This invention relates to medical devices, and more particularly to a blood sampling device which is capable of drawing the blood sample in a sealed configuration.
Lancing devices are known in the medical health-care products industry for piercing the skin to produce blood for analysis. Biochemical analysis of blood samples may be used as a diagnostic tool for determining clinical information. Many point-of-care tests are performed directly on capillary whole blood, which is typically obtained by making a small incision in the fingertip, creating a wound, which generates a blood droplet on the surface of the skin.
Conventional methods of lancing may include piercing or slicing the skin with a needle or razor. These methods may utilize lancing devices that contain a multitude of spring, cam and mass actuators to drive the lancet. Some devices may not integrate lancing and blood sample collection, but require the user to transfer the blood sample to the analysis device by exposing the lanced finger to air. Other devices lance the skin and collect the blood sample, but require suctioning ambient air along with the blood sample. Therefore, a method using the conventional device may lance the skin, but upon retraction may require the user to transport the blood sample from the finger to some type of blood analysis device or to suction the blood sample from the finger's surface. Accordingly, conventional methods of blood sampling may require several steps. Initially, the paraphernalia is assembled by loading a sterile lancet, loading a test strip, and arming the launcher. The intended target skin area, such as finger, is placed against the lancet launcher. The launcher is then activated using the other hand. Finally, the launcher is set aside and the lanced finger is placed against a test strip.
The problem with these conventional devices is that the blood sample may become exposed to ambient air and thus may contaminate the sample with ambient air including oxygen, nitrogen, other environmental gases. This may substantially compromise accurate gas analysis of the blood sample when conducting in vitro testing of the blood.
Embodiments of the present invention relate to medical devices and to methods for obtaining blood for chemical analysis. More particularly, embodiments of the invention relate to devices and methods for piercing the skin (lancing) and obtaining a blood sample within a sealed configuration.
In one aspect of the invention, a blood sample is acquired from a patient in a sealed configuration using a blood sampling device. The sampling device includes an assembly having a driver, a lancet, and a blood reservoir, and a pad. The pad has a proximal side and a distal side. The proximal side conforms to the shape of a skin area, and the distal side attaches to the sampling assembly. Thus, the pad and the sampling assembly are configured to provide a sealed configuration around the skin area for transferring blood from the skin area to the reservoir.
In another aspect of the invention, a blood sample is acquired from a patient in a sealed configuration using a method which integrates lancing and sample collection and allowing for blood gas testing from the sample. This may be achieved by positioning a skin area to be lanced on a pad, and applying a force on the skin area to allow the pad to conform to the shape of the skin area, such that the pad forms a sealed configuration around the skin area. The skin area is then lanced through the pad. A blood sample is drawn from the lanced skin area through the pad to collect the blood sample in a sealed configuration without substantially exposing the blood sample to ambient air.
In a further aspect of the invention, a blood sample is automatically acquired from a patient in a sealed configuration using a computer readable medium containing executable instructions which when executed in a processing system, performs lancing operation and obtains a blood sample from a finger tip in a sealed configuration. The executable instructions include sensing to confirm that a sealed configuration around a skin area has been formed to transfer blood from the skin area into a blood reservoir without exposing the blood to ambient air, lancing the skin area within the sealed configuration, and transferring the blood sample from the lanced skin area in the sealed configuration.
In recognition of the above-stated problems associated with conventional blood sampling devices, embodiments for using a blood sampling device that pierces the skin (lancing) and obtains a blood sample without substantial exposure to ambient air to enable gas analysis of the sample are described. In particular, the blood sampling device is coupled to the skin area (e.g. finger) through a pad to form a sealed or closed configuration. Hence, the pad applied to the skin area seals the area to be lanced so that the skin area is not substantially exposed to ambient air. The pad also provides a seal for the blood sample being transferred from the lanced skin area to a blood reservoir in the sampling device. Furthermore, the blood sampling device is configured as an integrated device that integrates the lancing and blood sample collection so that the device may capture and transport the capillary blood from the wound created by a lancet to a blood reservoir without exposure to ambient air. A valve system and driver in the sampling device may allow the user to drive the lancet on the compression of the driver (e.g. diaphragm) and suction the blood through the pad on the depression of the driver. Consequently, for purposes of illustration and not for purposes of limitation, the exemplary embodiments of the invention are described in a manner consistent with such use, though clearly the invention is not so limited.
A sampling assembly 100 coupled to a finger pad 150 in a sealed configuration in accordance with an embodiment of the invention is shown in
In
In one embodiment, the finger pad 150 may include an elastomer. Furthermore, the elastomer 150 may be formed of relatively soft durometer type compounds, such as silicone rubber, and may be shaped to contour the finger 156. The elastomer 150 provides an air seal between the finger 156 and the opening 120, which leads into the reservoir 102. Thus, in some embodiments, the durometer range of the finger pad/elastomer 150 may be between Shore 20A and 40A, specifically, the range may be between Shore 20A and 30A. In other embodiments, the durometer of the finger pad/elastomer may be 5A to 15A. Typical products known in the art include “Bumpon” or adhesive foam (manufactured by 3M), “Sorbothane” (manufactured by Trelleborg AB), and other gels commonly used in orthotics.
The lancet 110 may include a proximal end 112 and a distal end 114. The distal end 114 of the lancet 110 is coupled to a driver, such as a diaphragm 106. Hence, the diaphragm 106 drives the lancet 110. In one embodiment, the proximal end 112 of the lancet 110 is perpendicular to the bottom surface 116 of the sampling assembly 100, and is concentric with the opening 120. Moreover, the proximal end 112 of the lancet 110, which is used to puncture the skin, is configured such that the proximal end 112 is prevented from protruding out of the bottom surface 116 prior to the lancing operation. In one embodiment, the diameter of the lancet 110 is substantially the same as the diameter of the opening 120 to provide smooth sliding movement for the lancet 110 through the opening 120.
In the illustrated embodiment of
The diaphragm 106 is shaped to deflect downwardly during actuation and is volumetrically dimensioned to contain at its fully retracted position a blood sample volume appropriate for test and/or analysis. In one embodiment, an appropriate blood sample volume is approximately 1–5 microliters.
The diaphragm 106 as shown in
In an alternative embodiment of actuation, the diaphragm 106 can be stretched proximally analogous to cocking a spring. The stretched diaphragm 106 is then released with the energy stored in the stretched diaphragm 106 converted to kinetic energy driving the lancet 110 into the finger. Once the lancet 110 has reached the maximum displacement (governed by the extent of the stretched diaphragm 106), the lancet 110 returns to the initial rest position with an equal and opposite energy. This restoring force of the diaphragm 106 retracts the lancet 110 from the finger.
Upon completion of the lancing operation, the lancet 110 is withdrawn from the check valve 122. Thus, the lancet 110 can no longer penetrate the check valve 122. Therefore, this embodiment of the sampling device 100 allows only a single use of the device for a safety precaution. The sampling device 100 may be manufactured as a simple molded device with relatively compact dimensions, making the material and construction inexpensive and therefore suitable for a disposable device. Furthermore, the flat design profile and ergonomic nature of the device lends itself to handheld point-of-care devices.
In some embodiments, a sensor (not shown) may be located on a surface, e.g. the surface 116, of the sampling assembly 100. The sensor may then be activated when the finger 156 is positioned on the proximal side 152 of the finger pad 150 such that there is substantially no air gap between the pad 150 and the finger 156. Thus, the sensor may be used to indicate that the configuration of the sampling assembly 100 and the finger pad 150 forms a closed system around the lanced area of the finger 156, and is ready to extract blood sample from the lanced area. An example of such a sensor is the piezoelectric design as described in a U.S. Patent Application (Inventors: Freeman, et al., entitled “TISSUE PENETRATION DEVICE”, Ser. No. 10/127,395) and assigned to the same assignee.
In the illustrated embodiment of
Once the skin area has been punctured, actuation of the diaphragm 106 is reversed, at 306, and the lancet 110 is retracted into the chamber 104. Movement of the diaphragm 106 in the reverse direction creates negative pressure within the reservoir 102 and suctions the blood sample from the lanced skin area of the finger 156 in a sealed configuration. Once the appropriate volume of blood has been suctioned from the lanced area into the reservoir 102, the check valve 122 is closed, at 308. The blood sample may then be siphoned through the check valve 124 to the blood outflow conduit 130, at 310, for blood gas analysis.
The diaphragm 106 may be actuated using piezoelectric, electromagnetic, vacuum/pressure (e.g. pneumatic), or any other suitable method. The actuation of the diaphragm 106 drives the proximal end 112 of the lancet 110 to puncture the finger 156 through the finger pad 150. Piezoelectric actuation drives the lancet 110 using vibrations on the diaphragm 106. Electromagnetic actuation drives the lancet 110 using a magnetic field as described in a U.S. Patent Application (Inventors: Freeman et al., entitled “TISSUE PENETRATION DEVICE”, Ser. No. 10/127,395) and assigned to the same assignee. The vacuum actuation drives the lancet 110 using back pressure to diaphragm 106 to advance the lancet 110 and suction behind diaphragm 106 to retract the lancet 110.
A block diagram of a processor-based system 400 which may execute codes residing on the computer readable medium 402 is shown in
The computer readable medium 402 may be a fixed medium such as read-only memory (ROM). A read/write drive 406 in the computer 404 reads the code on the computer readable medium 402. The code is then executed in the processor 408. The processor 408 may access the computer main memory 410 to store or retrieve data.
There has been disclosed herein embodiments for lancing and obtaining a blood sample in a substantially sealed configuration to enable substantially accurate gas analysis of the sample. The lancing operation may utilize a sampling device comprising an elastomer disposed between a sampling assembly and a target skin area.
While specific embodiments of the invention have been illustrated and described, such descriptions have been for purposes of illustration only and not by way of limitation. For example, even though the illustrated embodiments show a finger pad, it is understood that this may include any pad that substantially prevents exposure of the blood sample to ambient air during lancing operation of a skin area. Accordingly, throughout this detailed description, for the purposes of explanation, numerous specific details were set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art that the embodiments may be practiced without some of these specific details. For example, although the illustrated embodiment of
This application is related to and claims priority from U.S. Provisional Patent Application entitled “Blood Sampling device with Diaphragm Actuated Lancet”, to Drbal et al., filed Jun. 12, 2001, Ser. No. 60/298,061.
Number | Name | Date | Kind |
---|---|---|---|
2714890 | Vang | Aug 1955 | A |
3086288 | Balamuth et al. | Apr 1963 | A |
3208452 | Stern | Sep 1965 | A |
3673475 | Britton, Jr. | Jun 1972 | A |
3832776 | Sawyer | Sep 1974 | A |
4077406 | Sandhage et al. | Mar 1978 | A |
4154228 | Feldstein et al. | May 1979 | A |
4203446 | Höfert et al. | May 1980 | A |
4223674 | Fluent et al. | Sep 1980 | A |
4230118 | Holman et al. | Oct 1980 | A |
4356826 | Kubota | Nov 1982 | A |
4449529 | Burns et al. | May 1984 | A |
4462405 | Ehrlich | Jul 1984 | A |
4518384 | Tarello et al. | May 1985 | A |
4535773 | Yoon | Aug 1985 | A |
4553541 | Burns | Nov 1985 | A |
4627445 | Garcia et al. | Dec 1986 | A |
4637403 | Garcia et al. | Jan 1987 | A |
4653513 | Dombrowski | Mar 1987 | A |
4750489 | Berkman et al. | Jun 1988 | A |
4787398 | Garcia et al. | Nov 1988 | A |
4794926 | Munsch et al. | Jan 1989 | A |
4823806 | Bajada | Apr 1989 | A |
4924879 | O'Brien | May 1990 | A |
4983178 | Schnell | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5029583 | Meserol et al. | Jul 1991 | A |
5035704 | Lambert et al. | Jul 1991 | A |
5047044 | Smith et al. | Sep 1991 | A |
5097810 | Fishman et al. | Mar 1992 | A |
5145565 | Kater et al. | Sep 1992 | A |
5152775 | Ruppert | Oct 1992 | A |
5188118 | Terwilliger | Feb 1993 | A |
5189751 | Giuliani et al. | Mar 1993 | A |
5222504 | Solomon | Jun 1993 | A |
5231993 | Haber et al. | Aug 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5318583 | Rabenau et al. | Jun 1994 | A |
5320607 | Ishibashi | Jun 1994 | A |
5320808 | Holen et al. | Jun 1994 | A |
5368047 | Suzuki et al. | Nov 1994 | A |
5395387 | Burns | Mar 1995 | A |
5415169 | Siczek et al. | May 1995 | A |
5472427 | Rammler | Dec 1995 | A |
5474084 | Cunniff | Dec 1995 | A |
5510266 | Bonner et al. | Apr 1996 | A |
5514152 | Smith | May 1996 | A |
5529074 | Greenfield | Jun 1996 | A |
5575403 | Charlton et al. | Nov 1996 | A |
5630986 | Charlton et al. | May 1997 | A |
5632410 | Moulton et al. | May 1997 | A |
5662127 | De Vaughn | Sep 1997 | A |
5700695 | Yassinzadeh et al. | Dec 1997 | A |
5714390 | Hallowitz et al. | Feb 1998 | A |
5720924 | Eikmeier et al. | Feb 1998 | A |
5738244 | Charlton et al. | Apr 1998 | A |
5758643 | Wong et al. | Jun 1998 | A |
5776157 | Thorne et al. | Jul 1998 | A |
5788651 | Weilandt | Aug 1998 | A |
5801057 | Smart et al. | Sep 1998 | A |
5810199 | Charlton et al. | Sep 1998 | A |
5823973 | Racchini et al. | Oct 1998 | A |
5830219 | Bird et al. | Nov 1998 | A |
5846490 | Yokota et al. | Dec 1998 | A |
5854074 | Charlton et al. | Dec 1998 | A |
5855801 | Lin et al. | Jan 1999 | A |
5863800 | Eikmeier et al. | Jan 1999 | A |
5871494 | Simons et al. | Feb 1999 | A |
5879311 | Duchon et al. | Mar 1999 | A |
5880829 | Kauhaniemi et al. | Mar 1999 | A |
5885211 | Eppstein et al. | Mar 1999 | A |
5891053 | Sesekura | Apr 1999 | A |
5916229 | Evans | Jun 1999 | A |
5938679 | Freeman et al. | Aug 1999 | A |
5951582 | Thorne et al. | Sep 1999 | A |
5968063 | Chu et al. | Oct 1999 | A |
5971941 | Simons et al. | Oct 1999 | A |
5997561 | Böcker et al. | Dec 1999 | A |
6027459 | Shain et al. | Feb 2000 | A |
6036924 | Simons et al. | Mar 2000 | A |
6048352 | Douglas et al. | Apr 2000 | A |
6071294 | Simons et al. | Jun 2000 | A |
6093156 | Cunningham et al. | Jul 2000 | A |
6117630 | Reber et al. | Sep 2000 | A |
6120462 | Hibner et al. | Sep 2000 | A |
6132449 | Lum et al. | Oct 2000 | A |
6136013 | Marshall et al. | Oct 2000 | A |
6139562 | Mauze et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6152942 | Brenneman et al. | Nov 2000 | A |
6155992 | Henning et al. | Dec 2000 | A |
6156051 | Schraga | Dec 2000 | A |
6159424 | Kauhaniemi et al. | Dec 2000 | A |
6171325 | Mauze et al. | Jan 2001 | B1 |
6176865 | Mauze et al. | Jan 2001 | B1 |
6183489 | Douglas et al. | Feb 2001 | B1 |
6193673 | Viola et al. | Feb 2001 | B1 |
6203504 | Latterell et al. | Mar 2001 | B1 |
6206841 | Cunningham et al. | Mar 2001 | B1 |
6210420 | Mauze et al. | Apr 2001 | B1 |
6210421 | Böcker et al. | Apr 2001 | B1 |
6228100 | Schraga | May 2001 | B1 |
6231531 | Lum et al. | May 2001 | B1 |
6261241 | Burbank et al. | Jul 2001 | B1 |
6261245 | Kawai et al. | Jul 2001 | B1 |
6283926 | Cunningham et al. | Sep 2001 | B1 |
6285454 | Douglas et al. | Sep 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6306152 | Verdonk et al. | Oct 2001 | B1 |
6315738 | Nishikawa et al. | Nov 2001 | B1 |
6319210 | Douglas et al. | Nov 2001 | B1 |
6332871 | Douglas et al. | Dec 2001 | B1 |
6352514 | Douglas et al. | Mar 2002 | B1 |
6364889 | Kheiri et al. | Apr 2002 | B1 |
6364890 | Lum et al. | Apr 2002 | B1 |
6375627 | Mauze et al. | Apr 2002 | B1 |
6379317 | Kintzig et al. | Apr 2002 | B1 |
6379969 | Mauze et al. | Apr 2002 | B1 |
6391005 | Lum et al. | May 2002 | B1 |
6402701 | Kaplan et al. | Jun 2002 | B1 |
6402704 | McMorrow | Jun 2002 | B1 |
6409740 | Kuhr et al. | Jun 2002 | B1 |
6461496 | Feldman et al. | Oct 2002 | B1 |
6472220 | Simons et al. | Oct 2002 | B1 |
6485439 | Roe et al. | Nov 2002 | B1 |
6488891 | Mason et al. | Dec 2002 | B1 |
6491709 | Sharma et al. | Dec 2002 | B1 |
6497845 | Sacherer | Dec 2002 | B1 |
6503210 | Hirao et al. | Jan 2003 | B1 |
6506575 | Knappe et al. | Jan 2003 | B1 |
6530892 | Kelly | Mar 2003 | B1 |
20010031931 | Cunningham et al. | Oct 2001 | A1 |
20020002344 | Douglas et al. | Jan 2002 | A1 |
20020004196 | Whitson | Jan 2002 | A1 |
20020052618 | Haar et al. | May 2002 | A1 |
20020082543 | Park et al. | Jun 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020169394 | Eppstein et al. | Nov 2002 | A1 |
20030083685 | Freeman et al. | May 2003 | A1 |
20030191376 | Samuels et al. | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
WO 0100090 | Jan 2001 | WO |
WO 0166010 | Sep 2001 | WO |
WO 02056769 | Jul 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030088191 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
60298061 | Jun 2001 | US |