The present invention relates generally to the field of medical devices and, more particularly, to medical devices for generating samples of blood from humans or other animals.
Medical fluid-sampling devices such as lancets and lancing devices are commonly used for penetrating the skin of a human or animal subject at a sampling site to obtain a sample of blood or other body fluid for medical testing. Such blood sampling is commonly done on neonates and adults for blood-typing, glucose-testing, etc. Known blood-sampling devices commonly include a housing containing a drive mechanism and a trigger/release mechanism for actuating the drive mechanism. A lancet is typically propelled by the drive mechanism from a retracted position shielded within the housing to an extended position where a sharp needle or blade tip of the lancet projects from the housing to penetrate the subject's skin at the lancing site. Common problems with conventional blood-sampling devices include vibrations that can cause increased pain, complicated designs that result in high manufacturing costs, etc.
Accordingly, needs exist for improvements to blood-sampling devices. It is to the provision of improved blood-sampling devices that the present invention is primarily directed.
Generally described, the invention relates to a medical device for penetrating skin to generate a sample of fluid such as blood. The device includes a housing having a blade opening, a blade having a sharp tip that travels along a travel path, a dual-link drive mechanism that drives the blade along its travel path, and a trigger that actuates the drive mechanism to propel the blade tip along its travel path. The blade tip travels along its travel path from a retracted position shielded within the housing to an extended position extending through the blade opening to precisely penetrate the skin.
In one aspect, the dual-link drive mechanism can include a blade arm, a rotary drive arm, and a cam-and-follower guide mechanism. The blade arm and the drive arm are the two links, and no other drive link is needed to produce the precision blade-tip travel path. The blade arm is coupled to the blade. The rotary drive arm is pivotally coupled to and drives the blade arm. And the cam-and-follower mechanism guides the movement of the blade arm. The drive arm and the cam-and-follower mechanism together work to drive and guide the blade arm to propel the blade tip along its travel path in a rotational and translating motion. The cam-and-follower mechanism includes a cam surface and a cam follower that is guided by the cam surface so that rotary motion of the rotary drive arm is converted to the rotational and translating motion of the blade tip. As the drive arm rotationally drives the blade arm, the blade arm rotates about the cam follower as the cam follower is translationally guided along the cam surface, thereby converting the rotary motion of the rotary drive arm to the rotational and translating motion of the blade tip.
In a typical commercial embodiment, the cam surfaced is defined by a channel formed in the housing, and the cam follower is provided by a pin on the blade arm that slides within the channel. The cam follower is intermediately positioned on the blade arm between the blade and pivotal coupling to the drive arm.
In another aspect, the cam surface can be generally vertical (i.e., perpendicular to the skin) and curved so that the blade travel path is non-linear. For example, the curved cam surface can be arranged so that the blade travel path is generally triangular and has a slightly curved descent segment and a slightly curved ascent segment that is steeper than the descent segment. The descent segment occurs as the blade tip travels from the retracted position to the extended position, and the ascent segment occurs as the blade tip travels from the extended position to a second retracted position again shielded within the housing.
In addition, the drive mechanism can also include a drive spring that biases the rotary drive arm in a drive direction and a catch surface that is engaged by the trigger to retain the drive arm in a ready position. And the sampling device can also include a removable sterility cap with a shroud portion that fits over the blade tip when it's in the retracted position. The trigger can have a blocked surface and the sterility cap can have a blocking member that contacts the trigger blocked surface to prevent the trigger from being inadvertently actuated.
These and other aspects, features, and advantages of the invention will be understood with reference to the drawing figures and detailed description herein, and will be realized by means of the various elements and combinations particularly pointed out in the appended claims. It is to be understood that both the foregoing general description and the following brief description of the drawings and detailed description of the invention are exemplary and explanatory of example embodiments of the invention, and are not restrictive of the invention, as claimed.
The present invention may be understood more readily by reference to the following detailed description taken in connection with the accompanying drawing figures, which form a part of this disclosure. It is to be understood that this invention is not limited to the specific devices, methods, conditions, or parameters described and/or shown herein, and that the terminology used herein is for the purpose of describing particular embodiments by way of example only and is not intended to be unnecessarily limiting of the claimed invention. Any and all patents and other publications identified in this specification are incorporated by reference as though fully set forth herein.
Also, as used in the specification including the appended claims, the singular forms “a,” “an,” and “the” include the plural, and reference to a particular numerical value includes at least that particular value, unless the context clearly dictates otherwise. Ranges may be expressed herein as from “about” or “approximately” one particular value and/or to “about” or “approximately” another particular value. When such a range is expressed, another embodiment includes from the one particular value and/or to the other particular value. Similarly, when values are expressed as approximations, by use of the antecedent “about,” it will be understood that the particular value forms another embodiment.
With reference now to the drawing figures,
Referring primarily to
The blade 14 has a sharp edge with a tip 26. The blade tip 26 moves through the sampling sequence from a first retracted position, to an extended position, and to a second retracted position. In the first retracted position (see
The dual-link drive mechanism 16 includes a blade link arm 30, a rotary drive link arm 32, a drive spring 34, and a cam-and-follower guide mechanism 35. The blade 14 is fixedly attached to the blade arm 30. For example, the blade 14 can be fixedly attached to the blade arm 30 at its distal end by conventional fasteners such as pins or screws or by over-molding. Alternatively, the blade 14 and the blade arm 30 can be integrally formed as a single piece, or in multi-use embodiments the blade 14 can be replaceable on the blade arm 30. The blade arm 30 is pivotally coupled to and driven by the rotary drive arm 32. For example, a proximal end of the blade arm 30 can be pivotally coupled to a distal end of the rotary drive arm 32 by a conventional pivotal fastener such as a non-binding pin received in an aperture or recess. Alternatively, the blade arm 30 can be replaceable on the rotary drive arm 32 in multi-use embodiments. The rotary drive arm 32 is rotationally mounted to the housing 12. For example, the rotary drive arm 32 can be rotationally mounted to the housing 12 by a non-binding pin 36 that extends laterally from the drive arm and is received in a recess in the internal surface of the right or left sidewall 20 and 22 of the housing. In an alternative embodiment, the rotary drive arm can be rotationally mounted to the housing by two non-binding pins that extend laterally from opposite sides of the drive arm and are received in two recesses in the internal surfaces of the right and left sidewalls of the housing. The drive spring 34 biases the rotary drive arm 32 in a rotational drive direction to drive the blade arm 30 through the sampling sequence. For example, the drive spring 34 can be provided by a torsion spring mounted about the mounting pin(s) 36 for the rotary drive arm 32, with one end engaging and biasing a drive pin or other surface 38 on the rotary drive arm in the rotational drive direction and with the other end engaging and biasing against the housing 12. Alternatively, the drive spring 34 can be provided by a leaf spring, a compression coil spring, a tension coil spring, an elastic member, or another conventional spring element selected to drive the rotary drive arm in the rotational drive direction.
The cam-and-follower guide mechanism 35 of the dual-link drive mechanism 16 includes a cam surface 40 and a cam follower 42. The cam follower 42 is guided by the cam surface 40 so that the rotary motion of the rotary drive arm 32 is converted to a combined rotary and translating “slicing” motion of the blade 14. For example, the cam surface 40 can be defined by a sidewall of a channel 44 formed (e.g., by a recess in the housing or by walls extending from the housing) into the left sidewall 22 of the housing 12. (Note that in
Referring additionally to
The trigger mechanism 18 is operable to actuate the dual-link drive mechanism 16 to propel the blade 14 through the sampling sequence. The trigger 18 includes a main body 52 defining an external actuator portion 54 and a catch surface 56. The actuator 54 extends through an actuator opening 58 in the housing 12 so that it can be moved by the user from a ready position to an actuated position. The catch surface 56 engages a cooperating catch 60 defined by the rotary drive arm 32 to retain the rotary drive arm in a ready/charged position when the actuator 54 is in the ready position. And the trigger catch surface 56 disengages from the drive catch 60 when the actuator 54 is moved to the actuated position, thereby releasing the rotary drive arm 32 to proceed with the sampling sequence. In addition, the trigger mechanism 18 includes a trigger spring 62 that biases the actuator 54 toward the ready position. In the depicted embodiment, for example, the actuator 54 is a button that is pushed by the user from the ready to actuated positions and the trigger spring 62 is provided by a leaf spring that is cantilevered from the trigger body 52 and biases against an internal surface of the housing 12. In other embodiments, the actuator is pulled or rotated from the ready to actuated positions and/or the trigger spring is provided by a tension or compression coil spring or another resilient or elastic member. Furthermore, the depicted embodiment includes mechanical stops 63, 64, 65 on the trigger body 52 and the housing 12 for retaining the trigger 18 from being pulled out of the housing 12 when in the ready position and for limiting the trigger from being moved past the actuated position. And mechanical stops 66 are also provided on the trigger body 52 and the housing 12 for retaining the trigger 18 in the actuated position after use. (Note that in
In addition, the blood-sampling device 10 can be provided with a sterility cap that protects the blade 14 prior to use. In the depicted embodiment, for example, the blood-sampling device 10 includes a sterility cap 68 having a shroud portion 70 and an external actuator portion 72. The sterility cap shroud 70 is fitted onto and covers the blade tip 26, and extends through the blade opening 28 of the housing 12. The actuator portion 72 is graspable by the user to pull the shroud 70 off the blade 14. In the depicted embodiment, for example, the actuator portion 72 is in the form of a finger loop. In addition, the sterility cap 68 can include a blocking member 74 that contacts a blocked surface (e.g., stop surface 63) of the trigger 18 when the sterility cap 68 is mounted on the blade 14, with the contacting interference preventing the trigger from being fired. When the sterility cap 68 is removed from the blade 14 by the user, the blocking member 74 is removed from interference with the blocked surface 76 of the trigger 18, thereby permitting the trigger to be fired.
The blood-sampling device 10 can be manufactured using materials and techniques that are well-known in the art. The housing 12, the trigger 18, the blade arm 30, the rotary drive arm 32, and the cam-and-follower mechanism 35 can be made of a hard plastic material using conventional fabrication techniques such as molding. The blade 14 and the drive spring 34 can be made of a metal (e.g., steel) or a hard plastic. To assemble the device 10, the rotary drive arm 32 and the drive spring 34 can be mounted in place, the rotary drive arm can be rotated against the force of the drive spring to the ready position, and then the trigger 18 can be mounted in the ready position. The rotary drive arm 32 can be so rotated for example by an ALLEN wrench that fits into a mating recess in the rotary drive arm.
Having described structural details of the blood-sampling device 10, its operation and use will now be described.
The sampling sequence begins by the user removing the sterility cap 68 from the blade 14.
After the sterility cap 68 has been removed, the user depresses the actuator 54 of the trigger 18. This causes the trigger 18 to move from the ready position to the actuated position.
To use the blood-sampling device 10, a sampling site is selected and the blade opening 28 of the housing 12 is placed against the skin at the selected site. Then the actuator button 54 is depressed to start the sampling sequence. At the conclusion of the sampling sequence, the device 10 is removed from the sampling site and the sample generated by the sampling sequence is collected and processed. The device 10 is then discarded (in disposable/single-use embodiments) or a fresh lancet is inserted or advanced for use (in multi-lancet/multi-use embodiments).
In alternative embodiments, the dual-link drive mechanism is adapted for inclusion in re-usable blood-sampling devices. In one such embodiment, the blade is replaceable on the drive arm, for example, by a snap-fit coupling between the drive arm and a blade body mounted to the blade, and the sterility cap screws onto and off of the blade body. In this way, the sterility cap can be removed by unscrewing it from the blade body, and then the sampling device can be used. Then the sterility cap can be screwed back onto the blade body, the sterility cap then can be pulled to remove it and the blade body (and the blade) from the drive arm, and a replacement sterility cap/blade body/blade assembly then can be snapped onto the drive arm for subsequent use.
While the invention has been described with reference to preferred and example embodiments, it will be understood by those skilled in the art that a variety of modifications, additions and deletions are within the scope of the invention, as defined by the following claims.
This application claims the priority benefit of U.S. Provisional Patent Application Ser. No. 61/287,085, filed Dec. 16, 2009, which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3760809 | Campbell, Jr. | Sep 1973 | A |
D228815 | Campbell | Oct 1973 | S |
D245040 | Thomas | Jul 1977 | S |
4064871 | Reno | Dec 1977 | A |
D248046 | Tada | May 1978 | S |
4539988 | Shirley et al. | Sep 1985 | A |
4628929 | Intengan et al. | Dec 1986 | A |
4643189 | Mintz | Feb 1987 | A |
4715374 | Maggio | Dec 1987 | A |
4735203 | Ryder et al. | Apr 1988 | A |
D297978 | White | Oct 1988 | S |
4892097 | Ranalletta et al. | Jan 1990 | A |
4924879 | O'Brien | May 1990 | A |
5035704 | Lambert et al. | Jul 1991 | A |
5133730 | Biro et al. | Jul 1992 | A |
5196025 | Ranalletta et al. | Mar 1993 | A |
5212879 | Biro et al. | May 1993 | A |
5314441 | Cusack et al. | May 1994 | A |
5395388 | Schraga | Mar 1995 | A |
5397334 | Schenk et al. | Mar 1995 | A |
5476474 | Davis et al. | Dec 1995 | A |
5514152 | Smith | May 1996 | A |
5518006 | Mawhirt et al. | May 1996 | A |
5527333 | Nikkels et al. | Jun 1996 | A |
5527334 | Kanner et al. | Jun 1996 | A |
5545174 | Schenk et al. | Aug 1996 | A |
D374719 | Py | Oct 1996 | S |
5571132 | Mawhirt et al. | Nov 1996 | A |
5628765 | Morita | May 1997 | A |
5645555 | Davis et al. | Jul 1997 | A |
5772677 | Mawhirt et al. | Jun 1998 | A |
5776157 | Thorne et al. | Jul 1998 | A |
5782852 | Foggia et al. | Jul 1998 | A |
5797940 | Mawhirt et al. | Aug 1998 | A |
5951582 | Thorne et al. | Sep 1999 | A |
6010519 | Mawhirt et al. | Jan 2000 | A |
6042595 | Morita | Mar 2000 | A |
D422697 | Bellhouse et al. | Apr 2000 | S |
6221089 | Mawhirt | Apr 2001 | B1 |
D450614 | Wilkinson | Nov 2001 | S |
6409740 | Kuhr et al. | Jun 2002 | B1 |
6858015 | List | Feb 2005 | B2 |
6929649 | Pugh | Aug 2005 | B2 |
7144404 | Whitson et al. | Dec 2006 | B2 |
7160313 | Galloway et al. | Jan 2007 | B2 |
D557807 | McCarty | Dec 2007 | S |
7316698 | Galloway et al. | Jan 2008 | B1 |
D566273 | Gutmann et al. | Apr 2008 | S |
D581533 | Ruf et al. | Nov 2008 | S |
7452365 | Galloway et al. | Nov 2008 | B2 |
7510564 | Mace | Mar 2009 | B2 |
7691117 | Whitson et al. | Apr 2010 | B2 |
7704265 | Schraga | Apr 2010 | B2 |
20050131441 | Iio et al. | Jun 2005 | A1 |
20050154410 | Conway et al. | Jul 2005 | A1 |
20050256534 | Alden et al. | Nov 2005 | A1 |
20050283177 | Chen | Dec 2005 | A1 |
20060106411 | Schraga | May 2006 | A1 |
20060259057 | Kim et al. | Nov 2006 | A1 |
20060259060 | Whitson et al. | Nov 2006 | A1 |
20060264997 | Colonna et al. | Nov 2006 | A1 |
20070032813 | Flynn et al. | Feb 2007 | A1 |
20070095178 | Schraga | May 2007 | A1 |
20070225741 | Ikeda | Sep 2007 | A1 |
20080097502 | Winters-Hilt et al. | Apr 2008 | A1 |
20090054812 | Mace | Feb 2009 | A1 |
20090099586 | Koeppel et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
2000245715 | Sep 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20110144537 A1 | Jun 2011 | US |
Number | Date | Country | |
---|---|---|---|
61287085 | Dec 2009 | US |