleeve being configured to thereby support the inner wall of the vena cava in an open configuration in the region between the first and second impellers, e.g., as described hereinabove with reference to support cage 170. For some applications, the support sleeve extends at least from the longitudinal center of the downstream impeller to the longitudinal center of the upstream impeller. For some applications, the support sleeve is configured, such that when the support sleeve radially expands inside the vena cava, the support sleeve does not extend longitudinally to the second impeller cage, e.g., as shown in
It is noted that blood pumps 24U and 24D, the catheters upon which the blood pumps are disposed (e.g., blood-pump catheter 20, catheter 66, and catheter 68), and the occlusion elements described with reference to
For some applications, upstream pump 24U or the occlusion element is placed in a main vein upstream of a tributary venous system, and downstream pump 24D is placed downstream of said tributary venous system, and the pump(s) are configured (e.g., via the direction of rotation of impellers of the pumps, or the orientation of the pumps) to reduce flow from the tributaries into the main vein. For some such applications, the blades of the downstream impeller are oriented such that, as the downstream impeller is rotated, the downstream impeller pumps in the upstream direction (toward the junction between the tributary system and the main vein). The blades of the upstream impeller are oriented such that, as the upstream impeller is rotated, the upstream impeller pumps in the downstream direction (toward the junction between the tributary system and the main vein).
For some applications, the upstream and downstream pumps 24U and 24D, the catheter(s) upon which the blood pumps are disposed (e.g., blood-pump catheter 20, catheter 66, and catheter 68), and/or the occlusion elements described with reference to
Reference is now made to
Blood pumps 150 are typically placed inside the subject's renal veins 42, and operated therein, in order to provide acute treatment of a subject suffering from cardiac dysfunction, congestive heart failure, low renal blood flow, high renal vascular resistance, arterial hypertension, diabetes, and/or kidney dysfunction. The therapeutic effect of operating blood pumps 150 within the renal veins (a) is typically generally similar to that described hereinabove with reference to blood-pump catheter 20, mutatis mutandis, and (b) is typically generally similar to the effect of renal vein blood pumps, as described in US 2016/0022890 to Schwammenthal, which is incorporated herein by reference.
Typically, the impellers of the blood pumps 150 are coupled to motors 232, which impart rotational motion to the impellers. In accordance with respective applications, the motors are disposed outside of the subject's body (as shown) or are placed inside the subject's body (not shown). Typically, a control unit 234 and a user interface 236 are disposed outside the subject's body. Further typically, the control unit receives inputs from pressure sensors, which are disposed on upstream and downstream sides of the blood pumps. When blood pump 150 is disposed inside a renal vein (as shown in
For some applications, control unit 234 controls rotation of impellers 152, by controlling motors 232, responsively to one or more of the above-described inputs. Typically, user interface 236 displays the subject's current renal venous pressure and central venous pressure, based upon the pressures measured by the sensors. Typically, based upon the current values of the subject's renal venous pressure and central venous pressure, a user (such as a healthcare professional) inputs a target value for the subject renal venous pressure, via the user interface. In response thereto, control unit 234 controls the speed of the rotation of the impeller, such that the impeller pumps through the renal vein and toward the vena cava at a flow rate that is such as to reduce the renal venous pressure toward the target level, as indicated by the user. For some applications, in response to a signal received from the downstream pressure sensor indicating that the central venous pressure is at the target renal venous pressure, the control unit stops the impeller rotating. In general, the control unit typically controls the speed of the rotation of the impellers responsively to inputs from the upstream and downstream pressure sensors.
It is noted that control unit 234 typically includes a computer processor that comprises circuitry and that is configured to execute the actions described herein. Typically, the operations described herein that are performed by the computer processor transform the physical state of a memory, which is a real physical article that is in communication with the computer processor, to have a different magnetic polarity, electrical charge, or the like, depending on the technology of the memory that is used. Control unit 234 is typically a hardware device programmed with computer program instructions to produce a special-purpose computer. For example, when programmed to perform the techniques described herein, control unit 234 typically acts as a special-purpose, renal-venous-pressure-modulating computer processor.
It is further noted that user interface 236 typically includes any type of user interface configured to receive inputs from a user and/or to provide outputs to the user. For example, the user interface may include one or more input devices (such as a keyboard, a mouse, a trackball, a joystick, a touchscreen monitor, a touchpad, a voice-command interface, a smartphone, a tablet computer, and/or other types of input devices that are known in the art), and/or one or more output devices (such as a monitor, an audio output device, a smartphone, a tablet computer, and/or other types of output devices that are known in the art).
Reference is now made to
The inventors of the present application found that if impeller cages for placement within the renal veins as described herein (e.g., with reference to
As described hereinabove, for some applications, impeller cage 154 is configured such that the maximum diameter of the cage is less than the diameter of the renal vein at the location within the renal vein at which the impeller cage is deployed. For some such applications, radially-protruding support arms 156 protrude radially from the impeller cage. The radially-protruding support arms 156 are configured, upon the blood pump being released into the subject's renal vein, to come into contact with the inner wall of the subject's renal vein by radially expanding. The radially-protruding support arms 156 are configured to thereby align the longitudinal axis of impeller 152 with a local longitudinal axis of renal vein 42, as shown in
For some applications, the radially-protruding support arms each define a radius R1 with respect to the longitudinal axis 153 of the shaft of the blood pump that is greater than 7 mm and/or less than 9 mm, e.g., 7-9 mm. Radius R1 (shown in
As described hereinabove, for some applications, control unit 234 (
For some applications, the impeller cage is sized such that, when the cage is in its radially non-constrained configuration, the maximum diameter of the cage is less than the diameter of the renal vein, as described hereinabove. For some such applications, even in the absence of radially-protruding support arms 156, the longitudinal axis of the impeller is maintained substantially in alignment with the local longitudinal axis of the renal vein by guide catheter 155 providing support to the impeller and the impeller cage. For example, the guide catheter may be inserted into the renal vein via the subject's femoral vein, and the catheter may be configured as described in US 2015/0157777 to Tuval, which is incorporated herein by reference. For such applications, the guide catheter is typically configured to maintain pressure sensor 158 at a distance of at least 2 mm from an inner wall of the blood vessel, as described hereinabove.
For some applications, control unit 124 is configured to account for pressure sensor 158 contacting the inner wall of the renal vein, and measuring the subject's intraabdominal pressure. For example, the control unit may run the following algorithm:
A. The control unit increases the rotation speed of the impeller.
B. The control unit decreases the rotation speed of the impeller.
For some applications, the above-described algorithm is run by control unit 52 (
Reference is now made to
Reference is now made to
Blood pump 210 is configured to pump blood in a retrograde direction, from the subject's right atrium into the subject's coronary sinus. For some applications, by pumping blood into the coronary sinus, the blood pump is configured to increase blood pressure in the coronary sinus, and to thereby increase blood pressure within the capillary system, from which blood flows indirectly into the coronary sinus. This, in turn, increases blood supply to the myocardium. In addition, in cases in which there is a coronary obstruction, perfusion to vascular beds that are distal to the coronary obstruction is increased.
The level of oxygenation of blood in the coronary sinus (which is, typically, approximately 40 percent) is typically lower than that of blood entering to the right atrium from the vena cava (which is, typically, approximately 60-70 percent). For some applications, the blood pump is configured to pump, into the coronary sinus, blood that has returned to the right atrium from the vena cava, thereby increasing the level of oxygenation of the blood in the coronary sinus. This, in turn, increases the level of oxygenation of blood within the capillary system, from which blood flows indirectly into the coronary sinus. It is noted that the above-described effect of increasing the level of oxygenation of blood within the capillary system would not be achieved if a passive obstruction element (e.g., a balloon) were to be used to increase blood pressure within the coronary sinus (e.g., by being placed at the junction between the coronary sinus and the right atrium). By contrast, in accordance with the description hereinabove, blood pump 210 both (a) increases blood pressure within the coronary sinus, and (b) increases the level of oxygenation of blood within the coronary sinus.
Reference is now made to
For some applications, impeller 28 of blood pump 24D is disposed inside impeller cage 30, and the impeller cage is not sized such as to hold open the inner wall of the vena cava, the diameter of the cage being less than that of the vena cava under normal conditions, as shown in
For some such applications, a bulbous extension 84 that is configured to come into contact with the inner wall of the vena cava extends from impeller cage 30. Bulbous extension 84 is configured to align the longitudinal axis of cage 30, and, in turn, impeller 28, with the local longitudinal axis of the vena cava, by contacting the inner wall of the vena cava. (It is noted that, for some applications, the bulbous extension may not fully align the longitudinal axis of impeller with the local longitudinal axis of the vena cava. However, typically, the bulbous extension maintains the longitudinal axis of the impeller in greater alignment with the local longitudinal axis of the vena cava, relative to alignment of the longitudinal axis of the impeller with the local longitudinal axis of the vena cava in the absence of the bulbous extension.) Typically, ceteris paribus, the efficacy of the pumping of blood by impeller 28 is greater, the greater than alignment of the longitudinal axis of the impeller with the local longitudinal axis of the vena cava.
For some applications, the bulbous extension is configured to prevent a pressure sensor that is coupled to blood pump 24D from coming into contact with the inner wall of the vena cava, and to thereby prevent the pressure sensor from measuring the subject's intraabdominal pressure instead of measuring blood pressure within the subject's vena cava, in a generally similar manner to that described hereinabove with reference to
Typically, the maximum diameter of bulbous extension 84 (i.e., the diameter of the bulbous extension at the longitudinal location(s) at which the diameter of the bulbous extension is at its maximum), when the bulbous extension is in a non-constrained configuration thereof, is at least 1.1 times (and, for some applications, at least 1.3 times) greater than the maximum diameter of impeller cage 30 (i.e., the diameters of the impeller cage at the longitudinal location(s) at which the diameter of the impeller cage is at its maximum) when the impeller cage is in a non-constrained configuration thereof.
For some applications, rather than defining a bulbous extension, cage 30 defines radially-protruding support arms that are generally similar to radially-protruding support arms described hereinabove with reference to
In general, the scope of the present invention includes using any radially-protruding extension from an impeller cage that is, in at least some subjects, undersized with respect to a blood vessel in which the impeller cage is being placed, in order to maintain the longitudinal axis of an impeller (within the impeller cage) in greater alignment with the local longitudinal axis of the blood vessel, relative to alignment of the longitudinal axis of the impeller with the local longitudinal axis of the blood vessel in the absence of the radially-protruding extension. The radially-protruding extension may be a bulbous extension (e.g., as shown in
It is noted with respect to the catheter shown in
Reference is now made to
The pig initially had central venous pressure of 10 mmHg. The pig's central venous pressure was raised to 20 mmHg, by inflating balloon 90. Pumping of blood by the downstream blood pump was then initiated and the venous pressure as measured by pressure sensors 86L, 86R and 88 were recorded, while the rotation speed of the impeller of blood pump 24D was increased.
Reference is now made to
It is noted with respect to the catheter shown in
Reference is now additionally made to
As shown in
For some such applications, a bulbous distal extension 258 of the support cage extends from proximal portion 256 of the support cage, and is configured to come into contact with the inner wall of the vena cava. Bulbous distal extension 258 is configured to align the longitudinal axis of support cage 254, and, in turn, impeller 28, with the local longitudinal axis of the vena cava, by contacting the inner wall of the vena cava. (It is noted that, for some applications, the bulbous distal extension may not fully align the longitudinal axis of impeller with the local longitudinal axis of the vena cava. However, typically, the bulbous distal extension maintains the longitudinal axis of the impeller in greater alignment with the local longitudinal axis of the vena cava, relative to alignment of the longitudinal axis of the impeller with the local longitudinal axis of the vena cava in the absence of the bulbous extension.) Typically, ceteris paribus, the efficacy of the pumping of blood by impeller 28 is greater, the greater than alignment of the longitudinal axis of the impeller with the local longitudinal axis of the vena cava.
For some applications, bulbous distal extension 258 of support cage 254 is configured to prevent a pressure sensor 259 that is coupled to blood pump 24 from coming into contact with the inner wall of the vena cava, and to thereby prevent the pressure sensor from measuring the subject's intraabdominal pressure instead of measuring blood pressure within the subject's vena cava, in a generally similar manner to that described hereinabove with reference to
Typically, the maximum diameter of bulbous distal extension 258 (i.e., the diameter of the bulbous distal extension at the longitudinal location(s) at which the diameter of the bulbous distal extension is at its maximum), when the bulbous distal extension is in a radially non-constrained configuration thereof, is at least 1.1 times (and, for some applications, at least 1.3 times) greater than the maximum diameter of proximal portion 256 of support cage 254 (i.e., the diameter of the proximal portion at the longitudinal location(s) at which the diameter of the proximal portion is at its maximum) when the proximal portion is in a radially non-constrained configuration thereof.
For some applications, support cage 254 includes a frame 260 (e.g., a rigid or semi-rigid frame) made of a shape-memory element (such as nitinol) that is at least partially covered with a material 262 (e.g., a blood-impermeable material, e.g., polyester, polyurethane, and/or a different polymer). Typically, the material is coupled to the frame such as to contact the vessel wall and to occlude the blood vessel in the region of the blood vessel that surrounds the impeller. The material typically defines a hole therethrough in a central region of the vessel in a vicinity of the impeller. The material is configured to occlude backflow of blood around the outside of the impeller, but such to allow antegrade blood flow in the central region of the vessel in the vicinity of the impeller. For some applications, the use of the material in the above-described manner reduces a likelihood of there being retrograde blood flow in the region of the blood vessel that surrounds the impeller, caused by turbulence that is introduced by the impeller. For some applications (not shown), blood pump 24 as shown in
For some applications, rather than defining a bulbous distal extension, support cage 254 defines radially-protruding support arms that are generally similar to radially-protruding support arms described hereinabove with reference to
Reference is now made to
For some applications, a distal portion of support cage 254 is not covered with material 262. Furthermore, it is typically the case that, as shown, the spacing between struts of the frame of the support cage at its distal end is greater than at the proximal end of the support cage. Therefore, for some applications, in order to crimp the impeller inside the support cage, the impeller is first advanced to the distal portion of the support cage. Typically, this allows for the combination of the impeller and the support cage to be crimped to a smaller diameter relative to if the impeller was disposed within the proximal portion of the support cage, since the impeller, by being disposed within the distal portion of the support cage, does not overlap with the material or with the portion of the support cage at which the struts of the support cage are closely spaced from each other. Further typically, this reduces the likelihood of the material and the impeller causing damage to one another during the crimping of the support cage and the impeller, relative to if the impeller was disposed within the proximal portion of the support cage. Subsequently, once the support cage and the impeller assume radially-non-constrained configurations inside the subject's vena cava, and prior to operating the impeller, the impeller is retracted with respect to the support cage, such that the impeller is disposed within the proximal portion of the support cage, as shown in
Reference is now additionally made to
Reference is now made to
Frustoconical support cage 282 is typically shape-set such as to assume a radially expanded configuration thereof in the absence of any radially constraining force acting upon the support cage, the radially expanded configuration being as shown in
As described hereinabove with reference to
With reference to
Typically, such applications are used with an impeller that is undersized with respect to the vessel in which it is placed. Such an impeller may be used, for example, in cases in which a larger impeller would undergo a substantial amount of vibration while rotating. Alternatively or additionally, such an impeller may be used in cases in which, if the portion of the cage that is configured to separate between the impeller and the vessel wall was larger, there would be a risk that the portion of the cage would become radially compressed by the walls of the vessel, which may result in the impeller becoming deformed (e.g., by the upstream and downstream ends of the impeller axis becoming misaligned), and/or in the impeller becoming misaligned with the local longitudinal axis of the vessel. Typically, for such applications, a narrow portion of the cage surrounds the impeller and is configured to maintain a separation between a wall of the blood vessel and the impeller, for example, in case the vessel narrows, such that, in the absence of the narrow portion of the cage, the walls of the vessel would collapse onto the impeller. The radial extension is typically configured to anchor the blood pump within the vessel by exerting an outward radial force upon the vessel wall, and to substantially maintain a longitudinal axis of the impeller in alignment with a local longitudinal axis of the blood vessel by contacting the wall of the blood vessel. Typically, a stiffness of the narrow portion of the cage is greater than that of the radial extension, such that the narrow portion of the cage is configured to maintain the separation between the wall of the blood vessel and the impeller, even if the wall of the vessel exerts pressure upon the support cage that causes the radial extension to deform.
For example, with reference to
For some applications, a material (e.g., blood-impermeable material) is disposed on the support cage (e.g., material 262, shown in
For some applications, such a blood pump is configured to be placed within a subject's renal vein and to pump blood from the subject's renal vein into the subject's vena cava, e.g., as described hereinabove with reference to
Reference is now made to
Typically, in patients suffering from acute heart failure, elevated systemic venous pressures cause increased renal parenchymal pressure and increased intraabdominal pressure, factors that can contribute to deterioration of renal perfusion and function. In addition, high systemic venous pressures may impede lymphatic drainage of pulmonary interstitial fluid resulting in aggravation and prolongation of pulmonary congestion in patients with acute pulmonary edema. For some applications, occlusion element 290 is configured to cause partial occlusion of the infra-renal vena cava, or blood pump 300 is used to pump blood in a retrograde direction within the infra-renal vena cava. Typically, use of occlusion element 290 or blood pump 300 in this manner reduces cardiac preload, by causing lower body venous pooling. Typically, reducing cardiac preload ameliorates pulmonary congestion and/or improve cardiac loading conditions and function. For some applications, a blood pump that is generally similar to that described with reference to
Due to gravity, the effect of infra-renal vena-caval occlusion by occlusion element 290, or infra-renal vena-caval retrograde blood pumping by blood pump 300 on renal and pulmonary function may be highly dependent on patient position. For example, bringing the patient into an upright position, is known to alleviate pulmonary congestion, but to aggravate renal congestion. Moreover, it is important to balance the positive of effects of reducing venous blood pressure against the possible negative effect of causing too great a reduction in cardiac output. This is of particular concern in the severely ill and fragile patient group of acute heart failure, for whom it is critical to avoid a drop in cardiac output. Therefore, in view of the aforementioned considerations, in accordance with some applications of the present invention, the extent to which occlusion element 290 occludes the infra-renal vena cava, and/or the rate at which blood pump 300 pumps blood, is controlled by a control unit 310.
For example, occlusion element 290 may include a balloon (as shown), and inflation of the balloon may be controllable. Alternatively, the occlusion element includes a frame (e.g., as shown in
For some applications, upstream sensor 292 is mounted upon catheter 291 or catheter 301 at a location that is at least 1.5 cm (e.g., at least 2.5 cm) upstream of occlusion element 290, or upstream of blood pump 300, such that by the time that the blood flow reaches the occlusion element or the blood pump, any effect on the direction of the blood flow caused by the sensor has substantially dissipated. For some applications, downstream sensor 294 is mounted upon catheter 291 or catheter 301 at a location that is at least 1.5 (e.g., at least 2.5 mm) downstream of occlusion element 290, or downstream of blood pump 300, such that by the time that the blood flow reaches sensor 294, flow layers generated by having passed the occlusion element or the blood pump are sufficiently reunited to permit accurate measurement of flow, pressure, velocity, and/or other parameters as described hereinabove. For some applications, downstream sensor 294 is mounted upon catheter 291 or catheter 301 at a location that is at least 1.5 (e.g., at least 2.5 mm) downstream of the junction of the vena cava with the right renal vein, and/or at least 1.5 (e.g., at least 2.5 mm) downstream of junctions of the vena cava with all of the subject's renal veins.
Reference is now made to
By way of example, before the occlusion element or the blood pump are used, central venous blood pressure and blood flow may be at position 1 upon the curve shown in
For some applications, a thermodilution catheter (e.g., a commercially available thermodilution catheter) is used to measure cardiac output. Alternatively, a different type of sensor is used to measure cardiac output, in accordance with techniques that are known in the art. Control unit 310 is configured to receive the measured cardiac output and to use the measured cardiac output as an input signal for determining the extent to which the occlusion element should occlude the infra-renal vena cava, and/or the rate at which the blood pump should pump blood, in accordance with the techniques described hereinabove. Alternatively or additionally, arterial blood pressure may be measured and may be used as an input signal for the control unit to determine the extent to which the occlusion element should occlude the infra-renal vena cava, and/or the rate at which the blood pump should pump blood. For example, the control unit may be configured to detect a relationship between decreases in central venous pressure and corresponding decreases in arterial pressure. The control unit may then be configured to set the level of occlusion or the rate of pumping, such that there is no decrease in arterial pressure, or such that the decrease in arterial pressure is below a given threshold, in accordance with the techniques described hereinabove.
Reference is now made to
Typically, the downstream pump is placed downstream of the junctions of the vena cava with all of the subject's renal veins, and pumps blood through the vena cava, in the downstream direction, away from the junctions of the vena cava with the renal veins. Typically, the occlusion element is placed upstream of the junctions of the vena cava with all of the subject's renal veins and is configured to partially occlude the subject's vena cava upstream of the junctions of the vena cava with the subject's renal veins. The occlusion element is configured to partially occlude the subject's vena cava such that, in response to the pumping of the downstream blood pump, there is not a substantial increase of blood flow from the subject's lower body toward the subject heart, but such that a region of low pressure within the vena cava is generated, between the occlusion element and the downstream blood pump, within which the blood pressure is lower than the subject's central venous pressure. Typically, by generating a region of low pressure, blood flow from the renal veins into the vena cava increases, thereby lowering renal blood pressure and enhancing renal perfusion. For some applications, the combination of the downstream pump and the upstream occlusion element is configured such that the overall effect of the downstream pump and the upstream occlusion element is that (a) central venous pressure is lowered relative to lower body venous pressure (e.g., by the pumping of the downstream pump not fully compensating for the reduction in pressure caused by the occlusion of the vena cava by the upstream occlusion element), and (b) renal venous pressure is lowered relative to lower body venous pressure and central venous pressure, due to the region of low pressure being generated within the vena cava, between the occlusion element and the downstream blood pump.
For some applications, sensor 292 is disposed upstream of the occlusion element and is configured to measure a parameter that is indicative of lower body venous pressure, sensor 294 is disposed downstream of the blood pump and is configured to measure a parameter that is indicative of central venous pressure, and sensor 296 is disposed between the occlusion element and the blood pump, and is configured to measure a parameter that is indicative of renal venous pressure. For example, sensors 292, 294, and/or 296 may be pressure sensors, flow sensors, blood velocity sensors, oxygen-saturation sensors, temperature sensors, and/or thermal flow sensors. Typically, control unit 310 controls the extent to which the occlusion element occludes the vena cava and the rate at which the pump pumps blood, responsively to one or more of the parameters detected by the sensors. For example, based upon the parameters detected by the sensors, the control unit may control the extent to which the occlusion element occludes the vena cava and the rate at which the pump pumps blood in coordination with each other, such that the ratio between renal venous pressure and lower body pressure is a first ratio, and such that the ratio between central venous pressure and lower body pressure is a second ratio, which is different from the first ratio. Typically, the first ratio is designated based upon the extent to which it is desirable to decrease the subject's renal venous pressure, such as to increase renal perfusion, in accordance with the techniques described herein. Further typically, the second ratio is designated based upon the extent to which it is desirable to decrease the subject's cardiac preload, in accordance with the techniques described herein.
As noted hereinabove with respect to control unit 52, control unit 310 typically includes a computer processor that comprises circuitry and that is configured to execute the actions described herein. Typically, the operations described herein that are performed by the computer processor transform the physical state of a memory, which is a real physical article that is in communication with the computer processor, to have a different magnetic polarity, electrical charge, or the like, depending on the technology of the memory that is used. Control unit 310 is typically a hardware device programmed with computer program instructions to produce a special-purpose computer. For example, when programmed to perform the techniques described herein, control unit 310 typically acts as a special-purpose, preload-modulating computer processor. For some applications, a user interacts with the computer processor via a user interface 312, which is typically generally similar to user interface 54 described hereinabove.
Although some applications of the present invention are described with reference to blood pumps, according to which the blood pumps include impellers, the scope of the present invention includes using any other type of pump for pumping blood in the manner described herein, mutatis mutandis. For example, a roller pump, an Archimedes screw pump, a centrifugal pump, a pneumatic pump, and/or a compression pump may be used.
The scope of the present invention includes combining any of the apparatus and methods described herein with any of the apparatus and methods described in one or more of the following applications, all of which are incorporated herein by reference:
International Patent Application No. PCT/IL2017/051092 to Tuval, filed Sep. 28, 2017, entitled “Blood vessel tube,” which U.S. Provisional Patent Application 62/401,403 to Tuval, filed Sep. 29, 2016;
International Patent Application No. PCT/IL2016/050525 to Schwammenthal (published as WO 16/185473), filed May 18, 2016, entitled “Blood pump,” which claims priority from U.S. Provisional Patent Application 62/162,881 to Schwammenthal, filed May 18, 2015, entitled “Blood pump,”
US 2017/0100527 to Schwammenthal, which is the US national phase of International Patent Application PCT/IL2015/050532 to Schwammenthal (published as WO 15/177793), filed May 19, 2015, entitled “Blood pump,” which claims priority from U.S. Provisional Patent Application 62/000,192 to Schwammenthal, filed May 19, 2014, entitled “Blood pump;”
US 2016/0022890 to Schwammenthal, which is the US national phase of International Patent Application PCT/IL2014/050289 to Schwammenthal (published as WO 14/141284), filed Mar. 13, 2014, entitled “Renal pump,” which claims priority from (a) U.S. Provisional Patent Application 61/779,803 to Schwammenthal, filed Mar. 13, 2013, entitled “Renal pump,” and (b) U.S. Provisional Patent Application 61/914,475 to Schwammenthal, filed Dec. 11, 2013, entitled “Renal pump;”
U.S. Pat. No. 9,764,113 to Tuval, issued Sep. 19, 2017, entitled “Curved catheter,” which claims priority from U.S. Provisional Patent Application 61/914,470 to Tuval, filed Dec. 11, 2013, entitled “Curved catheter;” and
U.S. Pat. No. 9,597,205 to Tuval, which is the US national phase of International Patent Application PCT/IL2013/050495 to Tuval (published as WO 13/183060), filed Jun. 6, 2013, entitled “Prosthetic renal valve,” which claims priority from U.S. Provisional Patent Application 61/656,244 to Tuval, filed Jun. 6, 2012, entitled “Prosthetic renal valve.”
There is therefore provided, in accordance with some applications of the present invention, the following inventive concepts:
Inventive concept 1. Apparatus comprising:
a catheter configured to be placed inside a blood vessel of a subject;
a first impeller configured to be inserted into the blood vessel via the catheter;
a first impeller cage configured to be disposed around the first impeller and to maintain a radial separation between the first impeller and an inner wall of the blood vessel;
a second impeller configured to be inserted into the blood vessel via the catheter, and to be placed within the blood vessel at a longitudinal separation from the first impeller;
a second impeller cage configured to be disposed around the second impeller and to maintain a radial separation between the second impeller and an inner wall of the blood vessel; and
a support cage configured to be inserted into the blood vessel via the catheter,
further comprising a control unit configured to control rotation of the first and second impellers,
wherein the first and second impellers are configured, by rotating, to lower pressure within the subject's renal veins by:
the catheter is configured to be placed within a main vein of a subject into which blood flows from a tributary venous system,
the first impeller is configured to be placed in the main vein, downstream of the tributary venous system, and
the second impeller is configured to be placed in the main vein, upstream of the tributary venous system.
Inventive concept 15. Apparatus comprising:
a catheter configured to be placed inside a blood vessel of a subject;
a first impeller configured to be inserted into the blood vessel via the catheter;
a first impeller cage configured to be disposed around the first impeller and to maintain a radial separation between the first impeller and an inner wall of the blood vessel;
a second impeller configured to be inserted into the blood vessel via the catheter, and to be placed within the blood vessel at a longitudinal separation from the first impeller;
a second impeller cage configured to be disposed around the second impeller and to maintain a radial separation between the second impeller and an inner wall of the blood vessel; and
a support sleeve configured to be inserted into the blood vessel via the catheter,
a catheter configured to be placed inside a blood vessel of a subject;
a first impeller configured to be inserted into the blood vessel via the catheter;
a first impeller cage configured to be disposed around the first impeller and to maintain a radial separation between the first impeller and an inner wall of the blood vessel;
a second impeller configured to be inserted into the blood vessel via the catheter, and to be placed within the blood vessel at a longitudinal separation from the first impeller;
a second impeller cage configured to be disposed around the second impeller and to maintain a radial separation between the second impeller and an inner wall of the blood vessel; and
a support sleeve configured to be inserted into the blood vessel via the catheter,
a cage assembly element configured to hold closed an end of the first impeller cage.
Inventive concept 19. The apparatus according to inventive concept 18, wherein the cage assembly element comprises a ring-shaped fastening element.
Inventive concept 20. Apparatus comprising:
a catheter configured to be placed within a vena cava of a subject;
a first impeller configured to be inserted into the vena cava via the catheter such that the first impeller is disposed, longitudinally, on a first side of junctions of the vena cava with all renal veins of the subject;
a second impeller configured to be inserted into the vena cava via the catheter such that the second impeller is disposed, longitudinally, on a second side of junctions of the vena cava with all renal veins of the subject;
a motor configured to generate rotational motion in a first direction;
a rotation shaft configured to extend from the motor to the first impeller and to impart the rotational motion in the first direction to the first impeller; and
a gear mechanism disposed between the first and second impeller and configured to reverse a direction of rotational motion that is imparted from the first impeller to the second impeller, such that the second impeller rotates in an opposite direction of rotation to the first direction.
Inventive concept 21. Apparatus comprising:
a catheter configured to be placed within a vena cava of a subject;
a first impeller configured to be inserted into the vena cava via the catheter such that the first impeller is disposed, longitudinally, on a first side of junctions of the vena cava with all renal veins of the subject;
a second impeller configured to be inserted into the vena cava via the catheter such that the second impeller is disposed, longitudinally, on a second side of junctions of the vena cava with all renal veins of the subject;
a motor configured to rotate the first and second impellers in a given direction of rotation,
a third impeller disposed between the first and second impellers and configured to be rotated passively by blood that flows between the first and second impellers.
Inventive concept 22. The apparatus according to inventive concept 21, wherein the third impeller is configured, by being rotated passively by blood that flows between the first and second impellers, to reduce rotational motion of the blood that flows between the first and second impellers.
Inventive concept 23. Apparatus comprising:
a catheter configured to be placed within a vena cava of a subject, the catheter defining a catheter shaft;
a first impeller configured to be inserted into the vena cava via the catheter such that the first impeller is disposed, longitudinally, on a first side of junctions of the vena cava with all renal veins of the subject;
a second impeller configured to be inserted into the vena cava via the catheter such that the second impeller is disposed, longitudinally, on a second side of junctions of the vena cava with all renal veins of the subject;
a first motor configured to generate rotational motion in a first direction;
a first rotation shaft configured to extend from the first motor to the first impeller and to impart the rotational motion in the first direction to the first impeller;
a second motor configured to generate rotational motion in an opposite direction to the first direction;
a second rotation shaft configured to extend from the second motor to the second impeller and to impart the rotational motion in the opposite direction to the first direction to the second impeller,
the first and second rotation shafts being coaxial with one another, within the catheter shaft.
Inventive concept 24. Apparatus for use with a guide catheter, the apparatus comprising:
a blood pump configured to be inserted into a renal vein of a subject and to pump blood from the renal vein to a vena cava of the subject,
the blood pump comprising:
a blood pump configured to be inserted into a renal vein of a subject and to pump blood from the renal vein to a vena cava of the subject,
the blood pump comprising:
a stiffness of the impeller cage being sufficiently great that pressure exerted upon the impeller cage by an inner wall of the renal vein does not deform the impeller cage.
Inventive concept 27. The apparatus according to inventive concept 26, wherein the stiffness of the impeller cage is configured to permit the impeller cage to be inserted into the subject's renal vein by being crimped inside the guide catheter.
Inventive concept 28. The apparatus according to inventive concept 26, wherein the stiffness of the impeller cage is configured to permit the impeller cage to navigate turns while being advanced through the guide catheter.
Inventive concept 29. The apparatus according to any one of inventive concepts 26-28, wherein, in the radially non-constrained configuration of the blood pump, a diameter of the impeller cage, at a longitudinal location along the impeller cage at which the diameter of the impeller cage is at its maximum, is less than 12 mm.
Inventive concept 30. A method for increasing coronary blood supply of a subject, the method comprising:
inserting a blood pump into a location selected from the group consisting of: a coronary sinus of a subject, and a right atrium of the subject; and
activating the blood pump to pump blood from the subject's right atrium into the subject's coronary sinus.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
The present application is a continuation of U.S. application Ser. No. 16/345,389 to Tuval (published as US 2019/0269840) filed on Apr. 26, 2019, which is the US national phase application of PCT Application No. PCT/IL/2017/051273 to Tuval (published as WO 18/096531), filed Nov. 21, 2017, which claims priority from U.S. Provisional Patent Application 62/425,814 to Tuval, filed Nov. 23, 2016, entitled “Blood pumps,” which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4822345 | Danforth | Apr 1989 | A |
4886506 | Lovgren et al. | Dec 1989 | A |
4919647 | Nash | Apr 1990 | A |
4954055 | Raible et al. | Sep 1990 | A |
5613935 | Jarvik | Mar 1997 | A |
5713730 | Nose et al. | Feb 1998 | A |
5749855 | Reitan | May 1998 | A |
5772693 | Brownlee | Jun 1998 | A |
5876385 | Ikari et al. | Mar 1999 | A |
5964694 | Siess et al. | Oct 1999 | A |
6086527 | Talpade | Jul 2000 | A |
6135729 | Aber | Oct 2000 | A |
6136025 | Barbut et al. | Oct 2000 | A |
6176848 | Rau et al. | Jan 2001 | B1 |
6183220 | Ohara et al. | Feb 2001 | B1 |
6247892 | Kazatchkov et al. | Jun 2001 | B1 |
6482228 | Norred | Nov 2002 | B1 |
6533716 | Schmutz-Rode et al. | Mar 2003 | B1 |
6592567 | Levin et al. | Jul 2003 | B1 |
6616624 | Kieval | Sep 2003 | B1 |
6884210 | Nose et al. | Apr 2005 | B2 |
7004925 | Navia et al. | Feb 2006 | B2 |
7011620 | Siess | Mar 2006 | B1 |
7070555 | Siess | Jul 2006 | B2 |
7144364 | Barbut et al. | Dec 2006 | B2 |
7159593 | McCarthy et al. | Jan 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7335192 | Keren et al. | Feb 2008 | B2 |
7341570 | Keren et al. | Mar 2008 | B2 |
7485104 | Kieval | Feb 2009 | B2 |
7717952 | Case et al. | May 2010 | B2 |
7744642 | Rittgers et al. | Jun 2010 | B2 |
7762941 | Jarvik | Jul 2010 | B2 |
7766853 | Lane | Aug 2010 | B2 |
7766892 | Keren et al. | Aug 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7780628 | Keren et al. | Aug 2010 | B1 |
7811221 | Gross | Oct 2010 | B2 |
7841976 | McBride et al. | Nov 2010 | B2 |
7914503 | Goodson et al. | Mar 2011 | B2 |
7927068 | McBride et al. | Apr 2011 | B2 |
8007254 | Larose et al. | Aug 2011 | B2 |
8012121 | Goodson et al. | Sep 2011 | B2 |
8079948 | Shifflette | Dec 2011 | B2 |
8221492 | Case et al. | Jul 2012 | B2 |
8235933 | Keren et al. | Aug 2012 | B2 |
8277470 | Demarais et al. | Oct 2012 | B2 |
8376707 | Mcbride et al. | Feb 2013 | B2 |
8449443 | Rodefeld et al. | May 2013 | B2 |
8512262 | Gertner | Aug 2013 | B2 |
8538535 | Ariav et al. | Sep 2013 | B2 |
8579858 | Reitan et al. | Nov 2013 | B2 |
8617239 | Reitan | Dec 2013 | B2 |
8684904 | Campbell et al. | Apr 2014 | B2 |
8690749 | Nunez | Apr 2014 | B1 |
8721516 | Scheckel | May 2014 | B2 |
8721517 | Zeng et al. | May 2014 | B2 |
8727959 | Reitan et al. | May 2014 | B2 |
8734331 | Evans et al. | May 2014 | B2 |
8734508 | Hastings et al. | May 2014 | B2 |
8777832 | Wang et al. | Jul 2014 | B1 |
8849398 | Evans | Sep 2014 | B2 |
8992163 | McBride et al. | Mar 2015 | B2 |
9028216 | Schumacher et al. | May 2015 | B2 |
9067006 | Toellner | Jun 2015 | B2 |
9089634 | Schumacher et al. | Jul 2015 | B2 |
9138518 | Campbell et al. | Sep 2015 | B2 |
9162017 | Evans et al. | Oct 2015 | B2 |
9217442 | Wiessler et al. | Dec 2015 | B2 |
9314558 | Er | Apr 2016 | B2 |
9327067 | Zeng et al. | May 2016 | B2 |
9339596 | Roehn | May 2016 | B2 |
9358329 | Fitzgerald et al. | Jun 2016 | B2 |
9393384 | Kapur et al. | Jul 2016 | B1 |
9402942 | Hastie et al. | Aug 2016 | B2 |
9416783 | Schumacher et al. | Aug 2016 | B2 |
9572915 | Heuring et al. | Feb 2017 | B2 |
9597205 | Tuval | Mar 2017 | B2 |
9675740 | Zeng et al. | Jun 2017 | B2 |
9750860 | Schumacher | Sep 2017 | B2 |
9750861 | Hastie et al. | Sep 2017 | B2 |
9764113 | Tuval et al. | Sep 2017 | B2 |
9771801 | Schumacher et al. | Sep 2017 | B2 |
9895475 | Toellner et al. | Feb 2018 | B2 |
9903384 | Roehn | Feb 2018 | B2 |
9907891 | Wiessler et al. | Mar 2018 | B2 |
9913937 | Schwammenthal et al. | Mar 2018 | B2 |
9964115 | Scheckel | May 2018 | B2 |
10039874 | Schwammenthal et al. | Aug 2018 | B2 |
10052419 | Er | Aug 2018 | B2 |
10107299 | Scheckel | Oct 2018 | B2 |
10172985 | Simon et al. | Jan 2019 | B2 |
10179197 | Kaiser et al. | Jan 2019 | B2 |
10196899 | Toellner et al. | Feb 2019 | B2 |
10207037 | Corbett et al. | Feb 2019 | B2 |
10208763 | Schumacher et al. | Feb 2019 | B2 |
10215187 | McBride et al. | Feb 2019 | B2 |
10231838 | Chin et al. | Mar 2019 | B2 |
10245363 | Rowe | Apr 2019 | B1 |
10299701 | Blanton et al. | May 2019 | B2 |
10299918 | Tuval | May 2019 | B2 |
10342904 | Schumacher | Jul 2019 | B2 |
10342906 | D'Ambrosio et al. | Jul 2019 | B2 |
10413646 | Wiessler et al. | Sep 2019 | B2 |
10478538 | Scheckel et al. | Nov 2019 | B2 |
10478539 | Pfeffer et al. | Nov 2019 | B2 |
10495101 | Scheckel | Dec 2019 | B2 |
10557475 | Roehn | Feb 2020 | B2 |
10583231 | Schwammenthal et al. | Mar 2020 | B2 |
10584589 | Schumacher et al. | Mar 2020 | B2 |
10589012 | Toellner et al. | Mar 2020 | B2 |
10617808 | Hastie et al. | Apr 2020 | B2 |
10662967 | Scheckel | May 2020 | B2 |
10669855 | Toellner et al. | Jun 2020 | B2 |
10765789 | Zeng et al. | Sep 2020 | B2 |
10792406 | Roehn et al. | Oct 2020 | B2 |
10799624 | Pfeffer et al. | Oct 2020 | B2 |
10799626 | Siess | Oct 2020 | B2 |
10801511 | Siess et al. | Oct 2020 | B2 |
10806838 | Er | Oct 2020 | B2 |
10835653 | Liebing | Nov 2020 | B2 |
10857272 | Liebing | Dec 2020 | B2 |
10864309 | McBride et al. | Dec 2020 | B2 |
10865801 | McBride et al. | Dec 2020 | B2 |
10874783 | Pfeffer et al. | Dec 2020 | B2 |
10881845 | Siess et al. | Jan 2021 | B2 |
10894115 | Pfeffer et al. | Jan 2021 | B2 |
10898629 | Siess et al. | Jan 2021 | B2 |
10907646 | Bredenbreuker et al. | Feb 2021 | B2 |
10920596 | Toellner et al. | Feb 2021 | B2 |
10926013 | Schumacher et al. | Feb 2021 | B2 |
10935038 | Siess | Mar 2021 | B2 |
10980927 | Pfeffer et al. | Apr 2021 | B2 |
11007350 | Tao et al. | May 2021 | B2 |
11020584 | Siess et al. | Jun 2021 | B2 |
11027114 | D'Ambrosio et al. | Jun 2021 | B2 |
11033729 | Scheckel et al. | Jun 2021 | B2 |
11040187 | Wiessler et al. | Jun 2021 | B2 |
RE48649 | Siess | Jul 2021 | E |
11116960 | Simon et al. | Sep 2021 | B2 |
11123539 | Pfeffer et al. | Sep 2021 | B2 |
11129978 | Pfeffer et al. | Sep 2021 | B2 |
11167124 | Pfeffer et al. | Nov 2021 | B2 |
11168705 | Liebing | Nov 2021 | B2 |
11197690 | Fantuzzi et al. | Dec 2021 | B2 |
11219755 | Siess et al. | Jan 2022 | B2 |
11229786 | Zeng et al. | Jan 2022 | B2 |
11253692 | Schumacher | Feb 2022 | B2 |
11253693 | Pfeffer et al. | Feb 2022 | B2 |
11260215 | Scheckel et al. | Mar 2022 | B2 |
11266824 | Er | Mar 2022 | B2 |
11268521 | Toellner | Mar 2022 | B2 |
11273301 | Pfeffer et al. | Mar 2022 | B2 |
11278711 | Liebing | Mar 2022 | B2 |
11280345 | Bredenbreuker et al. | Mar 2022 | B2 |
11298525 | Jahangir | Apr 2022 | B2 |
11305105 | Corbett et al. | Apr 2022 | B2 |
11313228 | Schumacher et al. | Apr 2022 | B2 |
11338124 | Pfeffer et al. | May 2022 | B2 |
11351358 | Nix et al. | Jun 2022 | B2 |
11364373 | Corbett et al. | Jun 2022 | B2 |
11421701 | Schumacher et al. | Aug 2022 | B2 |
11434922 | Roehn | Sep 2022 | B2 |
11484701 | Schwammenthal et al. | Nov 2022 | B2 |
20020107536 | Hussein | Aug 2002 | A1 |
20030055486 | Adams et al. | Mar 2003 | A1 |
20030149473 | Chouinard et al. | Aug 2003 | A1 |
20030208097 | Aboul-Hosn et al. | Nov 2003 | A1 |
20040064090 | Keren et al. | Apr 2004 | A1 |
20040064091 | Keren et al. | Apr 2004 | A1 |
20040111006 | Alferness et al. | Jun 2004 | A1 |
20040116769 | Jassawalla et al. | Jun 2004 | A1 |
20040167415 | Gelfand et al. | Aug 2004 | A1 |
20040210236 | Allers et al. | Oct 2004 | A1 |
20040219028 | Demarais | Nov 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050033406 | Barnhart et al. | Feb 2005 | A1 |
20050049692 | Numamoto et al. | Mar 2005 | A1 |
20050055082 | Ben et al. | Mar 2005 | A1 |
20050079274 | Palasis et al. | Apr 2005 | A1 |
20050119682 | Nguyen et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20060062672 | McBride et al. | Mar 2006 | A1 |
20060064059 | Gelfand et al. | Mar 2006 | A1 |
20060106449 | Ben | May 2006 | A1 |
20060135961 | Rosenman et al. | Jun 2006 | A1 |
20060245959 | Larose et al. | Nov 2006 | A1 |
20070100435 | Case et al. | May 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070208291 | Patel | Sep 2007 | A1 |
20070260327 | Case et al. | Nov 2007 | A1 |
20070293808 | Williams et al. | Dec 2007 | A1 |
20080103591 | Siess | May 2008 | A1 |
20080132748 | Shifflette | Jun 2008 | A1 |
20080154236 | Elkins et al. | Jun 2008 | A1 |
20080183280 | Agnew et al. | Jul 2008 | A1 |
20090024195 | Rezai et al. | Jan 2009 | A1 |
20090062597 | Shifflette | Mar 2009 | A1 |
20090093796 | Pfeffer et al. | Apr 2009 | A1 |
20090131785 | Lee et al. | May 2009 | A1 |
20090264991 | Paul et al. | Oct 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090318857 | Goodson et al. | Dec 2009 | A1 |
20100030259 | Pavcnik et al. | Feb 2010 | A1 |
20100130810 | Mohl | May 2010 | A1 |
20110004046 | Campbell | Jan 2011 | A1 |
20110106244 | Ferrari et al. | May 2011 | A1 |
20110152999 | Hastings et al. | Jun 2011 | A1 |
20110190874 | Celermajer et al. | Aug 2011 | A1 |
20110213408 | Gross et al. | Sep 2011 | A1 |
20110230949 | Haverkost et al. | Sep 2011 | A1 |
20110257462 | Rodefeld | Oct 2011 | A1 |
20110264075 | Leung et al. | Oct 2011 | A1 |
20110282128 | Reitan et al. | Nov 2011 | A1 |
20110282274 | Fulton | Nov 2011 | A1 |
20110301662 | Bar-Yoseph et al. | Dec 2011 | A1 |
20110319906 | Rudakov et al. | Dec 2011 | A1 |
20120022579 | Fulton | Jan 2012 | A1 |
20120059460 | Reitan | Mar 2012 | A1 |
20120089047 | Ryba et al. | Apr 2012 | A1 |
20120116382 | Ku et al. | May 2012 | A1 |
20120130469 | Cragg et al. | May 2012 | A1 |
20120172654 | Bates | Jul 2012 | A1 |
20120224970 | Schumacher et al. | Sep 2012 | A1 |
20120232457 | Kandarpa | Sep 2012 | A1 |
20120237357 | Schumacher et al. | Sep 2012 | A1 |
20120301318 | Er | Nov 2012 | A1 |
20120328460 | Horvath et al. | Dec 2012 | A1 |
20130053623 | Evans et al. | Feb 2013 | A1 |
20130053732 | Heuser | Feb 2013 | A1 |
20130079874 | Doss et al. | Mar 2013 | A1 |
20130177409 | Schumacher et al. | Jul 2013 | A1 |
20130177432 | Toellner et al. | Jul 2013 | A1 |
20130237744 | Pfeffer et al. | Sep 2013 | A1 |
20140018840 | Morgan et al. | Jan 2014 | A1 |
20140025041 | Fukuoka et al. | Jan 2014 | A1 |
20140051908 | Khanal et al. | Feb 2014 | A1 |
20140128659 | Heuring et al. | May 2014 | A1 |
20140275722 | Zimmermann et al. | Sep 2014 | A1 |
20140350658 | Benary et al. | Nov 2014 | A1 |
20150018597 | Fierens et al. | Jan 2015 | A1 |
20150119633 | Haselby et al. | Apr 2015 | A1 |
20150157777 | Tuval et al. | Jun 2015 | A1 |
20150164662 | Tuval | Jun 2015 | A1 |
20150176582 | Liebing | Jun 2015 | A1 |
20150343136 | Nitzan et al. | Dec 2015 | A1 |
20150343186 | Nitzan et al. | Dec 2015 | A1 |
20160022890 | Schwammenthal et al. | Jan 2016 | A1 |
20160051741 | Schwammenthal et al. | Feb 2016 | A1 |
20160053768 | Schumacher et al. | Feb 2016 | A1 |
20160136343 | Anagnostopoulos | May 2016 | A1 |
20160184500 | Zeng | Jun 2016 | A1 |
20160279310 | Scheckel et al. | Sep 2016 | A1 |
20170049946 | Kapur et al. | Feb 2017 | A1 |
20170071769 | Mangiardi | Mar 2017 | A1 |
20170100527 | Schwammenthal et al. | Apr 2017 | A1 |
20170197021 | Nitzan et al. | Jul 2017 | A1 |
20180126130 | Nitzan et al. | May 2018 | A1 |
20180149165 | Siess et al. | May 2018 | A1 |
20180169313 | Schwammenthal et al. | Jun 2018 | A1 |
20180303993 | Schwammenthal et al. | Oct 2018 | A1 |
20190175340 | Tuval | Jun 2019 | A1 |
20190175806 | Tuval et al. | Jun 2019 | A1 |
20190209758 | Tuval et al. | Jul 2019 | A1 |
20190239998 | Tuval et al. | Aug 2019 | A1 |
20190269840 | Tuval et al. | Sep 2019 | A1 |
20200254162 | Schwammenthal et al. | Aug 2020 | A1 |
20200288988 | Goldvasser | Sep 2020 | A1 |
20210236797 | D'Ambrosio et al. | Aug 2021 | A1 |
20210268261 | Tuval et al. | Sep 2021 | A1 |
Number | Date | Country |
---|---|---|
2013205145 | May 2013 | AU |
2013257469 | Mar 2016 | AU |
2701809 | Apr 2009 | CA |
1219136 | Jun 1999 | CN |
1033690 | Jul 1958 | DE |
10336902 | Aug 2004 | DE |
1339443 | Sep 2003 | EP |
1651290 | May 2006 | EP |
1827531 | Sep 2007 | EP |
1871441 | Jan 2008 | EP |
2047872 | Apr 2009 | EP |
2047873 | Apr 2009 | EP |
2217300 | Aug 2010 | EP |
2218469 | Aug 2010 | EP |
2234658 | Oct 2010 | EP |
2282070 | Feb 2011 | EP |
2298374 | Mar 2011 | EP |
2299119 | Mar 2011 | EP |
2301598 | Mar 2011 | EP |
2308524 | Apr 2011 | EP |
2314331 | Apr 2011 | EP |
2345440 | Jul 2011 | EP |
2366412 | Sep 2011 | EP |
2376788 | Oct 2011 | EP |
2408489 | Jan 2012 | EP |
2424587 | Mar 2012 | EP |
2475415 | Jul 2012 | EP |
2607712 | Jun 2013 | EP |
2040639 | Feb 2014 | EP |
2662099 | Sep 2014 | EP |
2427230 | Dec 2014 | EP |
2396050 | Jan 2015 | EP |
2835141 | Feb 2015 | EP |
2840954 | Mar 2015 | EP |
2841122 | Mar 2015 | EP |
2841124 | Mar 2015 | EP |
2860849 | Apr 2015 | EP |
2868331 | May 2015 | EP |
2868332 | May 2015 | EP |
2999496 | Mar 2016 | EP |
3000492 | Mar 2016 | EP |
3000493 | Mar 2016 | EP |
3055922 | Aug 2016 | EP |
3062730 | Sep 2016 | EP |
3108909 | Dec 2016 | EP |
3127562 | Feb 2017 | EP |
3216467 | Sep 2017 | EP |
3222302 | Sep 2017 | EP |
3287154 | Feb 2018 | EP |
3287155 | Feb 2018 | EP |
3326567 | May 2018 | EP |
3329951 | Jun 2018 | EP |
3338825 | Jun 2018 | EP |
3205360 | Aug 2018 | EP |
3359214 | Aug 2018 | EP |
3359215 | Aug 2018 | EP |
3398624 | Nov 2018 | EP |
3398625 | Nov 2018 | EP |
3407930 | Dec 2018 | EP |
3446729 | Feb 2019 | EP |
3446730 | Feb 2019 | EP |
3606575 | Feb 2020 | EP |
3737436 | Nov 2020 | EP |
3897814 | Oct 2021 | EP |
2012505038 | Mar 2012 | JP |
9013321 | Nov 1990 | WO |
199401148 | Jan 1994 | WO |
9744071 | Nov 1997 | WO |
9934847 | Jul 1999 | WO |
2001083016 | May 2000 | WO |
0107787 | Feb 2001 | WO |
2002070039 | Mar 2001 | WO |
0183016 | Nov 2001 | WO |
2002038085 | May 2002 | WO |
200238085 | May 2002 | WO |
03006096 | Jan 2003 | WO |
04073796 | Feb 2003 | WO |
03103745 | Dec 2003 | WO |
2004073796 | Sep 2004 | WO |
2005020848 | Mar 2005 | WO |
2007112033 | Oct 2007 | WO |
2007127477 | Nov 2007 | WO |
2008005747 | Jan 2008 | WO |
2008055301 | May 2008 | WO |
2009010963 | Jan 2009 | WO |
2009091965 | Jul 2009 | WO |
2009129481 | Oct 2009 | WO |
2010133567 | Nov 2010 | WO |
2010150208 | Dec 2010 | WO |
2011035926 | Mar 2011 | WO |
2011047884 | Apr 2011 | WO |
2011076441 | Jun 2011 | WO |
2012007141 | Jan 2012 | WO |
2013032849 | Mar 2013 | WO |
2013148697 | Oct 2013 | WO |
2013183060 | Dec 2013 | WO |
2014141284 | Sep 2014 | WO |
2015063277 | May 2015 | WO |
2015177793 | Nov 2015 | WO |
2016185473 | Nov 2016 | WO |
2017053361 | Mar 2017 | WO |
2017081561 | May 2017 | WO |
2018033920 | Feb 2018 | WO |
2018061001 | Apr 2018 | WO |
2018061002 | Apr 2018 | WO |
2018078615 | May 2018 | WO |
2018096531 | May 2018 | WO |
2018158636 | Sep 2018 | WO |
2018172848 | Sep 2018 | WO |
2018220589 | Dec 2018 | WO |
2019125899 | Jun 2019 | WO |
2019138350 | Jul 2019 | WO |
2019158996 | Aug 2019 | WO |
2021159147 | Aug 2021 | WO |
Entry |
---|
Communication Pursuant to Article 94(3) EPC for European Patent Application No. 19216488.7 dated Oct. 19, 2021. |
Examination Report for Canadian Application No. 2,948,121 dated Jul. 8, 2021. |
Issue Notification for U.S. Appl. No. 15/423,368 dated May 8, 2019. |
Issue Notification for U.S. Appl. No. 16/273,898 dated Oct. 13, 2021. |
Issue Notification for U.S. Appl. No. 16/281,385 dated Jun. 16, 2021. |
Issue Notification for U.S. Appl. No. 16/335,786 dated Jun. 2, 2021. |
Issue Notification for U.S. Appl. No. 16/345,389 dated May 26, 2021. |
Non-Final Office Action for U.S. Appl. No. 14/774,081 dated Oct. 12, 2017. |
Non-Final Office Action for U.S. Appl. No. 15/423,368 dated Jun. 6, 2018. |
Non-Final Office Action for U.S. Appl. No. 15/888,771 dated Jun. 1, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/242,797 dated Nov. 16, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/682,016 dated Sep. 20, 2021. |
Notice of Allowance for U.S. Appl. No. 15/574,948 dated Nov. 18, 2021. |
Notice of Allowance for U.S. Appl. No. 16/273,898 dated Jun. 30, 2021. |
Office Action for Chinese Application No. 201780072633.5 dated May 26, 2021. |
Office Action for Japanese Application No. 2015-562562 dated Jun. 13, 2018. |
Office Action for Japanese Application No. 2020-93277 dated Jun. 23, 2021. |
Restriction Requirement for U.S. Appl. No. 16/677,893 dated Sep. 22, 2021. |
U.S. Appl. No. 16/750,354, filed Jan. 23, 2020. |
U.S. Appl. No. 17/487,145, filed Sep. 28, 2021. |
U.S. Appl. No. 61/656,244, filed Jun. 6, 2012. |
U.S. Appl. No. 62/401,403, filed Sep. 29, 2016. |
U.S. Appl. No. 62/412,631, filed Oct. 25, 2016. |
U.S. Appl. No. 62/543,540, filed Aug. 10, 2017. |
U.S. Appl. No. 62/615,538, filed Jan. 10, 2018. |
U.S. Appl. No. 62/665,715, filed May 2, 2018. |
U.S. Appl. No. 62/681,868, filed Jun. 7, 2018. |
U.S. Appl. No. 62/727,605, filed Sep. 6, 2021. |
Heywood , et al., “High Prevalence Of Renal Dysfunction And Its Impact On Outcome In 118,465 Patients Hospitalized With Acute Decompensated Heart Failure: A Report From The ADHERE Database”, Journal of Cardiac Failure, 2007, pp. 422-430. |
Uthoff , et al., “Central venous pressure at emergency room presentation predicts cardiac rehospitalization in patients with decompensated heart failure”, European Journal of Heart Failure, 2010, pp. 469-476. |
Communication for European Application No. 15753493.4 dated Jul. 17, 2019. |
Corrected Notice of Allowance for U.S. Appl. No. 15/312,034 dated Feb. 12, 2020. |
Corrected Notice of Allowance for U.S. Appl. No. 15/423,368 dated Apr. 17, 2019. |
European Search Report for European Application No. 13800935 dated Jan. 12, 2016. |
European Search Report for European Application No. 14762232.8 dated Sep. 28, 2016. |
Extended European Search Report for European Application No. 19212211.7 dated Mar. 31, 2020. |
Extended European Search Report for European Application No. 19215724.6 dated Apr. 1, 2020. |
Extended European Search Report for European Application No. 19216488.7 dated Apr. 1, 2020. |
Extended European Search Report for European Application No. 19216593.4 dated Apr. 6, 2020. |
Extended European Search Report for European Application No. 20179137.3 dated Oct. 9, 2020. |
Final Office Action for U.S. Appl. No. 14/931,363 dated Jun. 1, 2017. |
Final Office Action for U.S. Appl. No. 15/312,034 dated Jan. 17, 2019. |
Final Office Action for U.S. Appl. No. 15/574,948 dated Aug. 26, 2020. |
Final Office Action for U.S. Appl. No. 15/888,771 dated Apr. 28, 2020. |
Final Office Action for U.S. Appl. No. 16/273,898 dated Nov. 5, 2020. |
Final Office Action for U.S. Appl. No. 16/278,323 dated May 22, 2020. |
International Search Report and Written Opinion from International Application No. PCT/IB2020/054759 dated Nov. 13, 2020. |
International Search Report and Written Opinion from International Application No. PCT/IL2015/050532 dated Jan. 27, 2016. |
International Search Report and Written Opinion from International Application No. PCT/IL2016/050525 dated Oct. 14, 2016. |
International Search Report and Written Opinion from International Application No. PCT/IL2017/051092 dated Jan. 16, 2018. |
International Search Report and Written Opinion from International Application No. PCT/IL2017/051273 dated Apr. 17, 2018. |
International Search Report and Written Opinion from International Application No. PCT/IL2019/050334 dated Jun. 17, 2019. |
International Search Report and Written Opinion from International Application No. PCT/IL2013/050495 dated Nov. 22, 2013. |
International Search Report and Written Opinion from International Application No. PCT/IL2014/050289 dated Sep. 11, 2014. |
Invitation to Pay Additional Fees for International Application No. PCT/IB2020/054759 dated Jul. 30, 2020. |
Invitation to pay additional fees for International Application No. PCT/IL2015/050532 dated Nov. 17, 2015. |
Issue Notification for U.S. Appl. No. 14/931,363 dated Feb. 21, 2018. |
Issue Notification for U.S. Appl. No. 15/312,034 dated Feb. 19, 2020. |
Issue Notification for U.S. Appl. No. 16/022,445 dated Jul. 10, 2019. |
Issue Notification for U.S. Appl. No. 16/035,871 dated Dec. 29, 2020. |
Issue Notification for U.S. Appl. No. 16/278,323 dated Nov. 24, 2020. |
Non-Final Office Action for U.S. Appl. No. 14/405,144 dated Feb. 22, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/405,144 dated Jul. 14, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/567,439 dated Nov. 16, 2016. |
Non-Final Office Action for U.S. Appl. No. 14/774,081 dated May 24, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/931,363 dated Feb. 15, 2017. |
Non-Final Office Action for U.S. Appl. No. 14/931,363 dated Oct. 3, 2016. |
Non-Final Office Action for U.S. Appl. No. 15/574,948 dated Jan. 13, 2020. |
Non-Final Office Action for U.S. Appl. No. 15/888,771 dated Oct. 4, 2019. |
Non-Final Office Action for U.S. Appl. No. 16/022,445 dated Aug. 9, 2018. |
Non-Final Office Action for U.S. Appl. No. 16/035,871 dated Jan. 22, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/22,445 dated Aug. 9, 2018. |
Non-Final Office Action for U.S. Appl. No. 16/273,898 dated Feb. 17, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/273,898 dated Jun. 18, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/278,323 dated May 22, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/281,385 dated Oct. 14, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/335,786 dated Sep. 17, 2020. |
Non-Final Office Action for U.S. Appl. No. 16/345,389 dated Oct. 26, 2020. |
Notice of Allowance for U.S. Appl. No. 14/567,439 dated Jun. 2, 2017. |
Notice of Allowance for U.S. Appl. No. 14/774,081 dated Apr. 11, 2018. |
Notice of Allowance for U.S. Appl. No. 14/931,363 dated Dec. 12, 2017. |
Notice of Allowance for U.S. Appl. No. 14/931,363 dated Oct. 12, 2017. |
Notice of Allowance for U.S. Appl. No. 15/312,034 dated Jan. 15, 2020. |
Notice of Allowance for U.S. Appl. No. 15/312,034 dated Jun. 27, 2019. |
Notice of Allowance for U.S. Appl. No. 15/423,368 dated Apr. 4, 2019. |
Notice of Allowance for U.S. Appl. No. 15/423,368 dated Nov. 13, 2018. |
Notice of Allowance for U.S. Appl. No. 16/022,445 dated Mar. 18, 2019. |
Notice of Allowance for U.S. Appl. No. 16/035,871 dated Aug. 28, 2020. |
Notice of Allowance for U.S. Appl. No. 16/035,871 dated Dec. 4, 2020. |
Notice of Allowance for U.S. Appl. No. 16/278,323 dated Oct. 29, 2020. |
Notice of Allowance for U.S. Appl. No. 16/281,385 dated Mar. 8, 2021. |
Notice of Allowance for U.S. Appl. No. 16/335,786 dated Feb. 22, 2021. |
Notice of Allowance for U.S. Appl. No. 16/345,389 dated Feb. 16, 2021. |
Notice of Publication for U.S. Appl. No. 16/281,385 dated Jun. 20, 2019. |
Office Action for Australian Application No. 2015262870 dated Apr. 29, 2019. |
Office Action for Australian Application No. 2019202647 dated Jun. 26, 2019. |
Office Action for Australian Application No. 2020201055 dated Sep. 15, 2020. |
Office Action for Chinese Application No. 201380037335.4 dated Mar. 22, 2017. |
Office Action for Chinese Application No. 201380037335.4 dated Oct. 17, 2016. |
Office Action for Chinese Application No. 201380037335.4 dated Sep. 20, 2017. |
Office Action for Chinese Application No. 201810418034.0 dated Aug. 4, 2020. |
Office Action for Chinese Application No. 201810418034.0 dated Dec. 24, 2020. |
Office Action for Chinese Application No. 201810418034.0 dated Nov. 1, 2019. |
Office Action for Chinese Application No. 201811196500.1 dated Aug. 28, 2020. |
Office Action for Chinese Application No. 201910109564.1 dated Feb. 1, 2021. |
Office Action for European Application No. 13800935 dated Sep. 30, 2016. |
Office Action for Japanese Application No. 2015/562562 dated Jan. 29, 2019. |
Office Action for Japanese Application No. 2015562562 dated Oct. 27, 2017. |
Office Action for Japanese Application No. 2016/568548 dated Mar. 18, 2019. |
Office Action for Japanese Application No. 2020-009045 dated Feb. 1, 2021. |
Restriction Requirement for U.S. Appl. No. 14/567,439 dated Aug. 23, 2016. |
Restriction Requirement for U.S. Appl. No. 14/774,081 dated Mar. 9, 2017. |
Restriction Requirement for U.S. Appl. No. 14/931,363 dated Jul. 22, 2016. |
Restriction Requirement for U.S. Appl. No. 15/888,771 dated Apr. 15, 2019. |
Restriction Requirement for U.S. Appl. No. 16/035,871, dated Sep. 27, 2019. |
U.S. Appl. No. 14/405,144, filed Dec. 2, 2014. |
U.S. Appl. No. 14/567,439, filed Dec. 11, 2014. |
U.S. Appl. No. 14/774,081, filed Sep. 9, 2015. |
U.S. Appl. No. 15/423,368, filed Feb. 2, 2017. |
U.S. Appl. No. 15/574,948, filed Nov. 17, 2017. |
U.S. Appl. No. 16/022,445, filed Jun. 28, 2018. |
U.S. Appl. No. 16/273,898, filed Feb. 12, 2019. |
U.S. Appl. No. 16/275,559, filed Feb. 14, 2019. |
U.S. Appl. No. 16/276,965, filed Feb. 15, 2019. |
U.S. Appl. No. 16/277,411, filed Feb. 15, 2019. |
U.S. Appl. No. 16/278,323, filed Feb. 18, 2019. |
U.S. Appl. No. 16/281,264, filed Feb. 21, 2019. |
U.S. Appl. No. 16/281,385, filed Feb. 21, 2019. |
U.S. Appl. No. 16/345,389, filed Apr. 26, 2019. |
U.S. Appl. No. 16/677,893, filed Nov. 8, 2019. |
U.S. Appl. No. 16/682,016, filed Nov. 13, 2019. |
U.S. Appl. No. 16/859,100, filed Apr. 27, 2020. |
U.S. Appl. No. 16/859,492, filed Apr. 27, 2020. |
U.S. Appl. No. 61/656,244, filed Jun. 6, 2013. |
U.S. Appl. No. 61/779,803, filed Mar. 13, 2013. |
U.S. Appl. No. 61/914,470, filed Dec. 11, 2013. |
U.S. Appl. No. 61/914,475, filed Dec. 11, 2013. |
U.S. Appl. No. 62/000,192, filed May 19, 2014. |
U.S. Appl. No. 62/162,881, filed May 18, 2015. |
U.S. Appl. No. 62/425,814, filed Nov. 23, 2016. |
Agarwal, et al., “Newer-generation ventricular assist devices.”, Best Practice & Research Clinical Anaesthesiology, 26.2, 2012, pp. 117-130. |
Alba, et al., “The future is here: ventricular assist devices for the failing heart”, Expert review of cardiovascular therapy, 7.9, 2009, pp. 1067-1077. |
Burnett, et al., “Renal Interstitial Pressure And Sodium Excretion During Renal Vein Constriction”, American Physiological Society, 1980, pp. F279-F282. |
Coxworth, “Artificial vein valve could replace drugs for treating common circulatory problem”, Published on Gizmag website (http://www.gizmag.com/artificial-venous-valve-cvi/21785/), Mar. 9, 2012, pp. 2. |
Damman, et al., “Decreased Cardiac Output, Venous Congestion And The Association With Renal Impairment In Patients With Cardiac Dysfunction”, European Journal of Heart Failure, vol. 9, 2007, pp. 872-878. |
Damman, et al., “Increased Central Venous Pressure Is Associated With Impaired Renal Function And Mortality In A Broad Spectrum Of Patients With Cardiovascular Disease”, Journal of American College of Cardiology, vol. 53, 2009, pp. 582-588. |
Doty, et al., “The Effect Of Increased Renal Venous Pressure On Renal Function”, The Journal of Trauma,, vol. 47(6), Dec. 1999, pp. 1000-1003. |
Felker, et al., “Anemia As A Risk Factor And Therapeutic Target In Heart Failure”, Journal of the American College of Cardiology, vol. 44, 2004, pp. 959-966. |
Firth, et al., “Raised Venous Pressure: A Direct Cause Of Sodium Retention In Oedema?”, The Lancet, May 7, 1988, pp. 1033-1036. |
Forman, et al., “Incidence, Predictors At Admission, And Impact Of Worsening Renal Function Among Patients Hospitalized With Heart Failure”, Journal of American College of Cardiology, vol. 43, 2004, pp. 61-67. |
Fraser, et al., “The use of computational fluid dynamics in the development of ventricular assist devices”, Medical engineering & physics, 33.3, 2011, pp. 263-280. |
Gomes, et al., “Heterologous Valve Implantation In The Infra-Renal Vena Cava For Treatment Of The Iliac Venous Valve Regurgitation Disease: Experimental Study”, Rev Bras Cir Cardiovasc, vol. 17(4), 2002, pp. 367-369. |
Haddy, et al., “Effect Of Elevation Of Intraluminal Pressure On Renal Vascular Resistance”, Circulation Research Journal Of The American Heart Association, vol. 4, 1956, pp. 659-663. |
Heywood, et al., “High Prevalence Of Renal Dysfunction And Its Impact On Outcome In 118,465 Patients Hospitalized With Acute Decompensated Heart Failure: A Report From The ADHERE Database”, Journal of Cardiac Failure, vol. 13, 2007, pp. 422-430. |
Hillege, et al., “Renal Function As A Predictor Of Outcome In A Broad Spectrum Of Patients With Heart Failure”, Circulation Journal of the American Heart Association, vol. 113, 2006, pp. 671-678. |
Hillege, et al., “Renal Function, Neurohormonal Activation, And Survival In Patients With Chronic Heart Failure”, Circulation Journal of the American Heart Association, vol. 102, 2000, pp. 203-210. |
Hsu, et al., “Review of recent patents on foldable ventricular assist devices”, Recent Patents on Biomedical Engineering, 5.3, 2012, pp. 208-222. |
IKARI, “The Physics Of Guiding Catheter; The IKARI Guiding Catheter In TRI”, available at httu:i /www.docstoc.com/docs/148136553/The-[KARI-catheter---anovel-guide-for-TRI--, uploaded on Mar. 8, 2013. |
Kafagy, et al., “Design of axial blood pumps for patients with dysfunctional fontan physiology: computational studies and performance testing”, Artificial organs, 39.1, 2015, pp. 34-42. |
Kang, et al., “Fluid dynamics aspects of miniaturized axial-flow blood pump”, Bio-medical materials and engineering, 24.1, 2014, pp. 723-729. |
Koochaki, et al., “A new design and computational fluid dynamics study of an implantable axial blood pump”, Australasian Physical & Engineering Sciences in Medicine, 36.4, 2013, pp. 417-422. |
Lauten, et al., “Heterotopic Transcatheter Tricuspid Valve Implantation: First-In-Man Application Of A Novel Approach To Tricuspid Regurgitation”, European Heart Journal, (1-7 as printed), Feb. 15, 2011, pp. 1207-1213. |
Mcalister, et al., “Renal Insufficiency And Heart Failure: Prognostic And Therapeutic Implications From A Prospective Cohort Study”, Circulation Journal of the American Heart Association, 109, 2004, pp. 1004-1009. |
Mullens, et al., “Elevated Intra-Abdominal Pressure In Acute Decompensated Heart Failure. A Potential Contributor To Worsening Renal Function”, Journal of the American College of Cardiology, vol. 51, 2008, pp. 300-306. |
Mullens, et al., “Importance Of Venous Congestion For Worsening Of Renal Function In Advanced Decompensated Heart Failure”, Journal of American College of Cardiology, vol. 53, 2009, pp. 589-596. |
Mullens, et al., “Prompt Reduction In Intra-Abdominal Pressure Following Large-Volume Mechanical Fluid Removal Improves Renal Insufficiency In Refractory Decompensated Heart Failure”, Journal of Cardiac Failure, vol. 14, 2008, pp. 508-514. |
Notarius, et al., “Central Venous Pressure During Exercise: Role Of Muscle Pump”, Canadian Journal of Physiology and Pharmacology, vol. 74(6), 1996, pp. 647-651. |
Park, et al., “Nutcracker Syndrome: Intravascular Stenting Approach”, Nephrol Dial Transplant, vol. 15, 2000, pp. 99-101. |
Reul, et al., “Blood pumps for circulatory support”, Perfusion-Sevenoaks, 15.4, 2000, pp. 295-312. |
Schmitz-Rode, et al., “An Expandable Percutaneous Catheter Pump For Left Ventricular Support”, Journal of the American College of Cardiology, vol. 45, 2005, pp. 1856-1861. |
Semple, et al., “Effect Of Increased Renal Venous Pressure On Circulatory “Autoregulation” Of Isolated Dog Kidneys”, Circulation Research Journal of The American Heart Association, vol. 7, 1959, pp. 643-648. |
Song, et al., “Axial flow blood pumps”, ASAIO journal, 49, 2003, pp. 355-364. |
Tang, et al., “Anemia In Chronic Heart Failure: Prevalence, Etiology, Clinical Correlates, And Treatment Options”, Circulation Journal of the American Heart Association, vol. 113, 2006, pp. 2454-2461. |
Throckmorton, et al., “Design of a protective cage for an intra vascular axial flow blood pump to mechanically assist the failing Fontan”, Artificial organs, 33.8, 2009, pp. 611-621. |
Thunberg, et al., “Ventricular assist devices today and tomorrow”, Journal of cardiothoracic and vascular anesthesia, 24.4, 2010, pp. 656-680. |
Timms, “A review of clinical ventricular assist devices”, Medical engineering & physics, 33.9, 2011, pp. 1041-1047. |
Uthoff, et al., “Central venous pressure at emergency room presentation predicts cardiac rehospitalization in patients with decompensated heart failure”, European Journal of Heart Failure, 12, 2010, pp. 469-476. |
Uthoff, et al., “Central Venous Pressure At Emergency Room Presentation Predicts Cardiac Rehospitalization In Patients With Decompensated Heart Failure”, European Journal of Heart Failure, vol. 12, Mar. 11, 2010, 8 Pages. |
Wencker, “Acute Cardio-Renal Syndrome: Progression From Congestive Heart Failure To Congestive Kidney Failure”, Current Heart Failure Reports, vol. 4, 2007, pp. 134-138. |
Winton, “The Control Of Glomerular Pressure By Vascular Changes Within The Mammalian Kidney, Demonstrated By The Actions Of Adrenaline”, Journal of Physiology, vol. 73, Nov. 1931, pp. 151-162. |
Winton, “The Influence Of Venous Pressure On The Isolated Mammalian Kidney”, Journal of Physiology, vol. 72(1), Jun. 6, 1931, pp. 49-61. |
Wood, “The Mechanism Of The Increased Venous Pressure With Exercise In Congestive Heart Failure”, Journal of Clinical Investigation, vol. 41(11), 1962, pp. 2020-2024. |
Wu, et al., “Design and simulation of axial flow maglev blood pump”, International Journal of Information Engineering and Electronic Business, 3.2, 2011, p. 42. |
Yancy, et al., “Clinical Presentation, Management, And In-Hospital Outcomes Of Patients Admitted With Acute Decompensated Heart Failure With Preserved Systolic Function. A Report From The Acute Decompensated Heart Failure National Registry (ADHERE) Database”, Journal of the American College of Cardiology, vol. 47(1), 2006, pp. 76-84. |
Advisory Action for U.S. Appl. No. 15/888,771 dated May 4, 2022. |
Communication Pursuant to Article 94(3) for European Patent Application No. 20179137.3 dated Nov. 9, 2021. |
Examination Report for Canadian Application No. 2,948,121 dated Dec. 15, 2021. |
Examination Report for Indian Application No. 201917018650 dated Dec. 9, 2021. |
Final Office Action for U.S. Appl. No. 15/888,771 dated Dec. 9, 2021. |
Final Office Action for U.S. Appl. No. 16/859,100 dated Jul. 13, 2022. |
Issue Notification for U.S. Appl. No. 15/574,948 dated Mar. 16, 2022. |
Issue Notification for U.S. Appl. No. 16/682,016 dated Mar. 23, 2022. |
Issue Notification for U.S. Appl. No. 16/682,269 dated Mar. 23, 2022. |
Non-Final Office Action for U.S. Appl. No. 15/888,771 dated May 25, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated Jan. 11, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated Jul. 1, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/682,269 dated Sep. 20, 2021. |
Non-Final Office Action for U.S. Appl. No. 16/859,100 dated Apr. 29, 2022. |
Notice of Allowance for U.S. Appl. No. 15/574,948 dated Jan. 27, 2022. |
Notice of Allowance for U.S. Appl. No. 15/888,771 dated Jun. 28, 2022. |
Notice of Allowance for U.S. Appl. No. 16/682,016 dated Feb. 23, 2022. |
Notice of Allowance for U.S. Appl. No. 16/682,269 dated Feb. 23, 2022. |
Office Action for Japanese Application No. 2019-520097 dated Oct. 26, 2021. |
Examination Report for European Application No. 20179137.3 dated Jan. 5, 2023. |
Issue Notification for U.S. Appl. No. 15/888,771 dated Oct. 12, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/677,893 dated Dec. 28, 2022. |
Non-Final Office Action for U.S. Appl. No. 16/859,492 dated Oct. 14, 2022. |
Office Action for Japanese Application No. 2022-31553 dated Dec. 23, 2022. |
Restriction Requirement for U.S. Appl. No. 16/859,492 dated Jul. 28, 2022. |
“Compendium of Technical and Scientific Information for the Hemopump Temporary Cardiac Assist System”, Johnson & Johnson Interventional Systems, 1988, pp. 1-15. |
Achour , et al., “Mechanical Left Ventricular Unloading Prior to Reperfusion Reduces Infarct Size in a Canine Infarction Model”, Catheterization and Cardiovascular Interventions 64, 2005, pp. 182-192. |
Butler , et al., “The Hemopump—A New Cardiac Prothesis Device”, Reprinted from IEEE Transactions on Biomedical Engineering, vol. 37, No. 2, Feb. 1990, pp. 192-195. |
Chan , et al., “Rapid manufacturing techniques in the development of an axial blood pump impeller”, Proc. Instn Mech. Engrs vol. 217 Part H: J. Engineering in Medicine, 2003, pp. 469-475. |
Dekker , et al., “Efficacy of a New Intraaortic Propeller Pump vs the Intraaortic Balloon Pump”, Chest, vol. 123, Issue 6, Jun. 2003, pp. 2089-2095. |
Flameng , “Temporary Cardiac Assist with an Axial Pump System”, Steinkopff Verlag Darmstadt, 1991, 79 pages. |
Frazier , et al., “First Human Use of the Hemopump, a Catheter-Mounted Ventricular Assist Device”, Annual of Thoracic Surgeons, vol. 49, 1990, pp. 299-304. |
Frazier , et al., “Treatment of Cardiac Allograft Failure by use of an IntraAortic Axial Flow Pump”, Journal of Heart Transplantation, St. Louis, vol. 9, No. 4, pp. 408-414, Jul. 1990. |
Gunther , et al., “Experimentelle Radiologie”, Life Sciences, Berichte aus der Rheinischwestfälischen Technischen Hochschule Aachen Ausgabe Feb. 2002, 9 pages. |
Ledoux , et al., “Left Ventricular Unloading With Intra-aortic Counter Pulsation Prior to Reperfusion Reduces Myocardial Release of Endothelin-1 and Decreases Infarction Size in a Porcine Ischemia-Reperfusion Model”, Catheterization and Cardiovascular Interventions 72, 2008, pp. 513-521. |
Merhige , et al., “Effect of the Hemopump Left Ventricular Assist Device on Regional Myocardial Perfusion and Function”, Reduction of Ischemia during Coronary Occlusion, Johnson & Johnson Interventional Systems Supplement 3, Circulation vol. 80, No. 5, Nov. 1989, pp. III-159-III-166. |
Roundtree , et al., “The Hemopump Cardiac Assist System: Nursing Care of the Patient”, Reprinted from Critical Care Nurse, Apr. 1991. |
Scholz , et al., “MechanicaL left Ventricular Unloading During High Risk Coronary Angioplasty: First Use of a New Percutaneous Transvalvular Left Ventricular Assist Device”, Catheterization and Cardiovascular Diagnosis 31, 1994, pp. 61-69. |
Siess , “System Analysis and Development of Intravascular Rotation Pumps for Cardiac Assist”, Helmholtz-Institute—Chapter 3, Jun. 1998, 17 pages. |
Smalling , et al., “Improved Regional Myocardial Blood Flow, Left Ventricular Unloading, and Infarct Salvage Using an Axial-Flow, Transvalvular Left Ventricular Assist Device”, A Comparison With Intra-Aortic Balloon Counterpulsation and Reperfusion Alone in a Canine Infarction Model, Presented in part at the American College of Cardiology 38th Annual Scientific Session, Mar. 1990, pp. 1152-1160. |
Smalling , et al., “The Hemopump: A transvalvular, axial flow, left ventricular assist device”, Coronary Artery Disease, Circulatory support devices in clinical cardiology, vol. 2 No. 6, pp. 666-671, Aug. 1991. |
Smalling , et al., “Transvalvular Left Ventricular Assistance in Cardiogenic Shock Secondary to Acute Myocardial Infarction”, Evidence for Recovery From Near Fatal Myocardial Stunning, JACC vol. 23, No. 3, pp. 637-644, Mar. 1, 1994. |
Tamareille , et al., “Left ventricular unloading before reperfusion reduces endothelin-1 release and calcium overload in porcine myocardial infarction”, Cardiopulmonary Support and Physiology, The Journal of Thoracic and Cardiovascular Surgery, vol. 136, No. 2, 2008, pp. 343-351. |
Wampler , “Newspaper Articles”, Captain Hemo, 1988, 6 pages. |
Wampler , “Newsweek”, Captain Hemo, May 16, 1988, 3 pages. |
Wampler , “THI Today”, Captain Hemo, Summer 1988, 2 pages. |
Wampler , “Time Magazine”, Captain Hemo, May 1988, 2 pages. |
Wampler , et al., “Treatment of Cardiogenic Shock With the Hemopump Left Ventricular Assist Device”, Annual of Thoracic Surgery, vol. 52, pp. 560-513, 1991. |
Wampler , “U.S. News & World Report”, Captain Hemo, pp. 1-2, May 16, 1988. |
Non-Final Office Action for U.S. Appl. No. 17/487,145 dated Mar. 1, 2023. |
Number | Date | Country | |
---|---|---|---|
20210268261 A1 | Sep 2021 | US |
Number | Date | Country | |
---|---|---|---|
62425814 | Nov 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16345389 | US | |
Child | 17320742 | US |