The present invention relates to a blood purifier used for a dialysis therapy.
Japanese Patent Laying-Open No. 10-080477 (Patent Document 1) discloses an invention relating to a module for a blood treatment. This module for a blood treatment includes a plurality of hollow fiber membranes. Each of the hollow fiber membranes is composed of a hydrophilized macromolecule and set to have an average inner diameter of 50 μm or more and less than 180 μm. The publication sets forth that such a module for a blood treatment can be used as a high-performance and/or small-sized module for a blood treatment for hemodialysis, hemofiltration, hemodiafiltration, and plasmapheresis and it is also useful as a module for at-home dialysis, a portable artificial kidney, and an implanted-type artificial kidney.
WO 2010/143647 (Patent Document 2) discloses an invention relating to hollow fiber membranes. Each of the hollow fiber membranes is formed of an ionic polymer selected from a cationic polymer or an anionic polymer. The ionic polymer comprises either a polyvinyl alcohol containing an ionic group selected from a cationic group and an anionic group or a mixture comprising a polymer containing the ionic group and a polyvinyl alcohol that does not contain the ionic group. The publication sets forth that such hollow fiber membranes allow a large ion permeation flux and also have a large selectivity coefficient and are also excellent in mechanical strength, and accordingly, allow efficient dialysis.
Patent Document 1: Japanese Patent Laying-Open No. 10-080477
Patent Document 2: WO 2010/143647
In recent years, a development of a blood purifier has been considered by miniaturizing the blood purifier to be applicable to a patient with an advanced disease and a child with a small body weight, enhanced in portability, etc. to thus have higher convenience.
An object of the present invention is to provide a blood purifier which can be used for a long period of time even when it is miniaturized.
A blood purifier based on the present invention comprises: a hollow fiber membrane bundle including a plurality of hollow fiber membranes having an effective length of 10 mm or more and 150 mm or less, allowing blood to flow inside the hollow fiber membranes and allowing a fluid including at least one of a dialysing fluid and a filtrated fluid to flow outside the hollow fiber membranes; and a body case accommodating the hollow fiber membrane bundle therein, of a permeation flux Jv obtained by dividing a volume of a permeate fluid permeating through the hollow fiber membranes by a membrane area of the hollow fiber membranes and time, a maximum value in the hollow fiber membrane bundle being represented as Jvmax, a linear velocity of blood supplied into the hollow fiber membrane and flowing in the hollow fiber membrane being represented as uB, a pressure difference between the blood flowing inside the hollow fiber membranes and the fluid flowing outside the hollow fiber membranes being represented as TMP, and when a filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes is 20 mL/m2 or more and 35 mL/m2 or less and Jvmax/uB has a value of 0.00015 or more and 0.0006 or less, satisfied being a condition in which a TMP change rate has a value of 0.95 or more and 1.05 or less.
Preferably, the effective length of the plurality of hollow fiber membranes is 10 mm or more and 40 mm or less. Preferably, when the filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes is 20 mL/m2 or more and 30 mL/m2 or less and Jvmax/uB has a value of 0.00015 or more and 0.0006 or less, satisfied is a condition in which a TMP change rate has a value of 0.95 or more and 1.05 or less.
Preferably, a pressure loss caused between a blood inlet side of the plurality of hollow fiber membranes and a blood outlet side of the plurality of hollow fiber membranes is 0 mmHg or more and 60 mmHg or less. Preferably, a filling blood volume into the blood purifier is 5 mL or more and 100 mL or less.
The present invention can thus provide a blood purifier which can be used for a long period of time even when it is miniaturized.
An embodiment based on the present invention will now be described hereinafter with reference to the drawings. Note that in the description of the embodiment, when numbers, amounts and the like are referred to, the present invention is not necessarily limited thereto unless otherwise indicated. In describing the embodiment, identical and corresponding components are identically denoted and may not be described repeatedly.
Blood purification system 100 includes a blood purifier 10, blood channels 11 and 12, dialysing fluid channels 13 and 14, roller pumps 15 and 16, and monitoring pumps 17, 18, and 19. Blood purifier 10 includes a cylindrical body case 10C and a hollow fiber membrane bundle 10H accommodated in body case 10C. Hollow fiber membrane bundle 10H is composed by bundling a plurality of hollow fiber membranes. Body case 10C is provided with four ports, i.e., a blood inlet, a blood outlet, a dialysing fluid inlet, and a dialysing fluid outlet.
Connected to each port of the blood inlet and the blood outlet are blood channels 11 and 12, respectively, in communication with an inside of the plurality of hollow fiber membranes. Connected to each port of the dialysing fluid inlet and the dialysing fluid outlet are dialysing fluid channels 13 and 14, respectively, in communication with an outside of the plurality of hollow fiber membranes. Blood flows to the inside of the hollow fiber membranes through blood channel 11 connected to body case 10C. Blood flows from the inside of the hollow fiber membranes to blood channel 12. The dialysing fluid flows to the outside of the hollow fiber membranes through dialysing fluid channel 13 connected to body case 10C. The dialysing fluid flows from the outside of the hollow fiber membranes to dialysing fluid channel 14. Alternatively, channel 13 may be closed and a filtrated fluid may be discharged from channel 14.
Via the hollow fiber membranes serving as semi-permeable membranes, substances in blood (e.g., urea, creatinine, uric acid, low molecular weight protein, water, etc. accumulated in blood) move by an effect of diffusion into the dialysing fluid as a permeate fluid. The hollow fiber membranes used for blood purifier 10 are excellent in substance permeability and water permeability, and even when forced filtration by water removal is not performed, filtration (internal filtration) and back filtration (internal back filtration) can be performed between blood and the dialysing fluid via the hollow fiber membranes. Blood purifier 10 may be one which performs hemodialysis and simultaneously applies a negative pressure on the dialysing fluid's side to move substances in blood (e.g., urea, creatinine, water, etc.) to the dialysing fluid's side through filtration (i.e., hemodialysis), or may be one which furthermore performs fluid replacement (i.e., hemofiltration and hemodiafiltration).
Inside blood purifier 10, blood and the dialysing fluid are passed in mutually opposite directions. Via the hollow fiber membranes, a fluid (a permeate fluid) moves from one of blood and the dialysing fluid having higher pressure to the other having lower pressure. Internal filtration easily occurs in blood purifier 10 on the blood ingress side, and internal back filtration easily occurs in blood purifier 10 on the blood egress side.
A flow rate QB per unit time of blood flowing into blood purifier 10 can be changed by roller pump 15 provided to blood channel 11. A pressure (P17) of blood flowing into blood purifier 10 is monitored via monitoring pump 17 provided to blood channel 11. A pressure (P18) of blood flowing out of blood purifier 10 is monitored via monitoring pump 18 provided to blood channel 12.
A flow rate per unit time of the dialysing fluid flowing into blood purifier 10 can be changed by roller pump 16 provided to dialysing fluid channel 14. Through dialysing fluid channel 14, filtration of filtration flow rate QF (a water removal flow rate) is performed. A pressure (P19) on the side of the dialysing fluid is monitored by monitoring pump 19 provided to dialysing fluid channel 14. When a pressure difference between the blood flowing inside the plurality of hollow fiber membranes and the dialysing fluid flowing outside the plurality of hollow fiber membranes is represented as TMP (transmembrane pressure), the expression of TMP=(P17+P18)/2−P19 is established.
The plurality of hollow fiber membranes accommodated in body case 10C have an effective length of 10 mm or more and 150 mm or less, and miniaturization etc. is achievable by this dimensional range. The effective length as referred to herein is a length of a portion of the plurality of hollow fiber membranes, as seen in the longitudinal direction thereof, that is actually used to exchange substances between the blood's side and the dialysis's side.
The plurality of hollow fiber membranes have their longitudinal opposite ends fixed to an internal wall of body case 10C via a sealing resin. The effective length of the plurality of hollow fiber membranes indicates an average length of a portion of the plurality of hollow fiber membranes excluding the opposite ends fixed to body case 10C (or the sealing resin), for example. When using blood purification system 100 for portable blood purification is assumed, shortening a blood circuit is advantageous in view of the pumping performance and the filling blood volume.
Ideally blood purifier 10 is fixed at a position close to the body using a belt etc. Blood purifier 10 having a large length would limit a patient's activity and is thus not preferable, and it is desirable to wind blood purifier 10 of a maximally short length around the torso of the patient laterally (or horizontally).
An adult's torso has a width of about 200 mm and a child's torso has a width of about 150 mm. When the shape of the port of body case 10C is considered the plurality of hollow fiber membranes with an effective length of 10 mm or more and 150 mm or less allows blood purifier 10 to be fixed to the body of the patient in close contact therewith without substantially limiting the patient's activity. In view of further miniaturization etc., the effective length of the plurality of hollow fiber membranes is preferably 10 mm or more and 100 mm or less, more preferably 10 mm or more and 40 mm or less.
When blood contacts the hollow fiber membranes, each of the hollow fiber membranes has a surface deformed, a blood component, protein etc. deposit on the surface of the hollow fiber membrane and a gel layer is thus formed thereon, adsorption causes stricture or occlusion of pores of the membrane (i.e., fouling), blood coagulates and thrombus is also formed in the hollow fiber membrane's lumen itself, etc. Various setting conditions, such as a blood flow rate, a filtration flow rate, and a ratio between the blood flow rate and the filtration flow rate, have been studied so that when hemofiltration (C:Continuous) HF is carried out over a long period of time using the above described blood purification system 100 (see
A material of a member which configures body case 10C based on the example was PC (polycarbonate). Body case 10C had a body having an inner diameter set to 40.0 mm. Body case 10C had an overall length set to 52.6 mm. In the present example, the hollow fiber membranes had an effective length set to 37.6 mm (in average value). A material of a member which configures each of the hollow fiber membranes was CTA (cellulose triacetate).
The hollow fiber membranes had an inner diameter set to 100 μm (in average value). The hollow fiber had a membrane thickness set to 15 μm (in average value). The hollow fiber had a membrane area set to 0.55 m2 (in average value). The membrane area as referred to herein is an area of a portion of the hollow fiber membrane, as seen in the longitudinal direction thereof, that is actually used to exchange substances between the blood's side and the dialysis's side, and it is a value calculated with reference to the hollow fiber's internal surface. The membrane area of the hollow fiber membrane as referred to herein is a membrane area, as averaged, of a portion of the plurality of hollow fiber membranes excluding the opposite ends fixed to body case 10C (or the sealing resin).
46,228 hollow fiber membranes were bundled together. A ratio (L/D) of the effective length (L) of the hollow fiber membranes and an average inner diameter (D) of the body of body case 10C was set to 0.94 (in average value). The hollow fiber membranes had a lumen having a cross-sectional area set to 363 mm2 (in average value). A proportion of the hollow fiber membranes (the hollow fiber membrane bundle) occupying the volume of body case 10C (i.e., a fiber density ratio) was set to 49%. A general blood purifier has a so-called elongate shape. Blood purifier 10 used in the present example has a short and thick shape.
A filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes (in average value) is set to 20 mL/m2 or more and 35 mL/m2 or less. A filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes (in average value) is preferably 20 mL/m2 or more and 30 mL/m2 or less. For a given membrane area, a smaller filling blood volume allows better filtration efficiency and also allows a reduced degree of reduction in performance, and accordingly, smaller filling blood volumes are better. When converted into a given filling blood volume, it can be said that a larger corresponding membrane area allows better filtration efficiency and also allows a reduced degree of reduction in performance. In other words, a smaller filling blood volume into the hollow fiber membrane (in other words, a hollow fiber membrane having a smaller inner diameter) is advantageous in hemofiltration. In the present example, a filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes (in average value) was set to 25 mL/m2.
A priming volume (a filling blood volume) into blood purifier 10 is set to 5 mL or more and 100 mL or less. A priming volume (a filling blood volume) into the hollow fiber membrane bundle in blood purifier 10 is preferably 5 mL or more and 80 mL or less, more preferably 5 mL or more and 50 mL or less. Generally, it is said that an intracorporeal circulating blood volume is 7 to 8% of a body weight. When a patient has a body weight of 20 kg, his/her intracorporeal circulating blood volume is 20000×0.07=1500 [g].
It is supposed that it is necessary to set an extracorporeal circulating blood volume in a blood purification therapy to 10% or less of an intracorporeal circulating blood volume. A blood volume allowed to extracorporeally circulate for the above case will be 1500×0.10=150 [g] at the maximum. When blood's specific gravity is taken into consideration, the blood volume allowed to extracorporeally circulate will be 150×0.95=142.5 [mL].
When blood purifier 10 is assumed to be used for portable blood purification with a blood circuit adopted which has a filling blood volume of a minimum class, an extracorporeal circulating blood volume for example of about 40 mL will be required. In that case, the filling blood volume of the blood purifier must be 142.5−40=102.5 [mL] or less. Furthermore, when blood purifier 10 is assumed to be used for portable blood purification, using a blood product etc. is hardly assumed, and accordingly, 102.5×0.50=51.25 [mL] or less would be desirable. In the present example, the priming volume (or filling blood volume) into blood purifier 10 was set to 34.7 mL.
It is recommendable that a pressure loss caused between the blood inlet side of the hollow fiber membranes and the blood outlet side of the hollow fiber membranes (in average value) be 0 mmHg or more and 60 mmHg or less. Having a structure with a smaller pressure loss allows a smaller load on blood. In other words, for a given membrane area, a short and thick module is more advantageous for hemofiltration than an elongate module. In the present example, a pressure loss caused between the blood inlet side of the hollow fiber membranes and the blood outlet side of the hollow fiber membranes (in average value) was set to 56 mmHg for an example 1, 27 mmHg for an example 2, and 19 mmHg for an example 3. As a subject to the experiment, 1 L of blood of a swine was prepared. This blood had an HCT adjusted to 30% and a TP adjusted to 6.5 g/dL.
A material of a member which configures a body case based on a comparative example was PC (polycarbonate). The body case had a body having an inner diameter set to 23.7 mm. The body case had an overall length set to 183 mm. In the comparative example, the hollow fiber membranes had an effective length set to 165 mm (in average value). A material of a member which configures each of the hollow fiber membranes was CTA (cellulose triacetate).
The hollow fiber membranes had an inner diameter set to 200 μm (in average value). The hollow fiber had a membrane thickness set to 15 μm (in average value). The hollow fiber had a membrane area set to 0.52 m2 (in average value). The membrane area as referred to herein is an area of a portion of the hollow fiber membrane, as seen in the longitudinal direction thereof, that is actually used to exchange substances with the blood's side, and it is a value calculated with reference to the hollow fiber's internal surface. The membrane area of the hollow fiber membranes as referred to herein is a membrane area, as averaged, of a portion of the plurality of hollow fiber membranes excluding the opposite ends fixed to the body case (or the sealing resin).
4,992 hollow fiber membranes were bundled together. A ratio (L/D) of the effective length (L) of the hollow fiber membranes and an average inner diameter (D) of the body of the body case was set to 6.96 (in average value). The hollow fiber membranes had a lumen having a cross-sectional area set to 157 mm2 (in average value). A proportion of the hollow fiber membranes (the hollow fiber membrane bundle) occupying the volume of the body case (i.e., a fiber density ratio) was set to 47%. The present comparative example's blood purifier has a so-called elongate shape.
In the present comparative example, a pressure loss caused between the blood inlet side of the hollow fiber membranes and the blood outlet side of the hollow fiber membranes (in average value) was set to 105 mmHg for a comparative example 1, 50 mmHg for a comparative example 2, and 32 mmHg for a comparative example 3. As a subject to the experiment, 1 L of blood of a swine was prepared. This blood had an HCT adjusted to 30% and a TP adjusted to 6.5 g/dL.
With reference to
In the above system in which, as counted from a time point at which filtration is started, after a period of 60 minutes has elapsed, a 20-minute circulation with a low filtration flow rate and a 60-minute circulation with a filtration flow rate increased by a fixed amount, as described above, are repeated, a value (in average value) of the TMP when the blood flow rate was set to 50 mL/min, a value (in average value) of the TMP when the blood flow rate was set to 100 mL/min, and a value (in average value) of the TMP when the blood flow rate was set to 200 mL/min were measured.
With reference to
With reference to
Generally, permeation flux Jv, as seen in the longitudinal direction of hollow fiber membrane 20, presents a larger value on the side of an inlet 21 of blood and a smaller value on the side of an outlet 22 of blood. Maximum filtration flux Jvmax will be a value equal to a value of permeation flux Jv that is obtained at a portion most upstream in the longitudinal direction of hollow fiber membrane 20, for example. The side of inlet 21 of blood is a site filtrating more blood than a downstream side (i.e., the side of outlet 22 of blood), and accordingly, a large load acts on the side of inlet 21 of blood. Noting maximum filtration flux Jvmax is effective in calculating the hollow fiber membrane's period of endurance etc.
When the hollow fiber membrane's filtration coefficient is represented as Lp [μm/(s·mmHg)], an AF differential pressure when a period of time of 60 minutes has elapsed after a flow rate was changed is represented as ΔPAF [mmHg], and a colloid osmotic pressure is represented as Δπ [mmHg], then maximum filtration flux Jvmax [μm/s] can also be obtained by the expression of Jvmax={Lp×(ΔPAF−Δπ)} as a theoretical maximum permeation flux for that pressure. In this exemplary experiment, the value of filtration coefficient Lp [μm/(s·mmHg)] was corrected by the viscosity of plasma and water and set to 0.0381 for the example and 0.0637 for the comparative example, and the value of colloid osmotic pressure Δπ [mmHg] was set to 22.88.
An average value of permeation flux Jv is indicated by an average filtration flux Jvavg. When the filtration flow rate is represented as QF [μm3/s] and the hollow fiber membranes' membrane area is represented as S [μm2], average filtration flux Jvavg [μm/s] can also be obtained by the expression of Jvavg={QF/S}. In the present exemplary experiment, filtration flow rate QF [μm3/s] had a value varied from 2.5% to 25% of the blood flow rate, and for example for a blood flow rate of 200 mL/min, it was set to 8.3×1010 to 8.3×1011, and membrane area S [μm2] had a value set to 5×1011.
Regarding the blood purifier having the configuration of the comparative example described above, a result when the blood flow rate of the blood purifier is set to 200 mL/min is plotted in the figure as comparative example 1. A result when the blood flow rate of the blood purifier is set to 100 mL/min is plotted in the figure as comparative example 2. A result when the blood flow rate of the blood purifier is set to 50 mL/min is plotted in the figure as comparative example 3.
For each plot, the leftmost indication in the figure corresponds to point P0 in
Regarding the blood purifier having the configuration of the comparative example described above, a result when the blood flow rate of the blood purifier is set to 200 mL/min is plotted in the figure as comparative example 1. A result when the blood flow rate of the blood purifier is set to 100 mL/min is plotted in the figure as comparative example 2. A result when the blood flow rate of the blood purifier is set to 50 mL/min is plotted in the figure as comparative example 3.
For each plot, the leftmost indication in the figure corresponds to a TMP change rate calculated from points P0 and P1 in
It can be seen that the plots of examples 1-3 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 or in a vicinity thereof. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvavg increases and the TMP change rate also increases.
It can be seen that the plots of comparative examples 1-3 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 to 1.2. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvavg increases and the TMP change rate increases more steeply than in examples 1-3.
In comparing the blood purifier of the example with the blood purifier of the comparative example, when they are compared from a viewpoint of a relationship between Jvavg and the TMP change rate, for example the transition of Example 2 and the transition of comparative example 1 present similar trends and Example 3 transitions between comparative example 2 and comparative example 3, and accordingly it can be said that they can be compared more easily from a viewpoint of a “relationship between Jvmax/uB and the TMP change rate” as described below, which will be described in detail later.
A linear velocity of blood which is supplied into the hollow fiber membrane and flows in the hollow fiber membrane is represented as uB [μm/s] (see
Regarding the blood purifier having the configuration of the comparative example described above, a result when the blood flow rate of the blood purifier is set to 200 mL/min is plotted in the figure as comparative example 1. A result when the blood flow rate of the blood purifier is set to 100 mL/min is plotted in the figure as comparative example 2. A result when the blood flow rate of the blood purifier is set to 50 mL/min is plotted in the figure as comparative example 3.
For each plot, the leftmost indication in the figure corresponds to a TMP change rate calculated from points P0 and P1 in
It can be seen that the plots of examples 1-3 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 or in a vicinity thereof. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvavg/uB increases and the TMP change rate also increases.
It can be seen that the plots of comparative examples 1-3 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 or in a vicinity thereof. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvavg/uB increases and the TMP change rate also increases.
In comparing the blood purifier of the example with the blood purifier of the comparative example, when they are compared from a viewpoint of a relationship between Jvavg/uB and the TMP change rate, for example for Jvavg/uB in a range of 0.005-0.01 the transitions of Examples 2 and 3 and the transitions of comparative examples 1 and 2 present similar trends and for Jvavg/uB in a range of 0.01-0.015 the transition of Example 3 and the transition of comparative example 2 present similar trends etc., and accordingly, it can be said that they can be compared more easily from a viewpoint of a “relationship between Jvmax/uB and the TMP change rate” as described below, which will be described in detail later.
Regarding the blood purifier having the configuration of the comparative example described above, a result when the blood flow rate of the blood purifier is set to 200 mL/min is plotted in the figure as comparative example 1. A result when the blood flow rate of the blood purifier is set to 100 mL/min is plotted in the figure as comparative example 2. A result when the blood flow rate of the blood purifier is set to 50 mL/min is plotted in the figure as comparative example 3.
For each plot, the leftmost indication in the figure corresponds to a TMP change rate calculated from points P0 and P1 in
It can be seen that the plots of examples 1-3 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 or in a vicinity thereof. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvmax/wall shear rate increases and the TMP change rate also increases.
It can be seen that the plots of comparative examples 1-3 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 or in a vicinity thereof. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvmax/wall shear rate increases and the TMP change rate also increases.
In comparing the blood purifier of the example with the blood purifier of the comparative example, when they are compared from a viewpoint of a relationship between Jvmax/wall shear rate and the TMP change rate, the transitions of Examples 1-3 and the transitions of comparative examples 1-3 present similar trends, and accordingly, it can be said that they can be compared more easily from a viewpoint of a “relationship between Jvmax/uB and the TMP change rate” as described below, which will be described in detail later.
For each plot, the leftmost indication in the figure corresponds to a TMP change rate calculated from points P0 and P1 in
It can be seen that the plots of examples 1-3 and that of comparative example 1 each have a leftward indication presenting a TMP change rate assuming a value of 1.0 or in a vicinity thereof. It can be seen that as each plot proceeds rightward (or as the filtration flow rate is increased by a fixed amount), Jvmax increases and the TMP change rate also increases.
In comparing the blood purifier of the example with the blood purifier of the comparative example, when they are compared from a viewpoint of a relationship between Jvmax and the TMP change rate, the transitions of Examples 1-3 and the transition of comparative example 1 present similar trends. It is believed that determination of increase of the TMP is influenced by Jvmax. Regarding Example 1 (when a flow rate of blood into the blood purifier is 200 mL/min), when Jvmax exceeds 2 μm/s, an increase of the TMP is observed, and accordingly, it is believed that a value smaller than that allows use for a long period of time.
Regarding the blood purifier having the configuration of the comparative example described above, a result when the blood flow rate of the blood purifier is set to 200 mL/min is plotted in the figure as comparative example 1. A result when the blood flow rate of the blood purifier is set to 100 mL/min is plotted in
For each plot, the leftmost indication in the figure corresponds to a TMP change rate calculated from points P0 and P1 in
With reference to
As has been set forth above, regarding examples 1-3, a filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes is set to 20 mL/m2 or more and 35 mL/m2 or less. Thus, it can be said that when a filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes is 20 mL/m2 or more and 35 mL/m2 or less and Jvmax/uB has a value of 0.00015 or more and 0.0006 or less, satisfied is a condition in which the TMP change rate has a value of 0.95 or more and 1.05 or less, and thereby, even when blood purifier 10 is used for a long period of time the TMP change rate will assume a value of 0.95 or more and 1.05 or less, and the blood purifier has less fouling and can be stably used.
More preferably it is recommendable that when a filling blood volume into the hollow fiber membranes per unit membrane area of the hollow fiber membranes is 20 mL/m2 or more and 30 mL/m2 or less and Jvmax/uB has a value of 0.00015 or more and 0.0006 or less, satisfied be a condition in which the TMP change rate has a value of 0.95 or more and 1.05 or less. A smaller filling blood volume into the hollow fiber membrane (in other words, a hollow fiber membrane having a smaller inner diameter) is more advantageous in hemofiltration.
From the above exemplary experiment, it can be seen that blood purifier 10 having a small filling blood volume per membrane area and having a so-called short and thick shape as described above not only allows miniaturization and enhanced portability but can also exhibit high performance when it is set under a prescribed condition and thus used.
While embodiments and examples based on the present invention have thus been described, it should be understood that the embodiments and examples disclosed herein are illustrative and non-restrictive in any respect. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the meaning and scope equivalent to the terms of the claims.
10: blood purifier; 10C: body case; 10H: hollow fiber membrane bundle; 11, 12: blood channel; 13, 14: dialysing fluid channel; 15, 16: roller pump; 17, 18, 19: monitoring pump; 20: hollow fiber membrane; 21: inlet; 22: outlet; 100: blood purification system.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2014/068213 | 7/8/2014 | WO | 00 |