Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means

Abstract
A blood testing apparatus includes a device for withdrawing blood, a membrane-type testing element, an evaluating device, and a display device forming a complete system which can be manipulated as a single piece of apparatus. Multiple testing elements can be inserted into the apparatus and brought successively to a work position for carrying out several measurements. The blood withdrawing device includes multiple pricking elements. One pricking element is pushed through one testing element and pricks the surface of the skin of a user. The pricking position is disposed so that blood withdrawn from the surface of the skin can impinge upon the testing element.
Description
BACKGROUND

The invention relates to a blood testing apparatus for determining an analyte, such as fructosamine, lactate, cholesterol, specifically glucose, from minimal quantities amounts of blood extracted immediately prior from a user.


The invention deals with blood testing apparatus of the kind that are configured with a membrane-like test means defining a field of measurement, said test means being wetted with the minimal amount of blood extracted and including test reagents, having an evaluation device comprising electronics working optically, preferably using reflectance analysis, or electronically and having a display device, where the aforementioned components form a complete system which can be manipulated as a single apparatus.


A diagnostic apparatus of this type is known from U.S. Pat. No. 4,787,398. This blood glucose monitoring apparatus comprises a housing structure with a push-rod arrangement to actuate a lancing element and having an evaluation device and a display device. For each measurement, a replaceable unit must be positioned in the housing structure, comprising the lancet and a test means to be wetted with blood in the form of a test strip. This replaceable unit is discarded after each use.


Using this as the point of departure, the object of the present invention is to further develop a blood testing apparatus which has fewer components to be manipulated individually and is thus easier to operate and more user friendly.


A blood testing apparatus known from EP 0 449 525 A1 similarly comprises an integral release device for a lancing element. Before each use, a new lancing element has to be manually inserted into the release device as part of the blood extraction device and then a test strip has to be inserted into the apparatus.


U.S. Pat. No. 4,627,445 shows a complete system for a glucose measuring apparatus in the aforesaid sense. But before each measurement a new replaceable unit of lancing element and test means has to be assembled to a body and removed afterwards.


U.S. Pat. No. 5,951,492 shows a similar device. According to this publication, a disposable unit comprises a capillary tube on the upper end of which a test strip is provided which is exposed to the minimal quantity of blood extracted. The capillary tube is configured at its lower end with a lancing element. Again, before and after each measurement a new disposable unit of the type just described must be installed or removed. According to a further embodiment, a transverse slot is provided in the area of the face of the apparatus facing the user, through which a porous test membrane with a carrier can be inserted, which is then penetrated by the lancing element in the lancing procedure.


According to one embodiment, U.S. Pat. No. 5,971,941 shows a complete system in the aforesaid sense, where a cartridge with unused srip-like test means is inserted into a housing and a suitable test means can then be brought into a suitable operating position by means of a driver. Through a triggering device, which forms part of the blood extraction device, a lance contained in a suitable test strip is urged outward by mean of a pushrod to pierce the surface of the user's skin so that capiliary blood can be obtained for analysis. More detailed information on how the analysis is performed cannot be obtained from this publication. According to a further embodiment described in this publication, a cylindrical disposable attachment or insert is descried which has a lancet and a tablet-shaped test membrane with an opening for the lancing device. This attachment or insert is then inserted into a recess of a pushrod arrangement which forces the lancing element outward to extract blood. Once again, before and after each test procedure the disposable unit must be installed or removed.


SUMMARY

The object, explained at the beginning, to create a user-friendly improvement of a blood testing apparatus of this type which ensures a safe supply of blood for the test means with the smallest possible quantity of blood, is achieved under the invention through a plurality of test means which can be inserted into the apparatus and brought into an operating position to perform several measurements in succession where they can interact with the evaluation device, through the blood extraction device similarly having a plurality of lancets, and when a suitable test means is positioned in the operating position, a lancet can be thrust through the test means and can pierce the surface of the user's skin which is positioned in a lancing position aligned with the operating position so that blood emanating from the skin can impinge directly on the test means.


Under the invention, installation or removal before and after each test, measurement or analysis procedure is to be avoided. For this reason, a plurality of test means and preferably a number of lancing elements corresponding exactly to number of test means is furnished in the blood testing apparatus, which can be brought into the operating position in succession and then interact with the blood extraction device when it is actuated or released. A lancing element located in the operating position is driven through the membrane-like test means and pierces the surface of a user's skin, so that the minimal quantity of blood obtained directly wets the membrane-like test means without having to penetrate capillary tubes or slots, which in turn require quantities of blood. Any number of switching and driving means powered mechanically or by an electric motor are conceivable to move the test or lancing means to the operating position and to actuate the lancing means. The number of test means, which are preferably handled as a unit, and advantageously of the lancing means as well, is preferably 5 to 75, and specifically 14–28. The numbers 14 and 28 correspond to a 2 or 4-week rhythm if one analysis is made per day.


After the evaluation and display of the result of the analysis, or of the blood glucose level, the specific test means is moved from its operating position and the next succeeding test means is brought into the operation position preferably immediately.


The lancing element could be withdrawn from the test means again before this process. It proves to be advantageous if the lancing element remains in the test means following the lancing procedure and can be removed with it from the operating position to position a new test means. The lancing element can also be retracted far enough so that it does not project beyond a finger rest area in the apparatus. However, this is not absolutely necessary.


In accordance with a further aspect of the invention, it is conceivable that the lancing element is connected to the membrane-like test means before the lancing procedure and can be inserted with it into the apparatus and moved to the operating position. The lancing element can already be inserted into the test means or be stuck through it.


Following a lancing and measurement procedure, spent lancing elements and test means can be ejected individually or together, or they can be taken to a storage and disposal position.


In a further aspect of the invention, the test means are disposed on a carrier which is movable, preferably rotatable, with respect to a housing base and inserted with the carrier into the housing base of the apparatus. The test means can then be brought in succession to the operating position by rotating the carrier or moved from the operating position to a storage and disposal position.


The test means are advantageously so disposed on the carrier that they can be positioned in a radial direction with respect to the rotatable carrier. Furthermore, the carrier preferably has an annular configuration and is carried rotatably about the center of the ring.


Protection against dirt, contamination and the effects of humidity is preferably provided. The carrier can be configured advantageously as a closed cartridge. The carrier can then have apertures which can be closed or withdrawn in the manner of a window or diaphragm to interact with the drive mechanism and allow the lancing element to extend to perform the lancing procedure or allow blood to reach the test means. As further protection, particularly against humidity, the test means can alternatively or additionally be encased in foil covers which can be removed in the operating position.


The blood extraction device is advantageously housed inside the annulus with the several lancing elements. It is conceivable that a release device, which is known in the art and described in the aforementioned publications, is housed within the annulus. For example, a pushrod-like driver arrangement is implemented, which operates on the side of a lancing element away from the body when located in the operating position such that the lancing element pierces the skin surface of a user. It would also be conceivable that a specific lancing element in the operating position is held in a wedging arrangement between the opposably movable jaws of the driving organ, so that by moving the driving organ forward and back the lancing element can be extended to the outside of the apparatus and retracted again. In any case, the drive unit of the blood extraction device, which thrusts a specific lancing element through the membrane-like test means into the skin surface of a user, forms a part of the housing or base apparatus as does the evaluation and display device. The membrane-like test means and the lancing elements, on the other hand, represent disposable elements which are inserted in a predetermined configuration, such as being located on a carrier, into the housing base.


It proves furthermore to be advantageous if, as already mentioned, the lancing elements, on a rotatable carrier, preferably on the same carrier as the test means, are inserted into the blood testing apparatus. By rotating the carrier or carriers, a specific lancing element is similarly brought into the operating position, namely into a position where it is struck by the driving organ of the blood extraction device or is gripped in a wedging arrangement and can be moved suddenly to perform the lancing procedure.


It proves to be of overall advantage if the blood testing apparatus has a basically circular disc-shaped outer contour, as it can thus be gripped and held comfortably in the user's hands.


In a further aspect of this inventive idea, the apparatus has oppositely located a lancing position for positioning the skin surface to be pierced and a release position to trigger the lancing procedure by manually actuating a release button.


The apparatus is advantageously held by a user holding the apparatus with two fingers at the lancing position and the release button. The release button has an advantegeous ergonomic shape for grasping by the thumb of a user. If preferably has a pressure point which must be overcome in order to initiate the lancing operation. For safety reasons, it proves to be advantegeous if the lancing operation can only be initiated when both fingers have taken up their correct position. This could be implemented through contact sensors or through a pressure point mechanism.


It must be pointed out that instead of a needle or lancet-shaped lancing element, which is moved preferably suddenly in the direction of the skin surface of a user to perform the lancing procedure in a manner known in the art, for example, by releasing a spring-tensioned driving device, a laser beam can also be used. The required source of laser light is among the non-disposable system components of the blood testing apparatus. With this solution as well, a specific test means can be furnished with an opening through the laser beam can pass.


In accordance with a further inventive aspect, the blood testing apparatus can be configured in the style of a wrist watch, that is to say it can have a housing base modeled after a wrist watch casing. A viewing side of the blood testing apparatus can then have a face as with a familiar watch, or a digital display. The digital display can be configured to display time and/or additional functions and to display data or information gathered by the blood testing apparatus as needed.


It can prove further advantageous if the blood testing apparatus has a removable, preferably upwardly pivotable, cover which has access to the interior of the blood testing apparatus, specifically to insert or replace the carrier for the test means and/or lancing elements. In the design of the external appearance of the blood testing apparatus in the style of a wrist watch, or even in the style of a pocket watch, it can prove advantageous if the removable or upwardly pivotable cover simultaneously comprises the face or some other time display device which is raised or pivoted upward with the cover.


In accordance with another inventive aspect, the cover when opened can reveal a view of a display device in the blood testing apparatus, which can be located either on the inward facing side of the raised cover or is revealed by the removal or upward pivoting of the cover. It can further prove to advantageous if a second removable or upwardly pivotable cover is furnished under the first removable or upwardly pivotable cover, which second cover permits or closes off access to the interior of the blood testing apparatus. This second cover could then contain the display device for the blood testing apparatus on its outer side, which can serve simultaneously as a time display. To read the data and information gathered by the blood testing apparatus, the first cover is opened so that a user can view the display device on the exposed viewing side of the second cover, or on the inner side of the first cover. The second cover is opened only to replace the test means or lancing elements.


In an aspect of the blood testing apparatus in the style of a wrist watch casing, it proves advantageous if a finger rest is furnished at the “6 o'clock” or “12 o'clock” position to perform the lancing process to draw a minimal amount of blood, or in the respective areas where the watch strap attaches. This permits convenient operability, which also has a positive effect on good wetting function, since the particular test means (when the test means are arranged essentially perpendicular to the radial direction) is aligned horizontally when the blood is extracted, which promotes even wetting.





BRIEF DESCRIPTION OF THE DRAWING

Additional features, details and advantages of the invention can be found in the appended claims and the drawing and the description to follow of a preferred embodiment of the invention.


In the drawing:



FIG. 1 shows a schematic arrangement of a first aspect of a blood testing apparatus in accordance with the invention;



FIG. 2 shows a sectional view of the blood testing apparatus from FIG. 1;



FIG. 3 shows an exploded view of a second aspect of a blood testing apparatus in accordance with the invention;



FIG. 4 shows an exploded view of the carrier for test means and lancing elements of the apparatus from FIG. 3;



FIG. 5 shows an isometric view of the assembled blood testing apparatus from FIG. 3;



FIG. 6 shows an isometric view of a third aspect of a blood testing apparatus in accordance with the invention;



FIG. 7 shows an isometric view of the blood testing apparatus from FIG. 6 with the first cover raised;



FIG. 8 shows an isometric view of the blood testing apparatus from FIG. 7 with the first and second covers raised and



FIG. 9 shows an isometric view corresponding to FIG. 8 of a fourth aspect of the blood testing apparatus in accordance with the invention.





DETAILED DESCRIPTION


FIGS. 1 and 2 show a schematic view of a blood testing system in accordance with the invention, where FIG. 1 represents a view into the interior with the cover removed and FIG. 2 represents a schematic sectional view. The blood testing apparatus in the form of a blood glucose measuring apparatus, identified as a whole with the reference numeral 2, comprises a housing base 4 and a removable cover 6. A blood extraction device 8 with a drive mechanism 10 and a lancing element in the form of a needle is accommodated in the interior of the housing base 4. The blood extraction device 8 interacts with a release button 14 on the narrow outer side of the disc-shaped housing base 4. The drive mechanism comprises a driving spring and a return spring 16, 18, both of which are indicated only schematically. Through mechanical coupling and control means 20, pressing the release button 14 and overcoming a pressure point mechanism 22 releases the drive mechanism 10, so that under the pre-load of the driving spring 16 a plunger 24 moves radially outward at speed, wedging the lancing element 12 between jaws 26 and driving it radially outward and immediately afterward retracting it again slightly under the effect of the return spring 18. The lancing element 12 penetrates forward briefly across the finger rest 28 lying radially opposite the release button on the outside of the housing base 4, which defines a lancing position, and briefly pierces the skin surface of a user with predetermined speed and depth of penetration to allow a minimal quantity of blood to escape.


As the lancing element 12 moves outward at speed, a membrane-like test means 30, which is located in a manner to be described in greater detail in the immediate vicinity behind the finger rest 28, is penetrated by the lancing element 12. The blood emanating from the skin surface then directly wets the outwardly facing surface of the membrane-like test means 30, which is furnished with reagents.


As can be seen from the Figures, a plurality of test means 30 is furnished with the lancing elements allocated to each of the test means 30. The test means 30 and the lancing elements 12 are located on an annular carrier 32, for example, eight or ten pairs of test means 30 and lancing elements 12 are located around the circumference or partial circumference of the annular carrier 32. With the cover 6 removed, the carrier 32 can be inserted into a locating device 34 of complementary shape which can be rotated around the center of the ring. Embodiments would also be conceivable in which the cover 6 does not need to be removed in order to insert the carrier 32, but which have a recess open to the top to insert a cassette-type closed carrier 32. This provides protection against dirt, contamination and the effects of humidity. The carrier 32 can have available apertures which can be closed and withdrawn like a window or diaphragm in order to interact with the drive mechanism and allow the lancing means to extend to the outside to perform the lancing procedure or to allow blood to reach the test means. As further protection, specifically against humidity, the test means could alternatively or additionally be covered with foil wrappers which can be removed in the operating position.


As can be seen from the Figures, the membrane-like test means 30 are disposed such that they are disposed with their surface normal in the radial direction with respect to the center of the ring. By actuating a sliding button 36 on the outside of the housing base 4, the locating device 34, and with it the carrier 32 positioned in it and held frictionally in place, are rotated into a discrete further angular position, so that the pairs of test means 30 and lancing elements 12 are brought in succession into an operating position in which the lancing element 12 can interact with the drive mechanism 10. In this way the blood glucose measuring apparatus is prepared by insertion of the preferably cassette-type carrier 32 with a number, for example, of ten test means 30 and lancing elements 12 for ten measurements. Following a measurement, the button 36 only has to be actuated to bring the next pair of test means 30 and lancing element 12 into the operating position. Additional installation and removal steps before and after a particular measuring procedure are not required. Spent test means 30 and test elements are brought in a clockwise direction with the carrier 32 to a storage or disposal position, which follows the operating position. It would also be conceivable to furnish an ejection mechanism which ejects a particular spent pair for disposal, which is regarded as less preferred since proper disposal must take place immediately. The protected arrangement of the spent pairs inside the cassette-type carrier 32 is preferred instead. After the predetermined number of tests are performed, the cassette-type-like carrier 32 is removed and disposed of and replaced with a new one.


Because the lancing element 12 penetrates the membrane-like test means 30 in the lancing process, preferably in its center, the test means 30 is ensured of being positioned in immediate proximity to the point of penetration on the skin surface of the user. The blood emanating there is immediately and, most importantly, evenly deposited on the test area of the test means 30, even when only small quantities of blood are available.


In the aspect shown, the lancing elements 12 are disposed on the carrier 32 such that they perforate the center of the test means 30 when the drive mechanism 10 acts against them. To achieve this, it can prove to be advantageous if the lancing elements 12 are disposed in such a way on the carrier 32 that the point has penetrated into the accompanying test means 30, at least partially in the direction of their thickness. This acts as an aid to positioning. A continuous guide opening can also be furnished in the test means 30. The diameter of the guide opening should preferably be smaller than the outside diameter of the lancing element 12 to prevent blood from penetrating through a gap between the outer surface of the lancing element 12 and the guide opening toward the back side of the test means 30.


An evaluation device 38 known in the art is also furnished in the interior of the glucose measuring apparatus. An optical, preferably reflectance analysis unit, is indicated schematically in FIG. 2. The evaluation device 38 can comprise a light source 40 and a sensor 42 for the reflectance measurement of the change of color of the back side of the membrane-like test means 30, where the analysis reaction of the glucose contained in the blood sample with the test or proof reagents takes place (enzymatic redox reaction). The principles of an optical analysis device are described, for example, in EP-A-0 654 659 and EP-A-0 475 692.


In the case where the electrochemical measurement principle is applied, the optical evaluation device is dispensed with. The enzymatic redox reaction is quantified instead through the detection of electrical current or voltage at an electrode (described, for example, in EP-A-0 552 223).


The evaluation device 38 comprises in a known way electronics for analysis which interact with a display device 44 which indicates, for example, in the form of an LCD display the test result, perhaps the blood glucose content. By means of the evaluation device, additional evaluation and display functions and comparisons with previously stored measurement or evaluation data could be performed, saved if necessary and their result displayed.


The blood testing apparatus under the invention thus represents a complete system which does not require the separate manipulation of test strips or lancets during the blood glucose measurement. By inserting the cassette-type carrier 32 with test means 30 and lancing elements 12, the apparatus is prepared for a specific number of measurements, for which no additional installation or removal steps or the separate manipulation of additional aids is required.



FIGS. 3 to 5 show a second aspect of the blood testing apparatus under the invention, where components identical to the first aspect are identified with the same reference numeral. In accordance with this aspect, the blood testing apparatus has a housing base 4 modeled after or approximating the basic shape of a wrist watch casing, where the dimensions, specifically the depth of the housing base 4, can be enlarged compared with traditional wrist watch casings. Further indicated are installation areas 45 for a specifically flexible pin of a normal watch strap. A dome-shaped centering means 46 is depicted in the interior of the housing base 4, which appears cuboid in plan view but which has two segmental side sections 48 which are configured concentric to an axis of rotation 50 and provide a positioning aid when inserting a carrier 32 for test means 30 and lancing elements 12. Further, a servo motor 52 (not shown in detail) is housed in the centering means 46.


The servo motor 52 can serve to move the carrier 32 to move a spent test means 30 from an operating position to a disposal position and simultaneously to position a still unused test means 30 in the operating position. It is not entirely excluded that the servo motor 52 can also serve to power the only schematically represented drive mechanism 10. The drive coupling of the servo motor 52 with the carrier 32 could, for example, be formed through a pinion gear, crown wheel, bevel gear or miter gear connection between a rotatingly driven wheel of the servo motor 52 and correspondingly configured, specifically sprocket-shaped matching gear means on the carrier 32.


As shown in FIGS. 3 and 4, the carrier 32 is configured in the shape of an annular disc-shaped cassette 54. The cassette comprises a lower housing section 56 with an annular disc-shaped floor section 58 with a circular access opening 60 and with circumferential wall section 62 running cylindrically on the outer periphery. The test means 30 are furnished in appropriate recesses 64 in the circumferential wall section 62 in a concentric arrangement around the axis of rotation 50. A similarly shaped upper housing section 68, which comprises a number of radially aligned lancing elements 12 corresponding to the number of test means 30, can be inserted into the lower housing section 56. Spring means 69 can also be seen, specifically in the form of closed loops, which hold the lancing elements 12. When the skin surface of a user is pierced, these spring elements 69 are tensioned and are able to retract the particular lancing element 12 again following the penetration through the drive mechanism 10. This arrangement of lancing elements 12 is located radially outside the aforementioned opening 60 and thus radially outside the dome-shaped centering means 46, which simultaneously comprises the drive mechanism 10 which is disposed radially inside the arrangement of lancing elements 12. The lower housing section 56 and the upper housing section 68 inserted into it are joined together so that they cannot turn and can be rotated in common as a carrier 32 around the axis 50 to bring test means 30 and lancing elements 12 into the operating position, or shift them from the operating position to a disposal position.


The button 36 schematically represented in FIG. 3 is linked to the drive mechanism 10 to actuate it. The control rod 66 suggested there running radially runs either above or below the carrier 32. As mentioned, the actuation of the drive mechanism 10 could also be achieved with a motor, preferably electrically controlled.


Finally the blood testing apparatus comprises a cover 6 which can be modeled after the face of an electronic watch and can have a display device 44, for example, in the form of an LCD display. This cover then forms the viewing side of the blood testing apparatus, as can be seen from FIG. 5.



FIG. 6 shows an isometric view corresponding to FIG. 5 of a blood testing apparatus with a watch face 68 on the viewing side of a pivotally articulated cover 6. It should also be mentioned that a finger rest 28 is furnished at the “6 o'clock” position with reference to the face 68, which forms the operating position in which the skin surface is briefly penetrated by the lancing element 12 when the drive mechanism 10 is released. This arrangement proves to be advantageous insofar as the user (standing) can place the hand on the stomach when performing the lancing procedure and then position the thumb of the other hand on the finger rest 28. When the lancing process is triggered in this position, the membrane-like test means 30 is disposed essentially horizontally and the minimal amount of blood can wet the test means following gravity.



FIG. 7 shows the blood testing apparatus from FIG. 6 with the first cover 6 pivoted up so that the view of the upper side of a second cover 70 is uncovered where, in accordance with this embodiment, the display device 44 for the blood testing apparatus is located. The display device 44 for the blood testing apparatus is thus separated spatially from the face 68 or the display unit for time. Naturally, the display device 44 could also serve to display time.



FIG. 8 shows the blood testing apparatus from FIG. 7 with the second cover 70 likewise raised so that access to the housing base 4 for inserting and removing a carrier cartridge is possible.


Finally, FIG. 9 shows an isometric view corresponding to FIG. 8 of a further embodiment, according to which the display device 44 for blood analysis is furnished on the inner side of the first cover 6.

Claims
  • 1. A blood testing apparatus with a blood extraction device, comprising: a lancing element drive mechanism, a plurality of test means, positioned on a rotatable, disposable device that can be inserted into the apparatus; a plurality of lancing elements being disposed on the dispoable device such that each of a lancing element perforates through a test means when the drive mechanism acts against a lancing element, each of a lancing element being associated with a test means and prior to actuation each of a lancing element is gripped to the lancing element drive mechanism, electronics for analysis, and a display which form a complete system to be manipulated as a single apparatus, the display configured to display additional evaluation and display functions and comparisons with previously stored measurement or evaluation data, saved if desired and their results displayed if desired, wherein launch of a lancing element is initiated with a contact sensor or with a pressure point mechanism, the plurality of test means being arranged radially around an axis of rotation of the rotatable, disposable device having a circumferential wall section that runs cylindrically on an outer periphery, the test means being positioned in appropriate recesses in a circumferential wall section of the disposable device in a concentric arrangement around the axis of rotation, each of the test means and at least one lancing element having a longitudinal axis that is substantially perpendicular relative to the axis of rotation; the test means being disposed with surfaces normal in a radial direction with respect to a center of the rotatable, disposable device.
  • 2. The blood testing apparatus from claim 1, wherein the lancing element remains in the test means following the lancing procedure and can be removed with the test means from an operating position in order to position a new test means there.
  • 3. The blood testing apparatus from claim 1 wherein the lancing element is manageably conjoined to the test means and can be inserted together with the test means into the apparatus and can be deployed to an operating position.
  • 4. The blood testing apparatus from claim 1, wherein spent lancing elements and test means can be ejected or brought to a storage and disposal position.
  • 5. The blood testing apparatus claim 1, wherein the apparatus has an essentially circular disc-shaped outer contour.
  • 6. The blood testing apparatus from claim 1, characterized by a safety mechanism which permits initiation of the lancing procedure only when the apparatus is manipulated correctly.
  • 7. The blood testing apparatus from claim 1, wherein the number of test means to be manipulated as a unit is 5 to 75.
  • 8. The blood testing apparatus from claim 1, wherein the number of test means to be manipulated as a unit is 14-28.
  • 9. The blood testing apparatus from claim 1, wherein the at least one lancing element is disposed on the rotatable, disposable device.
  • 10. The blood testing apparatus from claim 9, wherein the rotatable, disposable device comprises a first housing section for the test means and a second housing section for the at least one lancing elements.
  • 11. The blood testing apparatus from claim 9, wherein the rotatable, disposable device has a central recess which has a drive mechanism and an electric-motor propulsion means for one of a carrier and the drive mechanism.
  • 12. The blood testing apparatus from claim 9, wherein the rotatable, disposable device has a spring means to retract the at least one lancing element from the skin surface of the user.
  • 13. The blood testing apparatus from claim 1, wherein the apparatus has oppositely located a lancing position against which to place the skin surface to be lanced and a release position to initiate the lancing procedure by manual actuation of a release button.
  • 14. The blood testing apparatus from claim 13, wherein the apparatus is adapted to be held by a user holding the apparatus at the lancing position and the release button with two fingers.
  • 15. The blood testing apparatus from claim 13, wherein the release button is ergonomically shaped to be grasped by the thumb of a user.
  • 16. The blood testing apparatus from claim 13, wherein the release button has a pressure point which must be overcome in order to release the lancing element.
Priority Claims (1)
Number Date Country Kind
100 57 832 Nov 2000 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP01/13514 11/21/2001 WO 00 5/19/2003
Publishing Document Publishing Date Country Kind
WO02/41779 5/30/2002 WO A
US Referenced Citations (869)
Number Name Date Kind
2801633 Mauze et al. Aug 1957 A
4338174 Tamura Jul 1982 A
4420564 Tsuji Dec 1983 A
4590411 Kelly May 1986 A
4627445 Garcia Dec 1986 A
4637393 Ray Jan 1987 A
4758323 Davis Jul 1988 A
4787398 Garcia Nov 1988 A
4794926 Munsch et al. Jan 1989 A
4886499 Cirelli Dec 1989 A
4924879 O'Brien May 1990 A
4999582 Parks Mar 1991 A
5019974 Beckers May 1991 A
5029583 Meserol Jul 1991 A
5035704 Lambert et al. Jul 1991 A
5047044 Smith et al. Sep 1991 A
5108889 Smith et al. Apr 1992 A
5178142 Harjunmaa Jan 1993 A
5181910 Scanlon Jan 1993 A
5181914 Zook Jan 1993 A
5183042 Harjunmaa Feb 1993 A
5216597 Beckers Jun 1993 A
5228972 Osaka Jul 1993 A
5251126 Kahn Oct 1993 A
5277181 Mendelson Jan 1994 A
5312590 Gunasingham May 1994 A
5352351 White Oct 1994 A
5371687 Holmes Dec 1994 A
5405511 White Apr 1995 A
5409664 Allen Apr 1995 A
5438271 White Aug 1995 A
5507288 Bocker Apr 1996 A
5508171 Walling Apr 1996 A
5510266 Bonner et al. Apr 1996 A
5514152 Smith May 1996 A
5640954 Pfeiffer Jun 1997 A
5643306 Schraga Jul 1997 A
5676143 Simonsen Oct 1997 A
5680858 Hansen et al. Oct 1997 A
5709699 Warner Jan 1998 A
5738244 Charlton et al. Apr 1998 A
5741228 Lambrecht Apr 1998 A
5746898 Preidel May 1998 A
5770086 Indriksons et al. Jun 1998 A
5794219 Brown Aug 1998 A
5807375 Gross Sep 1998 A
5822715 Worthington Oct 1998 A
5828943 Brown Oct 1998 A
5830219 Bird et al. Nov 1998 A
5832448 Brown Nov 1998 A
5853373 Griffith Dec 1998 A
5868135 Kaufman Feb 1999 A
5871494 Simons et al. Feb 1999 A
5879163 Brown Mar 1999 A
5879310 Sopp Mar 1999 A
5885211 Eppstein Mar 1999 A
5887133 Brown Mar 1999 A
RE36191 Solomon Apr 1999 E
5893870 Talen Apr 1999 A
5897493 Brown Apr 1999 A
5899855 Brown May 1999 A
5899915 Saadat May 1999 A
5913310 Brown Jun 1999 A
5918603 Brown Jul 1999 A
5933136 Brown Aug 1999 A
5942102 Hodges Aug 1999 A
5951300 Brown Sep 1999 A
5951492 Douglas Sep 1999 A
5951493 Douglas et al. Sep 1999 A
5956501 Brown Sep 1999 A
5960403 Brown Sep 1999 A
5964718 Duchon Oct 1999 A
5971941 Simons et al. Oct 1999 A
5972715 Celentano Oct 1999 A
5974124 Schlueter Oct 1999 A
5985559 Brown Nov 1999 A
5997476 Brown Dec 1999 A
6015392 Douglas Jan 2000 A
6023686 Brown Feb 2000 A
6032119 Brown Feb 2000 A
6036924 Simons et al. Mar 2000 A
6041253 Kost Mar 2000 A
6048352 Douglas Apr 2000 A
6056701 Duchon May 2000 A
6061128 Zweig May 2000 A
6066103 Duchon May 2000 A
6068615 Brown May 2000 A
6071251 Cunningham et al. Jun 2000 A
6071294 Simons et al. Jun 2000 A
6086545 Roe Jul 2000 A
6093146 Filangeri Jul 2000 A
6093156 Cunningham Jul 2000 A
6101478 Brown Aug 2000 A
6113578 Brown Sep 2000 A
6122536 Sun Sep 2000 A
6144837 Quy Nov 2000 A
6151586 Brown Nov 2000 A
6155267 Nelson Dec 2000 A
6161095 Brown Dec 2000 A
6167362 Brown Dec 2000 A
6167386 Brown Dec 2000 A
6168563 Brown Jan 2001 B1
6171325 Mauze et al. Jan 2001 B1
6177931 Alexander et al. Jan 2001 B1
6186145 Brown Feb 2001 B1
6210272 Brown Apr 2001 B1
6228100 Schraga May 2001 B1
6233471 Berner May 2001 B1
6233539 Brown May 2001 B1
6240393 Brown May 2001 B1
6246992 Brown Jun 2001 B1
6248065 Brown Jun 2001 B1
6261519 Harding Jul 2001 B1
6270455 Brown Aug 2001 B1
6294897 Champlin Sep 2001 B1
6302844 Walker Oct 2001 B1
6305804 Rice Oct 2001 B1
6315738 Nishikawa Nov 2001 B1
6329161 Heller Dec 2001 B1
6330426 Brown Dec 2001 B2
6334778 Brown Jan 2002 B1
6349229 Watanabe Feb 2002 B1
6368273 Brown Apr 2002 B1
6375469 Brown Apr 2002 B1
6381577 Brown Apr 2002 B1
6423014 Churchill et al. Jul 2002 B1
6464649 Duchon Oct 2002 B1
6472220 Simons et al. Oct 2002 B1
6477394 Rice Nov 2002 B2
6477424 Thompson Nov 2002 B1
6494830 Wessel Dec 2002 B1
6503381 Gotoh Jan 2003 B1
6530892 Kelly Mar 2003 B1
6537207 Rice Mar 2003 B1
6541266 Modzelewski Apr 2003 B2
6553244 Lesho Apr 2003 B2
6554381 Locher Apr 2003 B2
6558320 Causey May 2003 B1
6558402 Chelak May 2003 B1
6560471 Heller May 2003 B1
6561978 Conn May 2003 B1
6562210 Bhullar May 2003 B1
6565509 Say et al. May 2003 B1
6575905 Knobbe Jun 2003 B2
6576117 Iketaki et al. Jun 2003 B1
6582573 Douglas Jun 2003 B2
6595919 Berner Jul 2003 B2
6604050 Trippel Aug 2003 B2
6607494 Fowler Aug 2003 B1
6638772 Douglas Oct 2003 B1
6645142 Braig Nov 2003 B2
6645219 Roe Nov 2003 B2
6650915 Routt Nov 2003 B2
6671527 Peterson Dec 2003 B2
6706049 Moerman Mar 2004 B2
6706159 Moerman et al. Mar 2004 B2
6721586 Kiser Apr 2004 B2
6723046 Lichtenstein Apr 2004 B2
6743635 Neel Jun 2004 B2
6749618 Levaughn Jun 2004 B2
6764496 Schraga Jul 2004 B2
6780647 Fujiwara Aug 2004 B2
6783537 Kuhr et al. Aug 2004 B1
6787109 Haar Sep 2004 B2
6808499 Churchill Oct 2004 B1
6811406 Grubge Nov 2004 B2
6844149 Goldman Jan 2005 B2
6849052 Uchigaki et al. Feb 2005 B2
6869418 Marano-Ford Mar 2005 B2
6872200 Mann Mar 2005 B2
6875208 Santini Apr 2005 B2
6875223 Argauer Apr 2005 B2
6875613 Shartle Apr 2005 B2
6878120 Roe Apr 2005 B2
6878251 Hodges Apr 2005 B2
6878255 Wang Apr 2005 B1
6878262 Taniike Apr 2005 B2
6880968 Haar Apr 2005 B1
6881203 Delmore Apr 2005 B2
6881322 Tokunaga Apr 2005 B2
6881378 Zimmer Apr 2005 B1
6881541 Petersen et al. Apr 2005 B2
6881550 Phillips Apr 2005 B2
6881551 Heller Apr 2005 B2
6881578 Otake Apr 2005 B2
6882940 Potts Apr 2005 B2
6884592 Matzinger Apr 2005 B2
6885196 Taniike Apr 2005 B2
6885883 Parris Apr 2005 B2
6887239 Elstrom May 2005 B2
6887253 Schraga May 2005 B2
6887254 Curie May 2005 B1
6887426 Phillips May 2005 B2
6887709 Leong May 2005 B2
6889069 Routt May 2005 B2
6890319 Crocker May 2005 B1
6890421 Ohara May 2005 B2
6890484 Bautista May 2005 B2
6891936 Kai May 2005 B2
6892085 McIvor May 2005 B2
6893396 Schulze May 2005 B2
6893545 Gotoh May 2005 B2
6893552 Wang May 2005 B1
6895263 Shin May 2005 B2
6895264 Rice May 2005 B2
6895265 Silver May 2005 B2
6896793 Erdosy May 2005 B2
6897788 Khair May 2005 B2
6902905 Burson Jun 2005 B2
6904301 Raskas Jun 2005 B2
6905733 Russel Jun 2005 B2
6908008 Pugh Jun 2005 B2
6908535 Rankin Jun 2005 B2
6908591 MacPhee Jun 2005 B2
6908593 Shartle Jun 2005 B1
6911130 Brenneman Jun 2005 B2
6911131 Miyazaki Jun 2005 B2
6911621 Bhullar Jun 2005 B2
6916410 Katsuki Jul 2005 B2
6918874 Hatch et al. Jul 2005 B1
6918901 Theeuwes et al. Jul 2005 B1
6918918 Schraga Jul 2005 B1
6922576 Raskas Jul 2005 B2
6922578 Eppstein Jul 2005 B2
6923764 Aceti Aug 2005 B2
6923894 Huang Aug 2005 B2
6923936 Swanson Aug 2005 B2
6924093 Haviland Aug 2005 B2
6925317 Samuels Aug 2005 B1
6925393 Kalatz Aug 2005 B1
6929649 Pugh Aug 2005 B2
6929650 Fukuzawa Aug 2005 B2
6931327 Goode Aug 2005 B2
6931328 Braig Aug 2005 B2
6939310 Matzinger Sep 2005 B2
6939312 Hodges Sep 2005 B2
6939450 Karinka Sep 2005 B2
6940591 Sopp Sep 2005 B2
6942518 Liamos Sep 2005 B2
6942769 Cheng Sep 2005 B2
6942770 Cai Sep 2005 B2
6944486 Braig Sep 2005 B2
6945943 Pugh Sep 2005 B2
6946067 Hodges Sep 2005 B2
6946098 Miekka Sep 2005 B2
6946299 Neel Sep 2005 B2
6949111 Schraga Sep 2005 B2
6949221 Kiser Sep 2005 B2
6951631 Catt Oct 2005 B1
6951728 Qian Oct 2005 B2
6952603 Gerber Oct 2005 B2
6952604 DeNuzzio Oct 2005 B2
6953693 Neel Oct 2005 B2
6954662 Freger Oct 2005 B2
6958072 Schraga Oct 2005 B2
6958129 Galen Oct 2005 B2
6958809 Sterling Oct 2005 B2
6959211 Rule Oct 2005 B2
6959247 Neel Oct 2005 B2
6960287 Charlton Nov 2005 B2
6960289 Hodges Nov 2005 B2
6964871 Bell Nov 2005 B2
6965791 Hitchcock Nov 2005 B1
6966880 Boecker Nov 2005 B2
6966977 Hasegawa Nov 2005 B2
6967105 Nomura Nov 2005 B2
6968375 Brown Nov 2005 B1
6969359 Duchon Nov 2005 B2
6969450 Taniike Nov 2005 B2
6969451 Shin Nov 2005 B2
6973706 Say Dec 2005 B2
6975893 Say Dec 2005 B2
6977032 Hasegawa Dec 2005 B2
6979544 Keen Dec 2005 B2
6979571 Modzelewski Dec 2005 B2
6982027 Yagi Jan 2006 B2
6982431 Modlin et al. Jan 2006 B2
6983176 Gardner Jan 2006 B2
6983177 Rule Jan 2006 B2
6984307 Zweig Jan 2006 B2
6986777 Kim Jan 2006 B2
6986869 Tuohy Jan 2006 B2
6988996 Roe Jan 2006 B2
6989243 Yani Jan 2006 B2
6989891 Braig Jan 2006 B2
6990365 Parker Jan 2006 B1
6990366 Say Jan 2006 B2
6990367 Kiser Jan 2006 B2
6990849 Bohm Jan 2006 B2
6991918 Keith Jan 2006 B2
6991940 Carroll Jan 2006 B2
6994825 Haviland Feb 2006 B2
6997317 Catelli Feb 2006 B2
6997343 May Feb 2006 B2
6997344 Brown Feb 2006 B2
6997936 Marshall Feb 2006 B2
6998247 Monfre Feb 2006 B2
6998248 Yani Feb 2006 B2
6999810 Berner Feb 2006 B2
7001343 Erickson Feb 2006 B2
7001344 Freeman Feb 2006 B2
7003337 Harjunmaa Feb 2006 B2
7003340 Say Feb 2006 B2
7003341 Say Feb 2006 B2
7004928 Aceti Feb 2006 B2
7005048 Watanabe Feb 2006 B1
7005273 Heller Feb 2006 B2
7005459 Hekal Feb 2006 B2
7005857 Stiene Feb 2006 B2
7006857 Braig Feb 2006 B2
7006858 Silver Feb 2006 B2
7008384 Tapper Mar 2006 B2
7010432 Kermani Mar 2006 B2
7011630 Desai Mar 2006 B2
7011954 Ouyang Mar 2006 B2
7014615 Erickson Mar 2006 B2
7015262 Leong Mar 2006 B2
7016713 Gardner Mar 2006 B2
7018568 Tierney Mar 2006 B2
7018848 Douglas Mar 2006 B2
7022217 Hodges Apr 2006 B2
7022218 Taniike Apr 2006 B2
7022286 Lemke Apr 2006 B2
7024236 Ford Apr 2006 B2
7024248 Penner Apr 2006 B2
7024399 Sumner Apr 2006 B2
7025425 Kovatchev Apr 2006 B2
7025774 Freeman Apr 2006 B2
7027848 Robinson Apr 2006 B2
7029444 Shin Apr 2006 B2
7033322 Silver Apr 2006 B2
7033371 Alden Apr 2006 B2
7039560 Kawatahara May 2006 B2
7041057 Faupel May 2006 B1
7041063 Abreu May 2006 B2
7041068 Freeman May 2006 B2
7041254 Haviland May 2006 B2
7041468 Drucker May 2006 B2
7043287 Khalil May 2006 B1
7044911 Drinan May 2006 B2
7045054 Buck May 2006 B1
7045097 Kovacs May 2006 B2
7045310 Buck May 2006 B2
7045361 Heiss May 2006 B2
7047070 Wilkinson May 2006 B2
7047795 Sato May 2006 B2
7049130 Carroll May 2006 B2
7050843 Shartle May 2006 B2
7051495 Lang May 2006 B2
7052268 Powell May 2006 B2
7052591 Gao May 2006 B2
7052652 Zanzucchi May 2006 B2
7052864 Durkop May 2006 B2
7054682 Young May 2006 B2
7054759 Fukunaga May 2006 B2
D523555 Loerwald Jun 2006 S
7056425 Hasegawa Jun 2006 B2
7056495 Roser Jun 2006 B2
7058437 Buse Jun 2006 B2
7060059 Keith Jun 2006 B2
7060192 Yuzhakov Jun 2006 B2
7061593 Braig Jun 2006 B2
7063234 Giraud Jun 2006 B2
7063774 Bhullar Jun 2006 B2
7063775 Yamaoka Jun 2006 B2
7063776 Huang Jun 2006 B2
7066884 Custer Jun 2006 B2
7066885 Erickson Jun 2006 B2
7070564 Matzinger Jul 2006 B2
7070680 Bae Jul 2006 B2
7073246 Bhullar Jul 2006 B2
7074307 Simpson Jul 2006 B2
7074308 Mao Jul 2006 B2
7077328 Krishnaswamy Jul 2006 B2
7077828 Kuhr Jul 2006 B2
7078480 Nagel Jul 2006 B2
7081188 Cho Jul 2006 B1
7083712 Morita Aug 2006 B2
7086277 Tess Aug 2006 B2
7087149 Muguruma Aug 2006 B1
7090764 Iyengar Aug 2006 B2
7096053 Loeb Aug 2006 B2
7096124 Sterling Aug 2006 B2
7097631 Trautman Aug 2006 B2
7098038 Fukuoka Aug 2006 B2
7103578 Beck Sep 2006 B2
7105066 Schraga Sep 2006 B2
7107253 Sumner Sep 2006 B1
7108680 Rohr Sep 2006 B2
7108778 Simpson Sep 2006 B2
7109271 Liu Sep 2006 B2
7110112 Uchida Sep 2006 B2
7110803 Shults Sep 2006 B2
7112265 McAleer Sep 2006 B1
7112451 Takahashi Sep 2006 B2
7115362 Douglas Oct 2006 B2
7118351 Effenhauser Oct 2006 B2
7118667 Lee Oct 2006 B2
7118668 Edelbrock Oct 2006 B1
7118916 Matzinger Oct 2006 B2
7118919 Yatscoff Oct 2006 B2
7120483 Russell Oct 2006 B2
7122102 Wogoman Oct 2006 B2
7122110 Deng Oct 2006 B2
7122111 Tokunaga Oct 2006 B2
7125481 Musho Oct 2006 B2
7129038 Gopalan Oct 2006 B2
RE39390 Hasegawa Nov 2006 E
D531725 Loerwald Nov 2006 S
7131342 Hodges Nov 2006 B2
7131984 Sato Nov 2006 B2
7132041 Deng Nov 2006 B2
7133710 Acosta Nov 2006 B2
7134999 Brauker Nov 2006 B2
7135100 Lau Nov 2006 B1
7137957 Erickson Nov 2006 B2
7138041 Su Nov 2006 B2
7138089 Aitken Nov 2006 B2
7141058 Briggs Nov 2006 B2
7144404 Whitson Dec 2006 B2
7144485 Hsu Dec 2006 B2
7144495 Teodorezyk Dec 2006 B2
7144496 Meserol Dec 2006 B2
7147825 Matsuda Dec 2006 B2
7150755 Levaughn Dec 2006 B2
7150975 Tamada Dec 2006 B2
7150995 Xie Dec 2006 B2
7153696 Fukuoka Dec 2006 B2
7155371 Kawatahara Dec 2006 B2
7160251 Neel Jan 2007 B2
7160313 Galloway Jan 2007 B2
7160678 Kayyem et al. Jan 2007 B1
7163616 Vreeke Jan 2007 B2
7166074 Reghabi Jan 2007 B2
7167734 Khalil Jan 2007 B2
7167818 Brown Jan 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226461 Boecker et al. Jun 2007 B2
20010011157 Latterell Aug 2001 A1
20010016682 Berner Aug 2001 A1
20020016606 Moerman Feb 2002 A1
20020019748 Brown Feb 2002 A1
20020042594 Lum et al. Apr 2002 A1
20020078091 Vu Jun 2002 A1
20020081559 Brown Jun 2002 A1
20020087056 Aceti Jul 2002 A1
20020120261 Morris Aug 2002 A1
20020130042 Moerman et al. Sep 2002 A1
20020133377 Brown Sep 2002 A1
20020137998 Smart Sep 2002 A1
20020138040 Flora Sep 2002 A1
20030028125 Yuzhakov Feb 2003 A1
20030050537 Wessel Mar 2003 A1
20030069753 Brown Apr 2003 A1
20030083685 Freeman et al. May 2003 A1
20030083686 Freeman May 2003 A1
20030088160 Halleck May 2003 A1
20030135333 Aceti Jul 2003 A1
20030139653 Manser Jul 2003 A1
20030149348 Raskas Aug 2003 A1
20030159944 Pottgen Aug 2003 A1
20030163351 Brown Aug 2003 A1
20030178322 Iyengar Sep 2003 A1
20030199895 Boecker Oct 2003 A1
20030212579 Brown Nov 2003 A1
20030225317 Schell Dec 2003 A1
20030229514 Brown Dec 2003 A2
20040009100 Simons Jan 2004 A1
20040019259 Brown Jan 2004 A1
20040039342 Eppstein Feb 2004 A1
20040039408 Abulhaj Feb 2004 A1
20040049219 Briggs Mar 2004 A1
20040049220 Boecker Mar 2004 A1
20040050694 Yang Mar 2004 A1
20040087990 Boecker May 2004 A1
20040092842 Boecker May 2004 A1
20040092994 Briggs May 2004 A1
20040092995 Boecker May 2004 A1
20040098009 Boecker May 2004 A1
20040102803 Boecker May 2004 A1
20040106855 Brown Jun 2004 A1
20040107116 Brown Jun 2004 A1
20040116780 Brown Jun 2004 A1
20040117207 Brown Jun 2004 A1
20040117208 Brown Jun 2004 A1
20040117209 Brown Jun 2004 A1
20040117210 Brown Jun 2004 A1
20040127818 Roe Jul 2004 A1
20040137640 Hirao Jul 2004 A1
20040193377 Brown Sep 2004 A1
20040199409 Brown Oct 2004 A1
20040202576 Aceti Oct 2004 A1
20040219500 Brown Nov 2004 A1
20040220564 Ho Nov 2004 A1
20040236362 Schraga Nov 2004 A1
20040249254 Racchini Dec 2004 A1
20040256228 Huang Dec 2004 A1
20040267160 Perez Dec 2004 A9
20050004437 Kaufmann Jan 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027211 Kuhr Feb 2005 A1
20050027562 Brown Feb 2005 A1
20050033341 Vreeke Feb 2005 A1
20050034983 Chambers Feb 2005 A1
20050036020 Li Feb 2005 A1
20050036146 Braig Feb 2005 A1
20050036906 Nakahara et al. Feb 2005 A1
20050036909 Erickson Feb 2005 A1
20050037482 Braig Feb 2005 A1
20050038329 Morris Feb 2005 A1
20050038330 Jansen Feb 2005 A1
20050038463 Davar Feb 2005 A1
20050038464 Schraga Feb 2005 A1
20050038465 Schraga Feb 2005 A1
20050038674 Braig Feb 2005 A1
20050042766 Ohman Feb 2005 A1
20050043894 Fernandez Feb 2005 A1
20050043965 Heller Feb 2005 A1
20050045476 Neel Mar 2005 A1
20050049473 Desai Mar 2005 A1
20050050859 Coppeta Mar 2005 A1
20050054082 Pachl Mar 2005 A1
20050059895 Brown Mar 2005 A1
20050060194 Brown Mar 2005 A1
20050067280 Reid Mar 2005 A1
20050067737 Rappin Mar 2005 A1
20050070771 Rule Mar 2005 A1
20050070819 Poux Mar 2005 A1
20050070945 Schraga Mar 2005 A1
20050072670 Hasegawa Apr 2005 A1
20050077176 Hodges Apr 2005 A1
20050077584 Uhland Apr 2005 A1
20050079542 Cullen Apr 2005 A1
20050080652 Brown Apr 2005 A1
20050085839 Allen Apr 2005 A1
20050085840 Yi Apr 2005 A1
20050086083 Brown Apr 2005 A1
20050090754 Wolf Apr 2005 A1
20050090850 Toes Apr 2005 A1
20050096520 Maekawa May 2005 A1
20050096565 Chang May 2005 A1
20050096586 Trautman May 2005 A1
20050096587 Santini May 2005 A1
20050096686 Allen May 2005 A1
20050098431 Hodges May 2005 A1
20050098432 Grundel May 2005 A1
20050098433 Grundel May 2005 A1
20050098434 Grundel May 2005 A1
20050100880 Chang May 2005 A1
20050101841 Kaylor May 2005 A9
20050101979 Alden May 2005 A1
20050101980 Alden May 2005 A1
20050101981 Alden May 2005 A1
20050103624 Bhullar May 2005 A1
20050106713 Phan May 2005 A1
20050109637 Iyengar May 2005 A1
20050112782 Buechler May 2005 A1
20050113658 Jacobson May 2005 A1
20050113717 Matzinger May 2005 A1
20050114062 Davies May 2005 A1
20050114154 Wolkowiez May 2005 A1
20050114444 Brown May 2005 A1
20050118056 Swanson Jun 2005 A1
20050119681 Marshall Jun 2005 A1
20050123443 Fujiwara Jun 2005 A1
20050123680 Kang Jun 2005 A1
20050124869 Hefti Jun 2005 A1
20050125017 Kudrna Jun 2005 A1
20050125018 Galloway Jun 2005 A1
20050125019 Kudrna Jun 2005 A1
20050126929 Mansouri Jun 2005 A1
20050130248 Willner Jun 2005 A1
20050130249 Parris Jun 2005 A1
20050130292 Ahn Jun 2005 A1
20050131286 Parker Jun 2005 A1
20050131441 Iio Jun 2005 A1
20050133368 Davies Jun 2005 A1
20050136471 Bhullar Jun 2005 A1
20050136501 Kuriger Jun 2005 A1
20050136529 Yang Jun 2005 A1
20050136550 Yang Jun 2005 A1
20050137536 Gonnelli Jun 2005 A1
20050143675 Neel Jun 2005 A1
20050143713 Delmore Jun 2005 A1
20050143771 Stout Jun 2005 A1
20050145490 Shinno Jul 2005 A1
20050145491 Amano Jul 2005 A1
20050145520 Ilo Jul 2005 A1
20050149088 Fukuda Jul 2005 A1
20050149089 Trissel Jul 2005 A1
20050150762 Butters Jul 2005 A1
20050150763 Butters Jul 2005 A1
20050154277 Ting Jul 2005 A1
20050154374 Hunter Jul 2005 A1
20050154410 Conway Jul 2005 A1
20050154616 Iliff Jul 2005 A1
20050158850 Kubo Jul 2005 A1
20050159656 Hockersmith Jul 2005 A1
20050159768 Boehm Jul 2005 A1
20050164322 Heller Jul 2005 A1
20050164329 Wallace-Davis Jul 2005 A1
20050165285 Iliff Jul 2005 A1
20050165393 Eppstein Jul 2005 A1
20050165622 Neel Jul 2005 A1
20050169961 Hunter Aug 2005 A1
20050170448 Burson Aug 2005 A1
20050171567 DeHart Aug 2005 A1
20050172021 Brown Aug 2005 A1
20050172022 Brown Aug 2005 A1
20050173245 Feldman Aug 2005 A1
20050173246 Hodges Aug 2005 A1
20050175509 Nakaminami Aug 2005 A1
20050176084 Burkoth Aug 2005 A1
20050176133 Miyashita Aug 2005 A1
20050177071 Nakayama Aug 2005 A1
20050177201 Freeman Aug 2005 A1
20050177398 Watanabe Aug 2005 A1
20050178218 Montagu Aug 2005 A1
20050181010 Hunter Aug 2005 A1
20050181497 Salto Aug 2005 A1
20050182307 Currie Aug 2005 A1
20050187439 Blank Aug 2005 A1
20050187444 Hubner Aug 2005 A1
20050192488 Bryenton Sep 2005 A1
20050196821 Monfre Sep 2005 A1
20050197666 Raney Sep 2005 A1
20050201897 Zimmer Sep 2005 A1
20050202567 Zanzucchi Sep 2005 A1
20050203358 Monfre Sep 2005 A1
20050203364 Monfre Sep 2005 A1
20050204939 Krejci Sep 2005 A1
20050205422 Moser Sep 2005 A1
20050205816 Hayenga Sep 2005 A1
20050209515 Hockersmith Sep 2005 A1
20050209564 Bonner Sep 2005 A1
20050209625 Chan Sep 2005 A1
20050211571 Schulein Sep 2005 A1
20050211572 Buck Sep 2005 A1
20050214881 Azarnia Sep 2005 A1
20050214892 Kovatchev Sep 2005 A1
20050215871 Feldman Sep 2005 A1
20050215872 Berner Sep 2005 A1
20050215923 Wiegel Sep 2005 A1
20050215925 Chan Sep 2005 A1
20050216046 Yeoh Sep 2005 A1
20050218024 Lang Oct 2005 A1
20050221276 Rozakis Oct 2005 A1
20050221470 Matsumoto Oct 2005 A1
20050222599 Czernecki Oct 2005 A1
20050227372 Khan Oct 2005 A1
20050228242 Kawamura Oct 2005 A1
20050228883 Brown Oct 2005 A1
20050230252 Tsai Oct 2005 A1
20050230253 Marquant Oct 2005 A1
20050232813 Karmali Oct 2005 A1
20050232815 Ruhl Oct 2005 A1
20050234368 Wong Oct 2005 A1
20050234486 Allen Oct 2005 A1
20050234487 Shi Oct 2005 A1
20050234488 Allen Oct 2005 A1
20050234489 Allen Oct 2005 A1
20050234490 Allen Oct 2005 A1
20050234491 Allen Oct 2005 A1
20050234492 Tsai Oct 2005 A1
20050234494 Conway Oct 2005 A1
20050234495 Schraga Oct 2005 A1
20050235060 Brown Oct 2005 A1
20050239154 Feldman Oct 2005 A1
20050239156 Drucker Oct 2005 A1
20050239194 Takahashi Oct 2005 A1
20050240090 Ruchti Oct 2005 A1
20050240119 Draudt Oct 2005 A1
20050240207 Marshall Oct 2005 A1
20050240778 Saito Oct 2005 A1
20050245798 Yamaguchi Nov 2005 A1
20050245843 Day Nov 2005 A1
20050245844 Mace Nov 2005 A1
20050245845 Roe Nov 2005 A1
20050245954 Roe Nov 2005 A1
20050245955 Schraga Nov 2005 A1
20050256534 Alden Nov 2005 A1
20050258035 Harding Nov 2005 A1
20050258036 Harding Nov 2005 A1
20050258050 Harding Nov 2005 A1
20050265094 Harding Dec 2005 A1
20050276133 Harding Dec 2005 A1
20050278945 Feldman Dec 2005 A1
20050279631 Celentano Dec 2005 A1
20050279647 Beaty Dec 2005 A1
20050283094 Thym Dec 2005 A1
20050284110 Lang Dec 2005 A1
20050284757 Allen Dec 2005 A1
20050287620 Heller Dec 2005 A1
20050288637 Kuhr Dec 2005 A1
20050288698 Matsumoto Dec 2005 A1
20050288699 Schraga Dec 2005 A1
20060000549 Lang Jan 2006 A1
20060003398 Heller Jan 2006 A1
20060004270 Bedard Jan 2006 A1
20060004271 Peyser Jan 2006 A1
20060004272 Shah Jan 2006 A1
20060006574 Lang Jan 2006 A1
20060008389 Sacherer Jan 2006 A1
20060015129 Shahrokni Jan 2006 A1
20060016698 Lee Jan 2006 A1
20060020228 Fowler Jan 2006 A1
20060024774 Zocchi Feb 2006 A1
20060025662 Buse Feb 2006 A1
20060029979 Bai Feb 2006 A1
20060029991 Hagino Feb 2006 A1
20060030028 Nakaminami Feb 2006 A1
20060030788 Wong Feb 2006 A1
20060034728 Kloepfer Feb 2006 A1
20060040333 Zocchi Feb 2006 A1
20060047220 Sakata Mar 2006 A1
20060047294 Mori Mar 2006 A1
20060052723 Roe Mar 2006 A1
20060052724 Roe Mar 2006 A1
20060052809 Karbowniczek Mar 2006 A1
20060052810 Freeman Mar 2006 A1
20060058827 Sakata Mar 2006 A1
20060058828 Shi Mar 2006 A1
20060062852 Holmes Mar 2006 A1
20060063988 Schurman Mar 2006 A1
20060064035 Wang Mar 2006 A1
20060079739 Chen Wang Apr 2006 A1
20060079810 Patel Apr 2006 A1
20060079811 Roe Apr 2006 A1
20060079920 Schraga Apr 2006 A1
20060081469 Lee Apr 2006 A1
20060085020 Freeman Apr 2006 A1
20060085137 Bartkowiak Apr 2006 A1
20060086624 Tapsak Apr 2006 A1
20060088945 Douglas Apr 2006 A1
20060089566 DeHart Apr 2006 A1
20060091006 Wang May 2006 A1
20060094944 Chuang May 2006 A1
20060094947 Kovatchev May 2006 A1
20060094986 Neel May 2006 A1
20060095061 Trautman May 2006 A1
20060096859 Lau May 2006 A1
20060099107 Yamamoto May 2006 A1
20060099703 Choi May 2006 A1
20060100542 Wong May 2006 A9
20060100543 Raney May 2006 A1
20060100654 Fukuda May 2006 A1
20060100655 Leong May 2006 A1
20060100656 Olsen May 2006 A1
20060106373 Cahir May 2006 A1
20060108236 Kasielke May 2006 A1
20060113187 Deng Jun 2006 A1
20060115857 Keen Jun 2006 A1
20060116562 Acosta Jun 2006 A1
20060116704 Ashby Jun 2006 A1
20060116705 Schraga Jun 2006 A1
20060119362 Kermani Jun 2006 A1
20060121547 McIntire Jun 2006 A1
20060121625 Clemens Jun 2006 A1
20060121759 Kasai Jun 2006 A1
20060122099 Aoki Jun 2006 A1
20060122536 Haar Jun 2006 A1
20060129065 Matsumoto Jun 2006 A1
20060129172 Crossman Jun 2006 A1
20060129173 Wilkinson Jun 2006 A1
20060134713 Rylatt Jun 2006 A1
20060140457 Simshauser Jun 2006 A1
20060144704 Ghesquiere Jul 2006 A1
20060151323 Cho Jul 2006 A1
20060151342 Yaguchi Jul 2006 A1
20060155215 Cha Jul 2006 A1
20060155316 Perez Jul 2006 A1
20060155317 List Jul 2006 A1
20060156796 Burke Jul 2006 A1
20060157362 Schraga Jul 2006 A1
20060161078 Schraga Jul 2006 A1
20060161194 Freeman Jul 2006 A1
20060166302 Clarke Jul 2006 A1
20060167382 Deshmukh Jul 2006 A1
20060169599 Feldman Aug 2006 A1
20060173254 Acosta Aug 2006 A1
20060173255 Acosta Aug 2006 A1
20060173379 Rasch-Menges Aug 2006 A1
20060173380 Hoenes Aug 2006 A1
20060173478 Schraga Aug 2006 A1
20060175216 Freeman Aug 2006 A1
20060178573 Kermani Aug 2006 A1
20060178599 Faupel Aug 2006 A1
20060178600 Kennedy Aug 2006 A1
20060178686 Schraga Aug 2006 A1
20060178687 Freeman Aug 2006 A1
20060178688 Freeman Aug 2006 A1
20060178689 Freeman Aug 2006 A1
20060178690 Freeman Aug 2006 A1
20060183871 Ward Aug 2006 A1
20060183983 Acosta Aug 2006 A1
20060184101 Srinivasan Aug 2006 A1
20060188395 Taniike Aug 2006 A1
20060189895 Neel Aug 2006 A1
20060191787 Wang Aug 2006 A1
20060195023 Acosta Aug 2006 A1
20060195047 Freeman Aug 2006 A1
20060195128 Alden Aug 2006 A1
20060195129 Freeman Aug 2006 A1
20060195130 Freeman Aug 2006 A1
20060195131 Freeman Aug 2006 A1
20060195132 Freeman Aug 2006 A1
20060195133 Freeman Aug 2006 A1
20060196031 Hoenes Sep 2006 A1
20060196795 Windus-Smith Sep 2006 A1
20060200044 Freeman Sep 2006 A1
20060200045 Roe Sep 2006 A1
20060200046 Windus-Smith Sep 2006 A1
20060200181 Fukuzawa Sep 2006 A1
20060200981 Bhullar Sep 2006 A1
20060200982 Bhullar Sep 2006 A1
20060204399 Freeman Sep 2006 A1
20060205029 Heller Sep 2006 A1
20060205060 Kim Sep 2006 A1
20060206135 Uehata Sep 2006 A1
20060211127 Iwaki Sep 2006 A1
20060211927 Acosta Sep 2006 A1
20060211931 Blank Sep 2006 A1
20060219551 Edelbrock Oct 2006 A1
20060222567 Kloepfer Oct 2006 A1
20060224171 Sakata Oct 2006 A1
20060224172 Levaughn Oct 2006 A1
20060229532 Wong Oct 2006 A1
20060229533 Hoenes Oct 2006 A1
20060229651 Marshall Oct 2006 A1
20060231396 Yamaoka Oct 2006 A1
20060231418 Harding Oct 2006 A1
20060231442 Windus-Smith Oct 2006 A1
20060234369 Sih Oct 2006 A1
20060235284 Lee Oct 2006 A1
20060235454 LeVaughn Oct 2006 A1
20060241517 Fowler Oct 2006 A1
20060241666 Briggs Oct 2006 A1
20060241667 Freeman Oct 2006 A1
20060241668 Schraga Oct 2006 A1
20060241669 Stout Oct 2006 A1
20060247554 Roe Nov 2006 A1
20060247555 Harttig Nov 2006 A1
20060247670 LeVaughn Nov 2006 A1
20060247671 Levaughn Nov 2006 A1
20060259057 Kim Nov 2006 A1
20060259058 Schiff Nov 2006 A1
20060259060 Whitson Nov 2006 A1
20060264718 Ruchti Nov 2006 A1
20060264996 Levaughn Nov 2006 A1
20060264997 Colonna Nov 2006 A1
20060271083 Boecker Nov 2006 A1
20060271084 Schraga Nov 2006 A1
20060276724 Freeman Dec 2006 A1
20060277048 Kintzig Dec 2006 A1
20060278545 Henning Dec 2006 A1
20060282109 Jansen Dec 2006 A1
20060286620 Werner Dec 2006 A1
20060287664 Grage Dec 2006 A1
20060293577 Morrison Dec 2006 A1
20070004989 Dhillon Jan 2007 A1
20070004990 Kistner Jan 2007 A1
20070007183 Schulat Jan 2007 A1
20070009381 Schulat Jan 2007 A1
20070010839 Galloway Jan 2007 A1
20070010841 Teo Jan 2007 A1
20070015978 Kanayama Jan 2007 A1
20070016079 Freeman Jan 2007 A1
20070016103 Calasso Jan 2007 A1
20070016104 Jansen Jan 2007 A1
Foreign Referenced Citations (104)
Number Date Country
4420232 Dec 1995 DE
10057832 Feb 2002 DE
10208575 Aug 2003 DE
10245721 Dec 2003 DE
10361560 Jul 2005 DE
0199484 Oct 1986 EP
0 364 208 Apr 1990 EP
0 449 525 Oct 1991 EP
0263948 Feb 1992 EP
0 654 659 May 1995 EP
0 777 123 Jun 1997 EP
0 898 936 Mar 1999 EP
0 951 939 Oct 1999 EP
0 951 939 Oct 1999 EP
0 964 060 Dec 1999 EP
0 985 376 May 2000 EP
1 101 443 May 2001 EP
1101443 May 2001 EP
0874984 Nov 2001 EP
01174083 Jan 2002 EP
0759553 May 2002 EP
0958495 Nov 2002 EP
0937249 Dec 2002 EP
01374770 Jan 2004 EP
1502614 Feb 2005 EP
2 555 432 May 1985 FR
233936 Jun 1999 GB
2335860 Oct 1999 GB
2335990 Oct 1999 GB
WO 9207263 Apr 1992 WO
WO 9506240 Mar 1995 WO
WO 9824373 Jun 1998 WO
WO 9907431 Feb 1999 WO
WO 9917854 Apr 1999 WO
WO 9918532 Apr 1999 WO
WO 9927483 Jun 1999 WO
WO 0006024 Feb 2000 WO
WO 0011578 Mar 2000 WO
WO 0015103 Mar 2000 WO
WO 0017799 Mar 2000 WO
WO 0017800 Mar 2000 WO
WO 0018293 Apr 2000 WO
WO 0019346 Apr 2000 WO
WO 0032097 Jun 2000 WO
WO 0032098 Jun 2000 WO
WO 0033236 Jun 2000 WO
WO 0042422 Jul 2000 WO
WO 0072452 Nov 2000 WO
WO 0115807 Mar 2001 WO
WO 0116578 Mar 2001 WO
WO 0137174 May 2001 WO
WO 0145014 Jun 2001 WO
WO 0169505 Sep 2001 WO
WO 0172220 Oct 2001 WO
WO 0221317 Mar 2002 WO
WO 0225551 Mar 2002 WO
WO 0241227 May 2002 WO
WO 03070099 Aug 2003 WO
WO 03088851 Oct 2003 WO
WO 03094752 Nov 2003 WO
WO 03101297 Dec 2003 WO
WO 2004022133 Mar 2004 WO
WO 2004040285 May 2004 WO
WO 2004040287 May 2004 WO
WO 2004040948 May 2004 WO
WO 2004098405 Nov 2004 WO
WO 2004003147 Dec 2004 WO
WO 2004107964 Dec 2004 WO
WO 2005001418 Jan 2005 WO
WO 2005006939 Jan 2005 WO
WO 2005011774 Feb 2005 WO
WO 2005016125 Feb 2005 WO
WO 2005018425 Mar 2005 WO
WO 2005018430 Mar 2005 WO
WO 2005018454 Mar 2005 WO
WO 2005018709 Mar 2005 WO
WO 2005018710 Mar 2005 WO
WO 2005018711 Mar 2005 WO
WO 2005022143 Mar 2005 WO
WO 2005023088 Mar 2005 WO
WO 2005033659 Apr 2005 WO
WO 2005034720 Apr 2005 WO
WO 2005034721 Apr 2005 WO
WO 2005034741 Apr 2005 WO
WO 2005034778 Apr 2005 WO
WO 2005035017 Apr 2005 WO
WO 2005035018 Apr 2005 WO
WO 2005037095 Apr 2005 WO
WO 2005046477 May 2005 WO
WO 2005065399 Jul 2005 WO
WO 2005065414 Jul 2005 WO
WO 2005065415 Jul 2005 WO
WO 2005072604 Aug 2005 WO
WO 2005084557 Sep 2005 WO
WO 2005116622 Dec 2005 WO
WO 2005119234 Dec 2005 WO
WO 2005121759 Dec 2005 WO
WO 2006001973 Jan 2006 WO
WO 2006005545 Jan 2006 WO
WO 2006011062 Feb 2006 WO
WO 2006013045 Feb 2006 WO
WO 2006027702 Mar 2006 WO
WO 2006032391 Mar 2006 WO
WO 2006072004 Jul 2006 WO
Related Publications (1)
Number Date Country
20040039303 A1 Feb 2004 US